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 The review exposes basic concepts and manifestations of the singular and structured light 

fields. The presentation is based on deep intrinsic relations between the singularities and the 

rotational phenomena in light; it involves essentially the dynamical aspects of light fields 

and their interactions with matter. Due to their topological nature, the singularities of each 

separate parameter (phase, polarization, energy flow, etc.) form coherent interrelated 

systems (singular networks), and the meaningful interconnections between the different 

singular networks are analysed. The main features of singular-light structures are introduced 

via generic examples of the optical vortex and circular vortex beams. The review describes 

approaches for generation and diagnostics of different singular networks and underlines the 

role of singularities in formation of optical field structures. The mechanical action of 

structured light fields on material objects is discussed on the base of the spin-orbital 

(canonical) decomposition of electromagnetic momentum, expressing the special roles of 

the spin (polarization) and spatial degrees of freedom. Experimental demonstrations 

spectacularly characterize the topological nature and the immanent rotational features of the 

light-field singularities. The review is based on the results obtained by its authors with a 

special attention to relevant works of other researchers.  

Keywords:  

Singularity spin and orbital angular 

momentum; energy flow; structured 

light; optical vortices.  

 

 

1. Introduction  

Commonly accepted concepts of light coming from 

everyday life evoke no associations with the rotational type 

of evolution. On the contrary, the light propagation 

provides bright examples of the rectilinear motion and is 

sometimes considered as the antipode to any circulation or 

vortex phenomena rather typical for “other”, non-optical 

physics. From this point of view, ideas on the “rotational” 

properties of light look rather strange, and for a long time 

these were far from the scientific mode of life. Probably, 

the first scientific ideas relating the rotational features of 

light go back to Descartes [1, 2]. In his metaphysical 

system, the rotational motion generally occupied an out-

standing position; he conceived the light as compressions 

of an absolutely elastic medium and explained the 

difference in colours by vortex motions of the medium 

particles performed with different velocities. 

One may admire Descartes’ clairvoyance, but his 

anticipations were only speculations. The next, much more 

grounded steps in understanding the role of rotation in light 

phenomena were associated with development of the idea 

of light polarization [3]. The concept of elliptically polarized 

waves and the discovery of optical activity effects (Arago 

in 1811; Faraday in 1846 [4]) provided the rotational 

characteristics of light with a firm scientific background.  

However, the real history of the problem begins from 

the famous Maxwell’s treatise [5] (1873), where the ideas 

of the electromagnetic field and its mechanical properties 

were first expressed in a clear and consistent form. Based 

on the Maxwell’s equations, Sadovsky [6] in 1898 and 

Poynting [7] in 1909 predicted that the light with a circular 

and elliptic polarization exerts the rotatory action upon 
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material objects, and a transparent analogy between a light 

beam with circular polarization and a rotating mechanical 

body was established. These ideas were supported in the 

careful experiments by Beth [8] in 1936 who managed to 

register the mechanical torque exerted by a circularly-

polarized wave and, thereby, to determine the value of its 

angular momentum (AM). 

Simultaneously, the electromagnetic theory made it 

possible to analyse energy flows associated with light 

waves. Probably, the first symptoms of a circulatory flow 

of light energy were discovered in 1919 during the 

theoretical study of focused optical fields [9]. The 

subsequent evolution of the classical and quantum field 

theory clearly indicated the existence of the photon spin 

and helicity, being the source of the spin angular 

momentum (SAM) of light associated with its non-planar 

polarization. On the other hand, consistent theoretical 

analyses of general light fields revealed numerous 

examples of the circulatory flows of light energy (see, e.g., 

Ref. 10) and even their ubiquity in the coherent irregular 

light fields, e.g., in speckle fields [11, 12]. Such structures 

were called “optical vortices” (OVs) [13]; to understand 

their fascinating mechanical features, the concept of an 

orbital angular momentum (OAM) previously developed in 

the pure-theoretical approach [14–16] was fruitfully 

employed.  

But the real “boom” began in 1992 when Allen and his 

colleagues [17] calculated the AM of the well-known 

Laguerre-Gaussian modes of laser resonators and showed 

their remarkable similarity to circularly polarized beams. 

Since then, OVs have become perhaps the most popular 

objects of the modern optics. In particular, the OVs expose 

an important feature of all rotational effects: they are 

always accompanied by the presence of exceptional 

locations associated with the axis of rotation, where the 

field behaviour qualitatively differs from what can be seen 

at other (“generic”) points of space. Such exceptional 

points, termed as “optical singularities”, constitute another 

fruitful paradigm – “singular optics” [18–20] that have 

largely determined the optical science progress in the past 

decades.  

The studies of singular points in spatial distributions of 

optical phase, polarization, amplitude, etc., laid a bridge to 

an extensive field of the wavefield topology, basically 

developed in the works of Nye, Berry, and their 

collaborators [21–23]. The specific properties of optical 

singularities, their characteristics and classification have 

shown that they form a coherent and interrelated system 

which determines the light field structure “as a whole”. 

Detailed analyses of optical singularities pave the way to 

the purposeful formation of light fields with a prescribed 

spatial, polarization, and spectral structures, and thus, 

contribute to the further development of the concept of 

“structured light”, attracting the special attention due to 

promising applications in optical manipulation, nano- and 

microengineering, data encoding, transmission, and 

processing [24–26]. 

Remarkably, various aspects of the physics and 

application of structured light demonstrate persuasive 

manifestations of the rotational and singular behaviour of 

light fields. Due to this circumstance, traditional 

instruments of the light characterization (distributions of 

amplitude, phase, polarization) become insufficient for 

structured light fields. The dynamical characteristics (DCs) 

– spatial distributions of the energy, energy flow, 

momentum, angular momentum, and their derivatives –

come to the fore, giving a consistent, informative, and 

application-oriented description [26–28].   

An important feature of structured light fields is their 

principally 3D configuration: the usual representation of 

“transverse light waves” is no longer applicable 

[25, 27,29]. The electric and magnetic vectors possess 

strong and variable longitudinal components, and this is the 

source of an additional sort of light rotation – “photonic 

wheels” [30, 31] where the light vectors rotate in the 

longitudinal plane. Upon proper employment, the 

longitudinal field components supply far-reaching 

prospects, in particular, for the near-field scanning optical 

microscopy; their engagement enables essential 

improvement in resolution and sensitivity of the optical 

diagnostic instruments up to nanometre scales. The DCs 

appear to be very useful in application to such fields, 

supplying meaningful and consistent concepts of transverse 

SAM and OAM [27, 32, 33]. 

Another useful toolbox for the structured light 

characterization, closely related to the DCs, is the system 

of its singularities. Each singularity appears as  

a topological object, and this topological nature makes  

the system of singularities stable against external 

perturbations. The singularities of different nature 

(singularities of phase, polarization, or energy flow, etc.) 

are interrelated; each singularity qualitatively “organizes” 

the field in its vicinity and enters certain harmonic relations 

with the adjacent singularities. In particular, the phase or 

polarization singularity stipulates a specific pattern of the 

field intensity, as well as the momentum and energy flow 

distribution around it. These interesting and informative 

patterns reflect deep physical regularities of the light fields, 

e.g. the interrelations between the spatial and polarization 

degrees of freedom [27, 32, 33]. In complex, the separate 

singularities form a coherent system (“singular skeleton” 

[34]) able to qualitatively represent the field as a whole, 

which can be used, in particular, for the reliable and 

economical optical data encoding and processing [25]. 

On the other hand, the optical singularities (as well as 

the patterns of DCs, by the way) are, generally, not 

immediately perceptible (sometimes they can be detected 

as the amplitude zeros, but in other cases this association 

can be elusive). As a rule, the singularities are detected 

indirectly via the interference with special “reference” 

waves of the simple standard structure [35–39], which puts 

no principal difficulties for the modern optical techniques. 

Anyway, the physical contents and technical possibilities 

associated with their wide use for the optical field 

inspection and characterization justify any effort directed 

to a deeper study of optical rotations and singularities.  

Naturally, this interesting and vivid topic has been 

reviewed many times, with different degrees of 

generalization and with special attention to different 

fundamental and applied aspects. The full list of available 

reviews and compendia is too long; to name at least the 

most popular, at the authors’ discretion, Refs. 20, 34, 40–

48 can be mentioned. In this record, each item contains a 

number of consistent references to original works, offered 

for readers intended to penetrate deeper into the 

corresponding sub-topics (e.g., nearly 500 titles in Ref. 47 
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treat the optical singularities in fibre waveguides; Ref. 48 

cites over 600 publications on various features of the phase 

and polarization singularities, etc.).  

In view of this background, an additional review can 

only be justified if it provides a new vision that was not 

sufficiently discussed previously. We hope this is the case. 

In this work, the authors systematically illustrate the 

rotational features of light fields and their associations with 

different sorts of optical singularities and their systems. On 

this basis, existing approaches to description and formation 

of the structured light fields, the role and manifestations of 

optical singularities are described, with the special 

attention to meaningful interrelations between different 

light-wave characteristics united by the singular networks. 

2. Optical vortex: a prototype of optical singularities 

2.1. General ideas and description  

At the beginning, the general conventions relating to the 

terminology and notations that will be kept in the further 

presentation are outlined. The optical field is considered  

as an electromagnetic wave with space- and time-

dependent electric 𝑬(𝐑, 𝑡) and magnetic 𝑯(𝐑, 𝑡) vectors,  
𝐑 = (𝑥, 𝑦, 𝑧)𝑇 is the 3D vector of spatial coordinates, and 

the superscript “T” denotes matrix transposition; 

t  symbolizes time, as usual. As a rule, monochromatic 

fields are considered in which  

𝑬(𝐑, 𝑡) = Re[𝐄(𝐑) exp(−𝑖𝜔𝑡)], 
(1a) 

𝑯(𝑹, 𝑡) = Re[𝐇(𝐑) exp(−𝑖𝜔𝑡)], (1b) 

where 𝜔 is the light frequency (polychromatic fields can 

always be considered as superpositions of monochromatic 

ones with different frequencies). The monochromatic fields 

are exhaustively characterized by the time-invariant 

complex quantities 𝐄(𝐑), 𝐇(𝐑). In regions without free 

charges and currents, the field vectors satisfy the 

Maxwell’s equations [49, 50] 

∇𝐇 = 0,     𝐇 =
1

𝑖𝑘𝜇
∇ × 𝐄,    ∇𝐄 = 0,    𝐄 = −

1

𝑖𝑘𝜀
∇ × 𝐇   (2) 

where 𝑘 = 𝜔/𝑐, 𝑐 is the speed of light in vacuum, 𝜀 and 𝜇 

are the permittivity and permeability of the medium, 

respectively, and the Gaussian system of units is used.  

In many cases, the physically selected longitudinal 

direction z exists, and the rate of the field variations along 

𝑧 is much lower than that in the transverse (𝑥,  𝑦) plane, 

and, in turn, the characteristic variations scale in the 

transverse plane is much higher than the vacuum wave-

length 𝜆 = 2𝜋/𝑘. In such situations, the paraxial field 

model is appropriate where the electric and magnetic 

vectors are nearly transverse and described by equations 

𝐄 = 𝐄⊥ + 𝒆𝑧𝐸𝑧 = [𝐮 +
𝑖

𝑘𝑛
𝒆𝑧(∇⊥ ⋅ 𝐮)] 𝑒𝑖𝑘𝑛𝑧 , 

(3) 

𝐇 = 𝐇⊥ + 𝒆𝑧𝐻𝑧 

     = √
𝜀

𝜇
[(𝒆𝑧 × 𝐮) +

𝑖

𝑘𝑛
𝒆𝑧(∇⊥ ⋅ (𝒆𝑧 × 𝐮))] 𝑒𝑖𝑘𝑛𝑧 . 

(4) 

Here, the subscript “⊥” denotes the transverse part of the 

vector, 𝐑⊥ = 𝐫 = (𝑥, 𝑦)𝑇, 𝒆𝑧 is the unit vector of the 

longitudinal direction 𝑧, 𝑛 = √𝜀𝜇 is the medium refractive 

index, 𝐮(𝐫,  𝑧) is the paraxial complex amplitude [25, 27] 

𝐮 = 𝒆⊥𝑢 = 𝒆𝑥𝑢𝑥 + 𝒆𝑦𝑢𝑦 = 𝒆+𝑢+ + 𝒆−𝑢−  () 

𝒆𝑥, 𝒆𝑦 being the unit vectors of the transverse coordinates, 

and 

𝒆+ =
1

√2
(𝒆𝑥 + 𝑖𝒆𝑦),  𝒆− =

1

√2
(𝒆𝑥 − 𝑖𝒆𝑦),  

𝑢+ =
1

√2
(𝑢𝑥 − 𝑖𝑢𝑦),  𝑢− =

1

√2
(𝑢𝑥 + 𝑖𝑢𝑦) (6) 

are the complex unit vectors and the transverse field 

components in the circular-polarization basis [27]. 

The transverse complex amplitude (5) satisfies the 

paraxial wave equation [27, 41] 

𝑖
𝜕𝑢𝜎

𝜕𝑧
= −

1

2𝑘𝑛
∇⊥

2 𝑢𝜎 , () 

where ∇⊥= 𝒆𝑥 (
𝜕

𝜕𝑥
) + 𝒆𝑦 (

𝜕

𝜕𝑦
) is the transverse gradient, 

whereas 𝜎 = ±1 for the basis of circular polarizations or 

𝜎 =  𝑥, 𝑦 for the basis of linear polarization, which are 

equally admissible in the paraxial approximation. The main 

(first) terms of (3) and (4) describe the transverse field 

components, while the longitudinal components (second 

terms) are of the relative order 𝛾 = (𝑘𝑏)−1 in magnitude, 

with 𝑏 being the characteristic transverse scale of the 

distribution 𝐮(𝐫,  𝑧). The quantity 𝛾 is the small parameter 

of the paraxial approximation; the longitudinal character-

istic scale of the paraxial beam equals 𝑧𝑅 = 𝑘𝑏2.  

The main DC of an optical field is its energy density 

averaged over the period of oscillations [27, 32, 49] 

𝑤 = 𝑤𝑒 + 𝑤𝑚 =
𝑔

2
(𝜀|𝐄|2 + 𝜇|𝐇|2) = 𝑔𝜀(𝐮∗ ⋅ 𝐮)

= 𝑔𝜀 (|𝑢𝑥|2 + |𝑢𝑦|
2

), 
() 

whereas the energy flow density is given by the time-

averaged Poynting vector [25, 27, 49] 

𝐒 =
𝑐2

𝑛2
𝐩 = 𝑐𝑔 Re[𝐄∗ × 𝐇] () 

(𝑔 = (8𝜋)−1 in the Gaussian system of units). Here 𝐩 is the 

field momentum density, according to [25] taken in the 

Minkowski form. It can be decomposed into the sum of  

the “orbital” pO and “spin” pS momenta expressing the  

roles of the spatial and polarization degrees of freedom 

[25, 27, 32, 51], 

𝐩 = 𝐩𝑂 + 𝐩𝑆  () 

where  

𝐩𝑂 =
𝑔

2𝜔
Im[𝜀𝐄∗ ⋅ (∇)𝐄 + 𝜇𝐇∗ ⋅ (∇)𝐇], (11) 

   𝐩𝑆 =
𝑔

4𝜔
Im[∇ × (𝜀𝐄∗ × 𝐄 + 𝜇𝐇∗ × 𝐇)]. (12) 
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For the paraxial field of (3) and (4), the momentum density 

can be suitably presented in the form 

𝐩 = 𝐩∥
𝑂 + 𝐩⊥

𝑂 + 𝐩⊥
𝑆  , () 

where the longitudinal component 

𝐩∥
𝑂 =

𝑔

𝑐
𝜀𝑛𝒆𝑧(𝐮∗ ⋅ 𝐮) =

𝑛

𝑐
𝑤𝒆𝑧 () 

describes the main (longitudinal) energy flow and 

momentum whereas the transverse momentum containing 

the orbital and spin parts,  

𝐩⊥
𝑂 =

𝑔

𝑐𝑘
𝜀 Im(𝐮∗ ⋅ (∇⊥)𝐮)

=
𝑔

𝜔
𝜀(|𝑢+|2∇⊥𝜑+ + |𝑢−|2∇⊥𝜑−), 

(15) 

𝐩⊥
𝑆 = −

𝑖

2𝜔
𝑔𝜀(∇⊥[𝐮∗ × 𝐮])

= 𝜀
𝑔

2𝜔
(𝒆𝑥

𝜕

𝜕𝑦
− 𝒆𝑦

𝜕

𝜕𝑥
) (|𝑢+|2 − |𝑢−|2) 

(16) 

express the intrinsic structure of the field, including its 

rotational features. For example, the OAM and SAM 

densities with respect to the beam axis are determined from 

(15) and (16) as 

𝐋 = 𝐫 × 𝐩⊥
𝑂 = 𝒆𝑧𝐿𝑧 = 𝒆𝑧

𝑔

𝜔
𝜀 

        × [|𝑢+|2 (𝑥
𝜕𝜑+

𝜕𝑦
− 𝑦

𝜕𝜑+

𝜕𝑥
) + |𝑢−|2 (𝑥

𝜕𝜑−

𝜕𝑦
− 𝑦

𝜕𝜑−

𝜕𝑥
)] 

    = 𝒆𝑧

𝑔

𝜔
𝜀 [|𝑢+|2

𝜕𝜑+(𝐫)

𝜕𝜙
+ |𝑢−|2

𝜕𝜑−(𝐫)

𝜕𝜙
], 

𝐬 = 𝐫 × 𝐩⊥
𝑆 = 𝒆𝑧𝑠𝑧 

    = −𝒆𝑧

𝑔

2𝜔
𝜀 (𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
) (|𝑢+|2 − |𝑢−|2).  (18) 

Particularly, in case of linear polarization, when 
|𝑢+(𝐫)| = |𝑢−(𝐫)| and the phases 𝜑+(𝐫), 𝜑−(𝐫) differ only 

by a constant, the OAM density expression (17) gives, 

generally, a meaningful non-zero result while the SAM 

(18) expectedly vanishes. The total values of the DCs for 

the “whole beam” per unit z-length are characterized by the 

“integral” quantities: 

⟨𝑤⟩ = ∫ 𝑤(𝐫)𝑑2𝐫, ⟨𝐩⟩ = ∫ 𝐩(𝐫)𝑑2𝐫,  

⟨𝐋⟩ = ∫ 𝐋(𝐫)𝑑2𝐫 ,  ⟨𝐬⟩ = ∫ 𝐬(𝐫)𝑑2𝐫 ; (19) 

note that the integration by parts in the latter equation 

shows [27, 41] that, for any spatially-limited field, the 

SAM density representation (18) is equivalent to the usual 

form  

𝐬 = 𝒆𝑧

𝑔

𝜔
𝜀(|𝑢+|2 − |𝑢−|2) . (20) 

2.2. Structure of optical vortices 

OVs frequently occur in various optical fields [20], but 

“generically” are associated with paraxial fields, and are 

suitably considered within the frame of the above-

described paraxial approximation (3) – (7). As a rule, an OV 

appears in a single polarization component and can thus be 

treated as the “scalar singularity” [20, 27, 41] which can 

exist independently of the beam polarization. Its 

geometrical structure and main attributes are typical to 

many other optical singularities, so in this section, the OV 

parameters are considered in more detail.  

In a circular OV, the scalar complex amplitude (7) is 

characterized by the “helical phase factor” 

𝑢(𝐫, 𝑧) = 𝑓(𝑟, 𝑧) exp(𝑖𝑙𝜙), (21) 

where 𝜙 = arctan(𝑦/𝑥) and r are the polar coordinates in 

the beam cross section. According to (21), on a round-trip 

near the longitudinal axis 𝑧, the field phase does not return 

to its initial value but experiences an increment 2𝑙𝜋, which 

corresponds to the helical wavefront shape [screw 

wavefront dislocation [18], see Fig. 1(a)]; this means that 

the phase is indeterminate (singular) in the point 

(x = 0, y = 0). These properties are compatible with the 

field definiteness (and with the smooth, unambiguous 

solutions of the Maxwell’s equations) only if 𝑙 is an integer 

number called “topological charge” (TC), and the field 

 

Fig. 1. (a) Wavefront of an OV beam near the OV core: normals to the screw-like surface are inclined 
with respect to the longitudinal direction; their azimuthal components form a close-loop 

circulation in the beam cross section. (b) 3D lines of the energy propagation in a circular OV 

beam for different distances from the beam axis in the waist plane 𝑧 = 0. 
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amplitude distribution possesses an isolated zero point (the 

OV core) at the screw axis. Accordingly, the intensity 

distribution forms a bright ring [Fig. 1(b)]. Local directions 

of the energy flows are normal to the wavefront [27, 52], 

and due to its helical shape, each wavefront normal 

possesses a certain azimuthal component; altogether, these 

azimuthal components form a closed loop in the transverse 

cross section [Fig. 1(a)]. This makes the energy propagate 

along complicated spiral lines [Fig. 1(b)] rather than along 

the longitudinal rays as is typical for usual optical fields. 

The transverse components of the energy flow are 

responsible for the transverse energy circulation which is a 

characteristic feature of the OV field and a source of the 

mechanical angular momentum, namely, OAM carried by 

the OV. 

The circularly symmetric pattern depicted in Fig. 1 

shows an ideal configuration typical for circular OV  

beams (the well-known standard OV models using the 

Laguerre-Gaussian (LG), Bessel, Kummer beams, etc. 

[20, 27, 41, 53–56]). The LG beams are generally 

considered as standard scalar OV-beam models with the 

complex amplitude distribution of (21) where 

𝑓(𝑟, 𝑧) ≡ 𝑓𝐿𝐺(𝑟, 𝑧) 

= 𝐸0√
|𝑙|!

(𝑝 + |𝑙|)!

𝑏0

𝑏(𝑧)
(

𝑟

𝑏(𝑧)
)

|𝑙|

𝐿𝑝
|𝑙|

(
𝑟2

𝑏2(𝑧)
) exp (−

𝑟2

𝑏2(𝑧)
) 

     × exp [𝑖 (𝑘𝑧 +
𝑘𝑟2

2𝑅(𝑧)
− 𝜒(𝑧))]. 

In this equation,  

𝑏2(𝑧) = 𝑏0
2 (1 +

𝑧2

𝑧𝑅
2) ,   𝑅(𝑧) =

𝑧2 + 𝑧𝑅
2

𝑧
 

 

𝜒(𝑧) = (2𝑝 + |𝑙| + 1) arctan (
𝑧

𝑧𝑅

) 
 

are the z-dependent beam radius, the wavefront radius  

of curvature, and the so called Gouy phase [20], 

correspondingly; 𝐿𝑝
|𝑙|(. . . ) is the Laguerre polynomial [57], 

integer 𝑝 > 0 is the radial index and the TC 𝑙 coincides 

with the azimuthal index of the LG mode. Here 𝑏0 denotes 

the minimum beam radius at the “waist plane” where  

the longitudinal coordinate 𝑧 = 0; the Rayleigh length  
𝑧𝑅 = 𝑘𝑏0

2 specifies the longitudinal scale of the field, 

corresponding to 𝑧𝑅 below (7). Remarkably, the OAM of 

such a beam (per unit z-length) with allowance for (17) and 

(19) equals to [17, 58] 

⟨𝐿𝑧⟩ = 𝑙
⟨𝑤⟩

𝜔
 . (23) 

Accordingly, each photon with the energy 𝑤ph = ℏ𝜔 

carries the OAM 𝐿𝑧
ph

= 𝑙ℏ [17] (just like a circularly 

polarized photon carries the SAM 𝑠𝑧
𝑝ℎ

= 𝜎ℏ where 𝜎 = ±1 

is the quantum number of circular polarization). The LG 

mode (21), (22) is characterized by the ring-like intensity 

distribution with 𝑝 + 1 bright rings; since the OAM 

depends only on 𝑙, in most applications the zero-index 𝐿𝐺0
𝑙  

beams are preferable with the one-ring (“doughnut”) 

intensity pattern [cf. Fig. 1(b)]. 

In many real situations this ideal pattern is distorted; 

moreover, a minor symmetry-breaking perturbation 

destroys a multicharged OV (21) (with |𝑙| > 1) into a set 

of |𝑙| separate single-charged ones [20, 27, 41]. However, 

even in asymmetric situations, just near the core (supposed 

to be situated at the point 𝑥 = 𝑥𝑉, 𝑦 = 𝑦𝑉 of the beam cross 

section), the complex amplitude distribution can be 

described in a universal way as  

𝑢(𝒓) ≈ 𝛽𝑥(𝑥 − 𝑥𝑉) + 𝑖𝛽𝑦(𝑦 − 𝑦𝑉) 

= √|𝛽𝑥|2(𝑥 − 𝑥𝑉)2 + |𝛽𝑦|
2
(𝑦 − 𝑦𝑉)2 + 2 Im(𝛽𝑥𝛽𝑦

∗) (𝑥 − 𝑥𝑉)(𝑦 − 𝑦𝑉)  

     × exp (𝑖 arctan
Im 𝛽𝑥 (𝑥 − 𝑥𝑉) + Re 𝛽𝑦 (𝑦 − 𝑦𝑉)

Re 𝛽𝑥 (𝑥 − 𝑥𝑉) + Im 𝛽𝑦 (𝑦 − 𝑦𝑉)
) ,  

where 𝛽𝑥 and 𝛽𝑦 are the complex parameters determining 

the OV morphology [41, 59, 60]. In contrast to the circular 

OV (21), this structure is asymmetric (“anisotropic OV”): 

the equal-amplitude lines are ellipses, the rate of the phase 

change upon the near-OV circulation is non-uniform. 

Under external influences (e.g., the beam propagation 

through inhomogeneous medium), parameters of (24) 𝛽𝑥, 

𝛽𝑦, 𝑥𝑉, 𝑦𝑉 may change but the singularity ‘per se’ with all  

its attributes (isolated amplitude zero, screw wavefront 

dislocation, transverse energy circulation) is of the 

topological nature and, therefore, stable against pertur-

bations. For this reason, OV beams are promising for the 

information transfer in noise conditions, e.g., through the 

turbulent atmosphere [24].  

2.3. Interference properties and generation of optical 

vortices 

The most impressive features of the OV beams are 

demonstrated when they interfere with non-singular waves 

possessing smooth wavefronts. Upon the coaxial 

interference, the wavefront helicity leads to the spiral 

fringes [Fig. 2(a)] which transform into the characteristic 

“broken” lines and the “fork” structure [Fig. 2(b)] with a 

growing angle between the LG beam and the reference 

wave axes. The interference patterns with “broken” fringes 

and “forks” still remain the most suitable indicator of the 

OV widely used for their detection [19, 20, 35–39, 41]. 

Remarkably, the fork orientation (“up” or “down”) allows 

to distinguish positive or negative TCs 𝑙. 
On the other hand, the interference patterns obtained 

with the OV beams open the most flexible and universal 

ways for generating such beams in practice. First 

  

Fig. 2. Patterns of interference between the circular LG mode (22) 

with |𝑙| = 1 and the plane wave: (a) when both waves are 

coaxial and (b) when the waves are mutually inclined. 

 

(22) 

(24) 



 O. V. Angelsky et al. / Opto-Electronics Review 30 (2022) e140860 6 

 

observations dealt with occasional OVs emerging in the 

speckle fields [61] and/or with the LG modes of laser 

resonators that can be realized upon proper distribution of 

losses over the resonator cross section with axial 

maximum. The generation of a beam with OV immediately 

inside the laser cavity is, probably, the simplest method for 

the purposeful OV generation. Simultaneously, this method 

is the least reliable because the conditions necessary for the 

LG mode formation may be unfavourable for the laser 

generation ‘per se’ (that is why an easier version of the “in-

cavity” OV beam creation employs the more usual laser-

generated Hermite-Gaussian modes, from which the OV 

beam can be obtained by means of properly adjusted 

astigmatic mode converters [62, 63]).  

As is well known [64], if some recording medium 

carries the pattern of interference between an arbitrary 

“object” beam and a standard “reference” beam, then, after 

illuminating this structure with a more or less accurate copy 

of the reference beam, the object beam structure can be 

restored in the diffracted field. In application to OV, this 

approach was first realized even before the “singular” era 

[18] and obtained further development, with many 

modifications and technical improvements, in a lot of 

subsequent works [38, 53, 60, 65–68]. The necessary 

interference pattern, based on the desired OV-beam 

structure, can be calculated and afterwards reproduced in 

the optical transparency or, more flexibly, with the 

programmable spatial light modulator [39–42]. Examples 

of the OV-producing gratings (“computer-generated 

holograms” [20]) are presented in Fig. 3. It can be seen that 

at the periphery they look like ordinary diffraction gratings 

with rectilinear grooves but contain the groove bifurcation 

(“fork” structure) in the central area, which is responsible 

for the OV formation.  

If the incident Gaussian beam diffracts on a structure 

depicted in Fig. 3(a), the zero-order (non-diffracted) beam 

still remains Gaussian, but in the ±Nth diffraction order, the 

OV beam with the TC 𝑙 = ±𝑁 is formed. In contrast, the 

grating of Fig. 3(b) in the ±𝑁th diffraction order produces 

the OV beam with the TC 𝑙 = ±5𝑁. It should be noted that 

the OV beams formed by such gratings from the incident 

Gaussian beams do not belong to the LG family; the groove 

bifurcation introduces a “sharp” complex amplitude 

discontinuity due to which the beam amplitude decays as 

~𝑟−2 with the growing transverse radius 𝑟, instead of the 

exponential decay in the LG beams (22). For this reason, 

the OV beams formed by the “fork” gratings  

have no second-order intensity moments [69], i.e., their 

“weighted” width tends to infinity (like in Bessel beams 

or sharp-edge diffracted beams [70]); they form a special 

class of Kummer, or hypergeometric-Gaussian, beams 

[53, 54, 56, 57]. As far as the angle of diffraction is small, 

the Kummer beams possess a circular symmetry, but at 

high diffraction angles this symmetry is broken [60].  

The same circular Kummer beams can be obtained 

when a Gaussian beam passes the special phase plate with 

helical relief (spiral phase plate) which imparts the phase 

retardation corresponding to the helical wavefront of 

Fig. 1(a) [71–73]. There are many other methods for the 

OV generation, but those are less popular due to the need 

for the special light polarization and anisotropic or liquid-

crystal elements [74–77].  

Note that all methods performing the controllable 

spatially-dependent phase retardation are, in principle, able 

to realize the phase multiplier in (21) with the arbitrary 𝑙, 
including non-integer. In the latter case, the so called 

“fractional OV” can be generated [78]. However, the wave 

in the form (21) with the fractional 𝑙 is not a solution of the 

Maxwell’s equations (2) and thus can only be realized in a 

single cross section; upon further propagation, the 

“fractional OV” transforms into a complicated asymmetric 

complex-amplitude distribution containing a series of 

oppositely-signed single-charge vortices [72, 79]. 

2.4. Rotational Doppler effect 

Generally, optical fields contain a system of 

singularities which coexist, interact, and obey certain 

common principles of the structured light organization 

[80, 81] (see for example Fig. 4). These principles follow 

from the topological “unity” of the beam: all the wavefront 

dislocations should be compatible with the wavefront 

continuity and connectivity in all other points; similarly, 

the transverse energy flows near each OV core should be 

compatible with the continuity and connectivity of the 

“global” energy flow pattern. In other words, the rotational 

properties of such generic fields are manifested in small 

scales but, as a rule, are not characteristic for the beam as a 

whole. In contrast, the standard OV models (for which the 

LG mode (22) is a typical example) demonstrate the 

singular and rotational properties explicitly, as the 

attributes of the beam ‘per se’. 

Here, one of such interesting rotational qualities of the 

circular OV beams – the rotational Doppler effect (RDE) is 

briefly considered. Previously, it was revealed and 

elaborated for the circularly-polarized beams [82–86], but 

the circular OV beams possess this property as well. The 

RDE originates from the beam phase dependence on the 

azimuth angle (21). Accordingly, the phase “seen” by an 

   
(a) (b) 

Fig. 3. Examples of the gratings designed for the OV generation:  

(a) with the TC |𝑙| = 1; (b) with the TC |𝑙| = 5. 

 

  

Fig. 4. Formation of the four OVs (“quadrupole”) upon the beam 
propagation through the light-induced non-linear astigmatic 

lens [19]. 
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observer “peering” against the z-axis [Fig. 5(a)] depends on 

its azimuthal orientation, and the OV beam observable 

frequency depends on the mutual mechanical rotation of 

the beam and observer about the beam axis [87–92]. On  

the other hand, the RDE can be treated via the change of  

the circular vortex photon energy ℏ𝜔 due to the work 

performed by the optical elements implementing rotation 

of the beam with OAM (this way of reasoning represents a 

dynamic approach to deformations of optical systems: any 

such deformation is accompanied by the mechanical work 

performed by the optical forces, which changes the energy 

of the light wave circulating in the system [93–96]). If the 

beam’s TC is 𝑙, and, accordingly, the OAM is determined  

by (23), its rotation with the angular velocity  changes  

the energy of each photon by ∆(ℏ𝜔) = 𝑙ℏΩ, which is 

equivalent to the frequency shift 𝑙.  

At first glance, the RDE concept is specific to circular 

beams with OAM and cannot be applied to other light 

fields. But due to the completeness of the system of LG 

modes [57], an arbitrary optical field can be represented as 

a superposition of circular LG beams with different radial 

p and azimuthal l indices [20, 41]. The rotation of such a 

field means that its individual LG components experience 

the RDE frequency shifts, i.e., due to rotation of a mono-

chromatic beam, a superposition of fields with different 

frequencies appears. Such a superposition cannot be 

stationary: the beats emerge at the “side” frequencies equal 

to the frequency differences of the LG components, and a 

variable signal can be registered by any photodetector. On 

the other hand, this variable signal can be considered as a 

purely geometric effect due to the rotation: the inhomo-

geneous beam profile moves across the fixed photodetector 

aperture, and the latter registers a variable signal [41].  

Therefore, arbitrary rotation of an optical field (for 

example, rotation of an image) can be interpreted as the 

RDE of its LG components, and the analysis of the variable 

signal that occurs in a spatially fixed detector allows  

to investigate the composition of the corresponding  

LG-modes superposition (the LG spectrum) [97]. On this 

basis, effective methods for detecting and studying the 

RDE through a visible rotation of the intensity profile of a 

certain superposition of the vortex and non-vortex beams 

can be constructed [89–91].  

Naturally, interpretation of the visible motion of an 

image as interference between its components with 

different Doppler frequency shifts is possible not only in 

the case of RDE but also for the usual “linear” Doppler 

effect. In this case, the transverse translational motion of 

the field leads to changes in the frequencies of its angular 

Fourier components (plane waves), and the analysis of the 

variable signal can give information about the spatial 

Fourier spectrum (plane-wave spectrum) of the field [41]. 

The dynamic approach to RDE proved to be especially 

useful in application to specific phenomena that occur 

when the beam rotates around an axis that differs from the 

beam axis [“non-collinear RDE” [41, 92], Fig. 5(b)]. 

Calculation of the work of the optical forces expended  

on the rotation of the “inclined” LG beam gives 

−2𝑙ℏΩ cos2 𝛽 “per photon”, from which the frequency 

shift Δ𝜔 = −2𝑙Ω cos2 𝛽 seemingly follows. This result 

looks quite understandable, but it entails rather strange 

consequences. First, after a complete revolution, when the 

system of Fig. 5(b) returns to its initial state, the phase 

increment is not a multiple of 2𝜋. Moreover, accounting for 

the unambiguous relationship between the phase and the 

angle of rotation of the LG beam, such an increase in phase 

means that the beam does not return to its original position 

– in sharp contrast to the common sense and everyday 

experience. The paradox becomes especially obvious when 

the two cases of a conical scan [Fig. 5(b)] are compared. If 

the input beam carries a certain image, then when reflected 

“forward”, which takes place if the mirror is tilted by  
𝛽 < 45°, this image rotates twice on each full rotation of 

the mirror, and when reflected “backward” (𝛽 > 45°), the 

original image does not rotate at all. From the first situation 

to the second one, it is possible to pass continuously, 

changing the mirror inclination; but in any case, one can 

see only an integer number of revolutions of the image on 

one cycle of mirror rotation, and a continuous transition 

from “two revolutions” to “no revolutions” cannot be 

imagined.  

The key to solving these puzzles is to carefully analyse 

the conditions for observing these frequency shifts and 

image rotations. In this situation, as nowhere else, the 

specific connection of the observed phase or frequency of 

the OV beam with the relative position of the beam and the 

recording system (observer) is clearly revealed. It turns out 

that not all reference systems are equal: there must be a 

“privileged” frame in which the behaviour of the beam 

during conical scanning looks the most “natural”. The 

analysis shows [92] that such a frame can be represented as 

a Cartesian (X, Y)-plane, orthogonal to the moving axis of 

 

Fig. 5. Illustration of the RDE: (a) usual scheme, (b) non-collinear RDE with the beam conical evolution. 
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the beam in Fig. 5(b), and at each moment of motion the 

angle between the X-axis and the circular trajectory of the 

beam axis is ∆ = ∆𝜃 cos 2𝛽. Taking this motion of the 

reference frame into account, all the above-mentioned 

paradoxes of non-collinear RDE find their solutions [92].  

The described phenomena have a purely geometric 

nature and appear due to peculiarities of the composition of 

rotational motions with respect to different non-collinear 

axes (for example, Rytov’s law for the rotation of the 

polarization plane of a twisted beam of light, or the motion 

of the Foucault pendulum [98], etc.). They are 

manifestations of the Berry topological phase, inherent in 

the evolution of nonholonomic systems. The topological 

nature of these effects makes them insensitive to a 

particular path of evolution; similar “non-integer” phase 

shift and rotation of the reference frame will occur when 

the axis of the output beam does not follow the cone 

surface, as in Fig. 5(b), but describes a closed loop of any 

shape. Additional phase and additional rotational 

displacement of the beam are also manifestations of the 

geometric phase which, however, are visible only to the 

“natural” observer. In a laboratory system, the geometric 

phases associated with the motion of the reference frame 

and with the motion of the beam with respect to this frame 

are completely compensated and, therefore, none of them 

is directly observed. 

2.5. Mechanical properties of circular light beams  

Consistent application of the DC-based formalism to 

the OV beams enables to disclose their interesting, non-

trivial mechanical features [99]. A circular OV beam can 

be likened to a rotating mechanical body. Considering an 

OV beam as a mechanical body, its mechanical charac-

teristics such as the angular velocity can be introduced, 

which for the LG beam (22) is naturally defined as [99] 

Ω(𝑧) =
𝑐

𝑘𝑏2(𝑧)
=

𝜔

𝑘2𝑏2(𝑧)
  (25) 

(this expression is derived from observation of the visible 

rotation of slightly asymmetric perturbed LG beams during 

their propagation; note that it does not include the TC 𝑙, 
and, since in the paraxial limit 𝑘𝑏 ≫ 1,  is much less than 

the optical frequency 𝜔). The corresponding mass [more 

accurately, the linear mass density defined according to the 

rule (19)] is determined by the electromagnetic mass of the 

light field, 𝑚𝑒 = ⟨𝑤⟩/𝑐2. Then, the beam OAM can be 

written in the “body-like” form 

⟨𝐿𝑧⟩ = 𝐽(𝑧)Ω(𝑧), (26) 

which is compatible with (23) and (25) if  

𝐽(𝑧) = 𝑙𝑚𝑒𝑏2(𝑧). (27) 

The quantity J(z) has a meaning of the moment of 

inertia per unit length of the beam. Its expression appears to 

be very similar to the known expression 𝐽(𝑧) = 2𝑚𝑒𝑏2(𝑧) 
for the moment of inertia of an inhomogeneous mechanical 

body [41] in which the radial mass distribution is the same 

as in the LG0
l beam; the only difference is the additional 

coefficient 2. This difference is caused by the fact that in 

the “body”, modelling a vortex beam, the OAM density is 

proportional to the intensity, that is, to the electromagnetic 

mass distribution while in a rigid body, the points remote 

from the axis produce greater contributions since their 

velocities are proportional to the off-axis distances. The 

proportionality between the OAM and the electromagnetic 

mass distributions can be explained only by supposing that, 

in the mechanical model of an LG beam, the linear 

velocities of different radial layers do not grow with their 

off-axial distances but, oppositely, decrease with inverse 

proportionality to the radius 𝑟 [99]. Remarkably, such a 

distribution of the velocities of the layers rotation is typical 

for other physical vortices (in a liquid, in the atmosphere, 

etc. [41]), which convincingly testifies to the unity of the 

physical laws of the world and additionally justifies the 

term “optical vortex”. 

Based on (25) – (27), the kinetic energy (per unit length) 

associated with the LG-beam rotation can be derived: 

𝑊𝑘 =
1

2
𝐽(𝑧)Ω2(𝑧) =

𝑙

2

⟨𝑤⟩

𝑘2𝑏2(𝑧)
 (28) 

Noticeably, this quantity, as well as the velocity (25), 

rapidly grows with the beam squeezing (e.g., due to 

focusing). Indeed, when the beam radius decreases, its 

energy is concentrated closely to the axis where, according 

to Fig. 1(a), the wavefront normals are inclined more 

strongly, and the azimutal components of the Poynting 

vector grow correspondingly [100]. It can be formulated 

that the focusing elements perform a mechanical work 

accelerating the OV beam rotation and increasing its 

mechanical energy (28); however, the intrinsic energy of 

the beam 𝑤 remains unchanged. 

It is reasonable to mention another mechanical model 

of a circular OV beam (21), directly addressing its helical 

symmetry [99]. First, it is supposed that the pre-exponential 

function 𝑓(𝑟, 𝑧) ≃ 𝑓(𝑟) does not depend on 𝑧, or this 

dependence is negligible (which is correct near the beam 

waist). Then, the beam (21) is a pure-helical object whose 

translation along the axis 𝑧 with the speed of light 𝑐 is 

equivalent to the rotation around the same axis with the 

angular velocity 𝜔/𝑙; actually, these are not two different 

motions but rather the same motion can be treated in two 

ways. Thus, its kinetic energy can be ascribed either to the 

rotation or to the translational motion, which, in application 

to the unit z-length of the beam and with involvement of 

the corresponding mass 𝑚𝑒 [see (27)] and the electro-

magnetic moment of inertia 𝐽𝑒 (as yet unknown) yields 

1

2
𝐽𝑒 (

𝜔

𝑙
)

2

=
1

2
𝑚𝑒𝑐2. (29) 

Hence, the expression for 𝐽𝑒 immediately follows, 

𝐽𝑒 = 𝑚𝑒𝑐2 (
𝑙

𝜔
)

2

= ⟨𝑤⟩ (
𝑙

𝜔
)

2

. (30) 

This final result does not depend on the mass me 

definition and can be considered as a universal law for 

objects with this sort of symmetry. By the way, it 

determines the electromagnetic AM per unit beam length 

as 𝐿𝑒 = 𝐽𝑒(𝜔/𝑙) = 𝑙
⟨𝑤⟩

𝜔
 which exactly coincides with (23) 
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obtained via the direct calculation of the OAM from the 

definitions (17), (19) and using the beam model (22). As 

one can see, the relationship (23) between the helical beam 

energy and its OAM obtains substantiation in the helical 

symmetry alone and can, thus, be considered a universal 

property of all propagating light fields with the helical 

symmetry type. 

To finalize the presentation of mechanical features of 

circular OV beams (21), it is important to emphasize yet 

another interesting kinematic property [20]. In “scalar” 

paraxial fields, the transverse part of the instantaneous  

field vector (1a) can be represented as 𝑬⊥(𝐑, 𝑡) =
𝒆⊥Re[𝑢(𝐑)𝑒−𝑖𝜔𝑡] = 𝒆⊥𝐸(𝐑, 𝑡) [see (3) and (5)]. Applying 

this for the OV field (21), one obtains the instantaneous 

scalar field value 𝐸(𝐑, 𝑡) =  𝐸(𝑥, 𝑦, 𝑧, 𝑡) in the form 

𝐸(𝑟, 𝜙, 𝑧, 𝑡) = Re[𝑓(𝑟, 𝑧)] cos(𝑘𝑧 + 𝑙𝜙 − 𝜔𝑡) 

−Im[𝑓(𝑟, 𝑧) sin(𝑘𝑧 + 𝑙𝜙 − 𝜔𝑡), 
(31) 

which testifies that in a fixed cross section (𝑧 = const) the 

instantaneous field depends on 𝑙𝜙 − 𝜔𝑡, i.e., rotates with 

the angular velocity 𝑑𝜙/𝑑𝑡 = 𝜔/𝑙 (in contrast to the 

“usual” fields with no azimuthal phase dependence which 

simply oscillate in each point). This property remarkably 

underlines the rotational nature of the OV beams; however, 

it has no direct mechanical meaning because it dictates that 

at points with 𝑟 > 𝑙/𝑘, the linear velocity of rotation 

exceeds 𝑐, which is inappropriate for any mechanical 

model. 

The fact of the instantaneous field rotation in the 

circular OV beams stimulated the search for similar 

instantaneous motions in other beams with OAM. 

Generally, the pattern of instantaneous oscillations in 

beams of general form is rather complicated, and the 

presence of the rotating component of instantaneous 

oscillations is not obvious. But it can be detected due to 

correlations between the time and azimuthal derivatives of 

the instantaneous electric field distribution: 

⟨
𝜕𝐸(𝑥, 𝑦, 𝑡)

𝜕𝑡

𝜕𝐸(𝑥, 𝑦, 𝑡)

𝜕𝜙
⟩

𝑇

, (32) 

where …T means averaging over the oscillation period. 

The corresponding analysis has shown [27, 101] that for 

any scalar paraxial field 𝐸(𝑥, 𝑦, 𝑡), the quantity (32) is 

proportional to the OAM. Therefore, the rotational 

properties of light beams at the observable time scale are 

immediately related with the rotational motion of the 

instant field-oscillation pattern, and the OAM is just the 

natural kinematic measure of this rotational motion.  

Note by the way that this property is not an exclusive 

attribute of the rotational fields. It was shown in the 

subsequent studies [102] that any directional motion that 

can be identified in the pattern of instantaneous oscillations 

means the presence of a directed energy flow in the 

experimentally observable time-averaged field. In this 

case, the orbital momentum density (15) acts as a natural 

geometric and kinematic characteristic of the “directed” 

component of the instantaneous oscillations. In fact, this is 

a generalization of the well-known picture of a traveling 

plane wave, but in complex fields the “running” component 

of the instantaneous oscillations is often elusive and can 

thus be detected only through the correlation analysis, 

which leads to the density of an “average” energy flow 

proportional to the orbital momentum. This conclusion 

very spectacularly reveals the immediate physical causes 

and hidden mechanisms of formation of the directed energy 

flows in light fields [27]. However, it is only applicable to 

“scalar” fields whose polarization is homogeneous, or to 

the “partial” fields of separate linearly polarized 

components of general vector fields (see section 5 below). 

In vector beams, the instantaneous “running” patterns of 

separate polarization components may mutually cancel out 

so that for the whole field, the instantaneous energy and 

momentum distributions do not depend on time (“steady” 

beams [103–105]). 

Importantly, it is the orbital momentum (11) [more 

accurately, its transverse part (15)] that is a characteristic 

of the running pattern of instantaneous oscillations. The 

spin part (16) of the transverse momentum density, on the 

contrary, cannot be associated with any spatial motion of 

the instantaneous field picture. This is due to the special 

role of the polarization degrees of freedom associated with 

the “invisible” rotational motion of the field vectors in the 

“abstract” polarization space. This difference is an 

additional important feature that reflects a deep physical 

discrepancy between the orbital (11) and spin (12) 

momentum contributions. 

The intriguing dynamical properties of the OV fields 

described in this section are especially attractive for optical 

manipulation techniques [106–118] performing the 

mechanical action on particles suspended inside the field of 

strongly focused singular beam. As an isolated zero of 

intensity, the OV core acts as an axial optical trap for 

absorbing, reflective or low-index particles [106–111]; 

dielectric particles with refractive index higher than that of 

environment can be trapped off-axially inside the bright 

ring [112]. In contrast to the usual optical trapping at the 

intensity maxima, trapping in the low-intensity area of the 

OV core provides certain advantages, e.g., for the study of 

biological objects sensitive to laser radiation [116–118]. 

In all cases of trapping with OV beams, trapped objects 

interact with the beam OAM, which enables to perform 

their controllable rotation and orientation: “optical 

spanners” and “optically driven micromachines” can be 

realized [113–118]. The beams with several OVs, that form 

coherent networks of singularities, offer additional 

impressive possibilities in optical manipulation of multiple 

particles [119–121]; it is especially suitable that the 

positions and morphologies of the separate OVs can be 

easily regulated, e.g., by changing the interfering fields 

intensities, with no direct contact and no movable parts of 

the optical system. In general, the optical manipulation is 

one of the main fields for the singular-optics applications 

with the rapidly developing techniques and ideas.   

3. Methods for generation of optical singularities  

In section 2.3, the most common method for obtaining 

OVs using synthesized holograms was considered. Despite 

that it was developed in the 90s [35–40, 100, 122–124], the 

similar approaches are still in charge in many fundamental 

and applied works. However, the further application of 

such methods is prohibited by one significant drawback, 

namely, relatively low energy efficiency, which is a 



 O. V. Angelsky et al. / Opto-Electronics Review 30 (2022) e140860 10 

 

consequence of the beam energy loss during the diffraction 

on the hologram. That is why even now there is a need to 

develop alternative methods for generating singularities of 

different types. 

3.1. Generation of wavefront dislocations  

Following to [39, 122, 123], one can consider the inter-

ference of two waves with complex amplitudes  

𝑢1(𝑥, 𝑦) = 𝐴1(𝑥, 𝑦) exp[𝑖Φ1(𝑥, 𝑦)] ; (33a) 

𝑢2(𝑥, 𝑦) = 𝐴2(𝑥, 𝑦) exp[𝑖Φ2(𝑥, 𝑦)] 
(33b) 

and suppose that in the region of interest the waves 

parameters do not change (the self-diffraction 

transformations are negligible). In the point (𝑥,  𝑦)  

of the observation plane, the wave amplitudes  

differ insubstantially, and the solution of equation 

𝐴1(𝑥, 𝑦) = 𝐴2(𝑥, 𝑦) exists in the form 𝑦 = 𝑓(𝑥) – a line of 

equal intensities of the waves. The condition for an isolated 

zero of the combined field 𝑢1(𝑥, 𝑦) + 𝑢2(𝑥, 𝑦) can be 

written in the form 

{
Φ1(𝑥𝑖 , 𝑦𝑖) = Φ2(𝑥𝑖 , 𝑦𝑖) + 𝜋 = Φ𝑖 ,

𝐴1(𝑥𝑖 , 𝑦𝑖) = 𝐴2(𝑥𝑖 , 𝑦𝑖) = 𝐴𝑖 ,
 (34) 

where 𝑥𝑖 , 𝑦𝑖  are the transverse coordinates of the i-th zero 

of amplitude. In the local frame X, Y with the origin in the 

point (𝑥𝑖 , 𝑦𝑖), the phase of the sum field (phase of the OV) 

is determined by 

tan Φ = 𝐴𝑖

Φ𝑖
𝑥𝑋 + Φ𝑖

𝑦
𝑌

𝐴𝑖
𝑥𝑋 + 𝐴𝑖

𝑦
𝑌

 , (35) 

where ΔΦ𝑖
𝑥, ΔΦ𝑖

𝑦
,Δ𝐴𝑖

𝑥 and Δ𝐴𝑖
𝑦

 are the (X, Y) components 

of the gradients of the quantities i and 𝐴𝑖. This means that 

the resulting-field phase (and, accordingly, the sign of the 

TC) is completely determined by the phase gradients and 

amplitudes of the partial waves. 

The results of the computer simulation and the chain of 

such OVs experimentally obtained upon interference of 

two plane waves with approximately equal intensities and 

with the probe reference beam are illustrated in Fig. 6. The 

vortex phases in adjacent intensity minima differ by ; that 

is, the OVs of the same sign are observed.  

Additional possibilities in a purposeful creation  

of controllable arrays of the vortex-type singularities  

are supplied by the multiple-plane-waves interference 

[125–128]. The fields generated in this way can be treated 

as ordered speckle fields, and just like the stochastic 

speckle patterns [11, 61], they demonstrate strict associa-

tion between the bright speckle spots and the adjacent OVs. 

3.2. Generation of polarization singularities on the 

base of two-wave interference  

Like the phase singularities appear in points where the 

phase is indeterminate [20, 35, 38], the polarization 

singularities are a type of optical singularities that arise 

when one of the parameters specifying the polarization of 

the light is undefined [23, 129]. Particularly, C-points are 

singularities present in a field of polarization ellipses, 

where the orientation of the ellipse is undefined; s-contours 

are lines where the polarization handedness is 

indeterminate (the polarization is linear). The C-point is a 

point with the perfect circular polarization where the 

instantaneous transverse electric vector rotates (without 

changing its module). A C-point is surrounded by a field of 

ellipses whose major semi-axis rotates about the C-point. 

This divides the C-points into two classes: those near which 

the ellipses rotate together with the angular coordinate 

about the C-point, and those where the ellipses rotate 

counter to it. An index representing this rotation about the 

C-point is called Poincare index (𝐼𝐶) [130]. Since ellipses 

axes are not directional, the minimum rotation is half a turn, 

and so the smallest absolute value of 𝐼𝐶  is 1/2. In addition 

to the rotation, the ellipses form a pattern that can be 

divided into three classes: lemon, star, and monstar [23] 

(see Fig. 7). Lemon and monstar have 𝐼𝐶 = +1/2, and star 

has𝐼𝐶 = −1/2. 

The lines shown in Fig. 7 are formed by following the 

directions of the major semi-axis of the polarization 

ellipses; the red lines highlight the situations where the 

semi-axis directions are radial. These lines help to 

understand the value of 𝐼𝐶  for each case. For cases (a) and 

(c), a vector aligned with the lines rotates in a counter-

clockwise sense for a counter-clockwise circulation around 

the C-point. Conversely, in case (b), a vector rotates in the 

opposite, clockwise sense, for a counter-clockwise 

circulation. The lemons [Fig. 7(a)] have only one direction 

where the major semi-axis is radial: the major semi-axis 

rotates at half the rate of circulation about the C-point, and 

so there is undoubtedly one direction where the axis points 

to the centre (C-point). The same is true with the star 

[Fig. 7(b)]: since here the ellipses rotate in the sense 

opposite to the path, the axis must be radial in three places. 

For the monstar [Fig. 7(c)] the pattern is not obvious. This 

is because the monstar is part of a more general class of  

C-points where the rate of rotation of the major semi-axis 

is not constant: the rotation rate may be greater and lower 

than the circulation rate, creating more than one angular 

     
(a)                                                                             (b) 

Fig. 6. Demonstration of the emergence of the same-sign OVs in adjacent minima: (a) results of the computer 

modelling (А, В – OVs), (b) OVs obtained in experiment. 
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direction where the polarization ellipses axes are radial. In 

Fig. 7(c), there are three angles where this is true. These 

radial directions are separatrices of line morphologies. 

Also, note something unique about the monstar in Fig. 7(c): 

in two of the sectors delineated by the separatrices, all the 

lines have the C-point as an end point. 

The presented examples convincingly show the close 

relations between the polarization singularities and the 

rotational features of a light field. But these relations are 

even more direct: as is seen from the definition, a C-point 

with, e.g., perfect right polarization, is thus an isolated zero 

of amplitude and, therefore, an OV in the field of the left-

polarized component, and vice versa. This close similarity 

between the phase and polarization singularities can be 

used for a purposeful creation of the latter ones [131]. 

In the corresponding methods, the superposition of 

differently polarized waves is employed. For example, the 

result of a superposition of two plane waves, in particular 

with orthogonal linear polarizations, is the resulting field 

with a homogeneous intensity [132, 133] but inhomogene-

ous polarization, which was proposed for the generation of 

polarization singularities.  

In this case, the polarization of the field varies in 

separate points from right-circular to left-circular. However, 

the C-point does not occur because only one condition 

necessary for its formation is fulfilled – the phase difference 

between the orthogonal components is ±𝜋/2. The second 

requirement is that the intensities of the interfering waves 

are exactly the same. In other words, there should be a 

“point-like” equality of intensities at a point where the 

phase difference is ±𝜋/2. Obviously, this requirement, as 

in the previous case, can be met if one of the waves has a 

certain, even small, intensity gradient. Then, in the plane of 

analysis the distribution of polarization characteristics 

similar to that shown in Fig. 8 is formed.  

The sign of the main phase TC does not depend on the 

C-point location (no matter if it is on the right or left area) 

but is determined only by the relations between the 

amplitude and phase gradients of the waves participating in 

the superposition. The results of the computer simulation 

are presented in Fig. 9. 

 

Fig. 7. The three types of C-points: lemon (a), star (b), and monstar (c). The solid lines connect the 
directions of the major semi-axes of the ellipses. The vectors drawn illustrate how they rotate 

in a circular (dashed-line) path around the C-point [129]. 

 

 

Fig. 8. Polarization modulation of the resulting field between the 

lines (s-contours) along which the fields 𝑢𝑥 and 𝑢𝑦 possess 

the phase difference ΔФ = 0 ÷ 𝑚𝜋, 𝑚 = ±1,2, . . . , 𝑛. The 

chain of C-points is formed between the lines of equal 

intensities of the fields 𝑢𝑥 and 𝑢𝑦. 

 

 

Fig. 9. Three periods of the interference pattern: (a) azimuthal map (distribution of the orientations of the polarization 

ellipses major axes); (b) view of the polarization ellipses in the resulting field; (c) view of the transverse 

components of the Poynting vector. Symbols     ,     denote positive and negative C-points, ,  – vortex and 

passive P-singularities, correspondingly. 
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The sign of the C-point index changes upon transition 

from one period of the interference pattern to another. 

Additionally, in Fig. 9, the Poynting singularities are 

marked, which are shifted with respect to positions of the 

C-points due to asymmetry emerging in the phase and 

amplitude distributions of the partial waves 

[40, 123, 124, 134, 135]. There is a link between the scalar 

OVs of the separate polarization components and the 

polarization singularities, associated with the fact that the 

vortices of the components (arbitrary linear-polarization 

projection) are situated on the s-contours [39, 122, 123]. 

For the investigation of such structures, a thin polymer 

plate was used. The object is selected so that the field 

scattered by it is “integrally depolarized” with a degree of 

polarization not higher than 50%. Upon the object 

illumination by the circularly polarized beam, the s-

contours are of small size and contain, as a rule, regions 

with one handedness of polarization (right or left); such 

regions do not include nested s-contours. Here, a possibility 

exists to detect the localization of s-contours as well as the 

C-points [39, 122, 123, 136]. Herewith, the sum TC of the 

OVs, corresponding to an arbitrary linearly polarized 

projection and situated on a single s-contour, is twice 

higher than the sum index of the C-points enclosed by this 

contour. 

4. Poynting vector singularities  

Poynting vector (9) determines the energy flow and 

momentum distributions in the electromagnetic fields and, 

ultimately, the mechanical influence of the light wave on 

physical objects. Therefore, the vector field of the Poynting 

vector and its singularities [27, 39, 122, 123, 134, 137, 138] 

play important roles in all light–matter interactions. In 

contrast to the spatial distribution of the complete field 

momentum, which is associated with the 3D Poynting 

vector distribution, the lines of which are continuous in the 

light field propagating in the lossless dielectric medium, 

and the existence of isolated singularities is unlikely 

[27, 124], the distribution of the transverse Poynting vector 

can possess the singularities (“P-singularities”) where the 

vector direction is indeterminate [39, 122, 123]. 

The full set of singularities allowed by the topological 

laws includes sources (sinks), hyperbolic point (saddle), 

centre (vortex), stable and unstable spiral points (foci) (see 

Table 1). 

Like the more traditional phase and polarization 

singularities, the P-singularities can be combined into 

networks; each singularity determines (at least at a 

qualitative level) the Poynting vector behaviour in its 

vicinity, and the singular network “as a whole” 

qualitatively determines the transverse Poynting vector at 

any point of the field: it forms a skeleton for the parameter 

field of this vector. The characteristics of P-singular 

skeleton and Poynting vector behaviour in intermediate 

points of the field are related to the networks of the 

traditional singularities. 

For example, in Fig. 10 the results of the computer 

simulations are presented for the transverse Poynting 

vector component in the elliptically polarized Gaussian 

Table 1.  

Classification of generic singular points in 2D vector fields [27, 32] (following to [139]). 

Typical view of the flow lines Terms and short characteristic 

 

No singularity (regular point) 

 

Stable (source) or unstable (sink) node 

(flow lines go towards or outwards the 

singular point) 

 

Hyperbolic point; saddle 

 

Elliptic point; centre; circulation; vortex 

 

Stable or unstable spiral point (focus). 

Flow lines approach to or emanate from 

the singular point making infinite 

number of rotations 
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beam [138]. In this case, the transverse Poynting vector 

represents the spin momentum contribution (12), (16) 

which circulates near the axis and whose “strength” 

(magnitude) is determined by the radial gradient of the 

degree of circular polarization (|𝑢+|2 − |𝑢−|2). The 

characteristic behaviour of the transverse Poynting vector 

components near some P-singularities, classified in 

Table 1, is illustrated in Fig. 11.  

Figure 11 provides additional classification indicators 

for P-singularities. They can be characterized in terms of 

the Poincare index (the number of the vector direction 

rotations on a full trip near the axis). Only for the “saddle” 

this index is negative. Another classification of the  

P-singularities is based on the presence of rotation in the 

singular-point vicinity: for passive singularities (e.g., 

source or sink), the rotation tends to zero whereas for active 

(or vortex) singularities (focus, centre) the rotation tends to 

maximum. As a measure of rotation in these cases, the field 

AM normalized by the energy included inside the near-axis 

circle, whose radius tends to zero, can be taken. To 

distinguish the sense of the near-singularity circulation, the 

characteristic of “chirality” of the P-point is additionally 

introduced. 

The AM existence in the vicinity of a vortex P-point has 

been confirmed in experiments performed in the 

arrangement presented in Fig. 12. A vortex singularity 

arises when the sign of the topological charge of the main 

phase in the vicinity of the C-point does not coincide with 

the sign of the spin factor. It is a consequence of the fact 

that in the vicinity of such a singularity both orbital and 

spin angular momenta are of the same direction. A passive 

singularity appears when both signs of the topological 

charge of the main phase and of the spin factor coincide. 

 

(a)                                               (b) 

Fig. 10. Calculated results for the transverse Poynting vector 

circulation in the elliptically polarized Gaussian beam: (a) 

the intensity distribution, (b) transverse Poynting vector 
distribution. Colour brightness shows the absolute value, 

arrows indicate the directions. 

 

 

Fig. 11. Behaviour of the transverse Poynting vector near the P-singularities of different five: (a)–(e) types. 

 

 

Fig. 12. Experimental scheme for observation of the AM of the polarization trap: 1 – He-Ne laser;  

2, 8, 10 – beam-splitters; 3, 6 – /4 plates; 4, 5 – mirrors; 7 – OV-producing computer-synthesized 

hologram (cf. Fig. 3); 9 – analyser; 11, 14 – micro-objectives; 12 – sample with suspended 

microparticles; 14 – green filter; 12 – CCD-camera; 16, 17 – system of the sample illumination. 
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Since in the upper arm of the interferometer of Fig. 12, 

a smooth circularly-polarized beam is formed, and in the 

lower arm, with the help of the “fork” hologram 7, an OV 

is generated with the opposite circular polarization, in the 

focal (sample) plane, a focused “full Poincare beam”, first 

described in [39, 122, 123], is formed with the C-point in 

the centre. Due to the maximum in the smooth component, 

such a bright optical trap enabled the stable localization of 

the particle near the axis, just in the area where the OAM 

of the oppositely polarized component performs its 

efficient rotation (Fig. 13). Therefore, the presence of the 

AM near a C-point singularity is testified. 

It should be noted that the positions of the P-singularity 

and the C-point do not coincide in a general case, and, as is 

shown in Ref. 134, the P-singularity shift with respect to 

the C-point position is determined by the degree of phase 

and amplitude asymmetry of the field. Nevertheless, the 

connection between the C-points and P-singularities is 

preserved even in stochastic fields. This is illustrated by 

Fig. 14 which shows a fragment of a random (speckle) 

vector field with C-points and P-singularities. To 

summarize, it can be stated that the definite connection exists 

between the systems of Poynting-singularities and the 

polarization singularities. Negative (positive) C-points and the 

vortex (passive) P-singularities form pairs, and the distance 

between the P-singularities and associated C-points is 

determined by the degree of asymmetry of the orthogonal 

polarization components of the vector field. 

5. Vector light fields and the polarization degree of 

freedom 

The light polarization (spin) is an intrinsic degree of 

freedom which characterizes the intrinsic state of the field, 

largely independent on its spatial characteristics. At the 

same time, the deep interrelations exist between the spatial 

distribution of light and its polarization which can be 

described and consistently interpreted based on the DCs of 

the optical field [27, 32, 33, 41, 51, 140], first of all, on the 

principles of the spin-orbital momentum decomposition 

(10)–(12). Now, these relations are considered in more 

detail and, where relevant, without paraxial limitations of 

(15)–(19); in addition, the distributions of the AM 

constituents are taken into account.  

In the general case of a structured light field, the SAM 

density is described by equation 

𝐬 =
𝑔

2𝜔
Im(𝜀𝐄∗ × 𝐄 + 𝜇𝐇∗ × 𝐇) , (36) 

i.e., the spin momentum (12) is directly related to s(R) and 

originates from its spatial inhomogeneity: 

𝐩𝑆 =
1

2
∇ × 𝐬 . (37) 

The OAM density appears directly as the “moment” of 

the orbital momentum (11), 

 

Fig. 13. Rotation of the trapped microparticle due to the AM emerging in the C-point vicinity. The 

sign of singularity determines the direction of rotation. 

 

 

Fig. 14. Correspondence between the C-points and P-singularities:     ,      – positive and negative 
C-points;     ,      – vortex and passive P-singularities. Numbers (1) and (2) indicate the 

pairs of the polarization and P-singularities. 
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𝐋 = 𝐑 × 𝐩𝑂 (38) 

This definition differs from the paraxial version (17) 

because in the general structured fields, there is no well-

defined longitudinal axis, and the OAM (38) explicitly 

depends on the reference point (the frame origin) which can 

be chosen with a certain freedom. As a result, while the 

SAM is an “intrinsic” sort of AM which characterizes the 

energy flows “inside” the beam, the OAM includes the 

“extrinsic” AM of the beam, as a whole, with respect to a 

certain “external” centre, as well as the “intrinsic” one 

measured regarding some physically selected point (or 

axis) of the beam [141, 142] (e.g., the propagation axis in 

the paraxial case of section 2.1 [33]). 

Although the momentum decomposition into the orbital 

(“canonical”) and spin (“virtual”) parts encountered in 

earlier works (in particular, the spin momentum was 

introduced by Belinfante in the frame of the energy 

momentum tensor symmetrisation in 1940 [143]), its 

actualization in the context of structured and singular light 

fields has proven to be extremely important. It stimulated 

the further development of the concepts mentioned 

[27, 32, 33, 144], starting with the Berry’s work [51] 

(where, by the way, the form of equations (11) and (12) was 

proposed). Remarkable contributions were made by the 

authors of this review [25, 140, 145–149]. 

According to the general concepts [27, 41, 51], 𝐩𝑂 is 

the source of the OAM, while 𝐩𝑆 is the cause for the SAM 

which is inherent in circularly and elliptically polarized 

fields. In previous theories [100, 150, 151], the explanation 

of the origin of SAM was accompanied by the paradoxical 

conclusion that in a homogeneous beam the SAM density 

vanishes; at the same time, any object that absorbs light 

energy and is located on the beam path experiences its 

rotational action, and hence, its non-zero SAM. 

To solve this paradox, a model was proposed that 

illustrates the origin of the “spin” energy flux and, 

accordingly, the spin momentum (12) (Fig. 15) 

[27, 41, 140]. In a beam with circular polarization, a 

transverse rotation is associated with the rotation of the 

instantaneous electric and magnetic vectors. In contrast to 

the OV-associated circulation presented in Fig. 1, here the 

energy circulation occurs locally “in each point” which can 

be imagined as if the circulation of energy occurs inside the 

microscopic cells. In this pattern, if the beam is 

homogeneous, the contributions of adjacent cells are 

mutually compensated, so that the macroscopic flow of 

energy is absent, and this corresponds to the (seeming) zero 

SAM density. The compensation will be incomplete if the 

adjacent cells are not identical (e.g., differ by the local light 

intensities), and this explains the non-zero SAM density in 

a transversely inhomogeneous beam [its relationship with 

the beam spatial inhomogeneity is directly seen from (37)]. 

At last, there is no compensation at all when the cell array 

breaks off, i.e., at the beam boundary. It does not have to 

be a real physical boundary; no matter how a certain part of 

the beam cross section is “isolated”, its “boundary” cells 

become “uncompensated”, and the resultant circulation 

appears along the boundary of this part which is the origin 

of the SAM. This circulation is formed by the spin 

momentum (the transverse orbital momentum is zero in a 

homogeneous beam), and one can easily show that it equals 

the sum of contributions from all the enclosed cells. 

Obviously, it is a sort of “isolation” that takes place when 

a wave “meets” an object: its projection “cuts out” part of 

the beam cross section and, thus, leaves some cells without 

their “compensating” neighbours. The similar explanation 

of the SAM nature can be developed in the more exquisite 

mathematical form [152].  

As a result, the spin momentum (12) appears as a part 

of the field linear momentum (or the corresponding energy 

flow) which originates completely from the rotational 

properties of light, and it does not exist in fields without 

such properties (e.g., linearly polarized). The most 

important features of the optical momentum constituents 

𝐩𝑆, 𝐩𝑂 and their sum 𝐩 were studied analytically with a 

series of examples [27, 32, 41, 153–155], where the typical 

patterns of the energy flow and momentum distributions in 

paraxial beams are considered. Particularly, by using the 

examples of the simplest LG modes (22), it is found that 

the circulatory spin momentum can be directed oppositely 

to the orbital momentum, and/or to the circular-polarization 

handedness of the homogeneously polarized beam. As a 

result, the total circulatory momentum of the beam with a 

uniform circular polarization may have different directions 

in different regions of the cross section which are separated 

by the contours of zero transverse momentum. 

The subsequent research has demonstrated that the 

orbital momentum is directly related to the processes of 

energy transfer in the beam; the partial orbital-momentum 

constituents of the individual polarization components are 

always directed along the normals to the corresponding 

wavefronts (cf. Fig. 1). The orbital momentum exists in 

unpolarized and scalar beams, its direction is determined 

by the phase gradient, and the transverse orbital momentum 

is always orthogonal to the equiphase contours. At the same 

 

Fig. 15. Illustration of the spin-momentum formation in a circularly-polarized beam: (a) homogeneous beam with a sharp 

boundary; (b) emergence of the macroscopic energy flow (vertical arrow) in an inhomogeneous beam (different 

sizes of the circulation loops in adjacent cells symbolize different circulation “strengths”). 
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 (a) 

 

Circulation 
cells

Resulting

circulation



 O. V. Angelsky et al. / Opto-Electronics Review 30 (2022) e140860 16 

 

time, the spin momentum in paraxial beams always lies in 

the transverse plane [see (13) and (16)] and is proportional 

to the transverse inhomogeneity of the “third” Stokes 

parameter, 𝑠3 = |𝑢+|2 − |𝑢−|2, which expresses the 

presence and “strength” of circular polarization [cf. 

relations (16) and (18)]. The spin momentum is directed 

along the lines 𝑠3(𝑥, 𝑦) = const, and the total spin 

momentum of the whole field vanishes: 

∭ 𝐩𝑆𝑑3𝐑
𝑉

= 0 (39) 

due to the solenoidal character of the vector field 𝐩𝑆(𝐑) 

[see (37)], ∇𝐩𝑆 = 0. 

As any vector fields, the spatial distributions of 𝐩𝑆 and 

𝐩𝑂 can possess isolated singular points where the 

corresponding vector vanishes, has indeterminate direction 

or module. These singularities form their own networks 

that are similar to the networks of P-singularities (see 

section 4, Table 1, Fig. 11) and obey the similar rules. They 

constitute useful and powerful additional instruments for 

the meaningful description, characterization, and 

investigation of structured light fields. 

6. Physical manifestations of the optical spin and 

momentum constituents  

One of the most attractive features of the DCs of light 

fields, as the means for the field description, is the fact that 

they immediately quantify important physical influences of 

the field on material objects. In particular, here the 

mechanical action of light fields on micro- and 

nanoparticles is considered; in addition to the interest for 

physical discussion, such phenomena are significant for 

many modern applications relating to the micro-

manipulation techniques [116–118, 156]. Generally, the 

study of a mechanical action of light on material objects 

require a detailed analysis of the processes of light 

scattering and absorption with account for the particle 

shape and electromagnetic properties [156–163], but the 

simplified qualitative picture can be obtained when the 

particle is supposed spherical with the radius a satisfying 

the Rayleigh scattering criterion 𝑘𝑎 ≪ 1 [163–165]. Under 

these conditions, the light-particle interaction is described 

by the dipole approximation which enables the full 

analytical study of the mechanical action of the main 

ponderomotive factors of the field. 

In the dipole approximation, the particle-field 

interaction is characterized by the electric 𝛼𝑒 and magnetic 

𝛼𝑚 polarizabilities 

𝛼𝑒 =
𝛼𝑒

0

1 − 𝑖
2

3𝜀
(𝑛𝑘)3𝛼𝑒

0
≈ 𝛼𝑒

0 + 𝑖
2

3𝜀
(𝑛𝑘)3|𝛼𝑒

0|2,  

𝛼𝑒
0 = 𝜀𝑎3

𝜀𝑝 − 𝜀

𝜀𝑝 + 2𝜀
 (40) 

𝛼𝑚 =
𝛼𝑚

0

1 − 𝑖
2

3𝜇
(𝑛𝑘)3𝛼𝑚

0
≈ 𝛼𝑚

0 + 𝑖
2

3𝜇
(𝑛𝑘)3|𝛼𝑚

0 |2,  

𝛼𝑚
0 = 𝜇𝑎3

𝜇𝑝 − 𝜇

𝜇𝑝 + 2𝜇
 , () 

where 𝜀, 𝜀𝑝 (𝜇, 𝜇𝑝) are the permittivity (permeability) of 

the surrounding medium and of the particle, 

correspondingly. The mechanical force experienced by 

such a particle can be presented as [164–168] 

𝐅 = 𝐅𝑒 + 𝐅𝑚 + 𝐅𝑒𝑚 (42) 

where 

𝐅𝑒 =
1

2𝑔𝜀
Re(𝛼𝑒) ∇𝑤𝑒 +

𝜔

𝑔𝜀
Im(𝛼𝑒) 𝐩𝑒

𝑂 ,  

𝐅𝑚 =
1

2𝑔𝜇
Re(𝛼𝑚) ∇𝑤𝑚 +

𝜔

𝑔𝜇
Im(𝛼𝑚) 𝐩𝑚

𝑂  (43) 

and 

𝐅𝑒𝑚 = −
𝜔

3𝑔
𝑛𝑘3 Re(𝛼𝑒

∗𝛼𝑚) (𝐩𝑆 + 𝐩𝑂) 

             +
𝜔

3𝑔
𝑛𝑘3 Im(𝛼𝑒

∗𝛼𝑚) 𝐩𝑅 . 
(44) 

In (43), 𝑤𝑒,𝑚 and 𝐩𝑒,𝑚
𝑂  are the “electric” and “magnetic” 

summands of (8) and (11). These formulas show that the 

“dual” symmetry between the electric and magnetic fields 

[51, 169] is destroyed upon interaction with material 

objects whose electric and magnetic properties are 

generally different. Particularly, most of the natural media 

and particles are non-magnetic, 𝜇 = 𝜇𝑝 = 1, and in this 

case the dipole magnetic polarizability (41) vanishes. 

However, it appears in the higher orders of the Mie 

scattering expansions [163–165] due to interference 

between the electric and magnetic dipole scattering, and 

can be presented in the form 

𝛼𝑚 = (𝑛𝑘)2𝑎5
𝜀𝑝 − 𝜀

30𝜀
 . (45) 

First summands of expressions (43) represent the 

gradient force originating from the inhomogeneous energy 

distribution. The second summands, expressing the 

“scattering force” (“light pressure force”), distinctly 

demonstrate the physical relevance of the field momentum 

decomposition (10): indeed, at least for the dipole 

mechanical action, not the whole momentum but its part 

(here, the orbital one) is an influential factor. At the same 

time, (44) shows that, in addition to the separate 

“magnetic” and “electric” actions described by (43), a 

“combined” electric-magnetic action exists associated with 

other ponderomotive factors. In particular, the first 

summand in (44) describes the possible mechanical action 

of the spin momentum 𝐩𝑆 (12), (37) (it can be well 

separated, for example, in points where the orbital 

momentum 𝐩𝑂 vanishes or is directed differently; also, 𝐩𝑆 

inverts the sign with reversing the sense of circular polari-

zation while 𝐩𝑂 in many cases remains the same). Besides, 

the second line of (44) indicates the new ponderomotive 

factor – the “reactive momentum” of the field [170, 171]:  

𝐩𝑅 =
𝑔

𝑐
𝜀𝜇 Im(𝐄∗ × 𝐇). (46) 

In the dipole approximation, the particle may “feel” not 

only the translational action described by the force (43) and 
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(44) but also the rotational one. The latter is characterized 

by the field-induced torque [165,168]  

𝐓 =
𝜔

𝑔
[
1

𝜀
Im(𝛼𝑒) 𝐬𝑒 +

1

𝜇
Im(𝛼𝑚) 𝐬𝑚].  (47) 

Note that according to (47), the rotational action on small 

particles is “simpler” for interpretation because it depends 

on the smaller number of different competing factors than 

the translational force. It looks a bit paradoxical that the 

torque (47) does not include the OAM, which is the source 

of rotations in optical spanners discussed in section 2.5. 

This can be explained by reasoning that in the OAM-based 

optical spanners [116–118] the torque appears due to a 

combination of eccentric optical forces generated by the 

vortex orbital-momentum distribution [172], and the 

particle size is large enough to feel the different forces 

exerted at different points of the particle “body”. In relation 

(47), the particle is supposed to be smaller than any spatial 

variations of the field, responsible for the OAM, and the 

only torque “felt” by the particle is from the absorbed 

SAM. This circumstance can be used for the experimental 

investigation of the “pure” SAM and, on the other hand, 

when the field characteristics are known and well 

controllable, for the study of the particle properties [160] 

(see Fig. 16). 

According to (40)–(45), for small particles with  
𝑘𝑎 ≪ 1, the optical force and torque dependence on  

the particle size a is of the power-law character, and the 

power exponent can be a characteristic marker of the 

corresponding ponderomotive factor reflecting the physical 

nature of its mechanical action [162, 164] (see Fig. 17). The 

gradient force 𝐹𝑦
𝑔𝑟𝑎𝑑

 increases as 𝑎3, the light-pressure 

force from the orbital momentum 𝐹𝑜𝑟𝑏 is proportional to 𝑎3 

for the absorbing and to 𝑎6 for non-absorbing particles. The 

spin-momentum force 𝐹𝑠𝑝
±  emerges due to the interference 

between the electric and magnetic dipole scattering [see 

(44)]. The lowest order in which it takes place can be 

observed for the particles possessing both electric and 

magnetic properties and corresponds to ~𝑎6.  

For non-electric or non-magnetic particles, the force 

from the spin momentum consists of two terms. The first 

 

Fig. 16. (Blue) radiation torque and (red) corresponding angular velocity of the spinning motion of the particle with the absorption 

index 𝜅 = 4⋅10−4 suspended in water and trapped in the centre of the Gaussian beam [160]: (a) Re𝑛𝑝 = 1.5, 𝑧0 = 0, particle 

radius 𝑟 is variable; (b) 𝑟 = 0.5 μm, 𝑧0 = 0, Re𝑛𝑝 is variable; (c) 𝑟 = 0.5 μm, Re𝑛𝑝 = 1.5, 𝑧0 is variable. Particle refraction 

index 𝑛𝑝 = 1.5 + 𝑖𝜅; wavenumber in water 𝑛𝑘 = 1.286⋅105 cm–1 for wavelength 𝜆 = 0.65 μm. The beam axis coincides 

with the axis 𝑧, and the particle centre is situated at a distance 𝑧0 from the beam waist  where its radius is 𝑏0 ≈ 1.4 μm and 

the total power ~100 mW. 

 

 

Fig. 17. Calculated force vs. a particle-size parameter presented in a double logarithmic scale. Solid lines: metallic particle (gold 

particle in water, 𝑛𝑝/𝑛 = 0.32 + 2.65𝑖), dashed lines: dielectric particle  (latex in water, 𝑛𝑝/𝑛 = 1.12). Orders of the force 

growth with the particle radius a are indicated with allowance for the normalization factor, obtained by dividing the 

calculated quantities by the total momentum flow of the incident field through the particle cross section. For comparison, 

the behaviour of the gradient force grad
yF  is included. The radiation wavelength is 633 nm. 

 

 



 O. V. Angelsky et al. / Opto-Electronics Review 30 (2022) e140860 18 

 

term follows from the interaction between the electric and 

magnetic dipole moments (but due to zero dipole 

polarizability, one of these moments occurs in higher 

orders of the expansion in degrees of ka), the second is 

formed due to the interference between the dipole and 

quadrupole components of the scattered field. Both 

contributions depend on the particle size as 𝑎8. An 

important conclusion from (41), (44), and (45) is that the 

spin momentum, unlike the orbital one, can “push” or 

“pull” a particle regarding its optical properties, electric 

and magnetic polarizability. Non-magnetic dielectric 

particles usually move oppositely to 𝐩𝑆, whereas the 

conductive particles move along 𝐩𝑆 (the contribution 

proportional to 𝐩𝑆 in (44) behaves similarly, but the orbital-

momentum-induced light pressure of (43) produces, as a 

rule, the predominant orbital-momentum influence). Of 

course, translational motions induced by the spin 

momentum are always accompanied by the spinning of the 

particle around its own axis stipulated by the torque (47) 

[153, 160, 164]. Relations (40)–(45) and the condition 

ka << 1 make an impression that 𝐩𝑆 produces a much 

weaker force than the energy gradient or the orbital 

momentum 𝐩𝑂. However, this is only correct for the 

subwavelength particles. The numerical analysis has shown 

[161, 162, 173] that when 𝑘𝑎 ≳ 1, all ponderomotive factors 

perform comparable mechanical actions (see also Fig. 21).  

Further experimental efforts were aimed at the 

detection and quantification of the mechanical action, 

associated with the spin momentum, beyond the dipole 

approximation accepted in (44). Preliminary theoretical 

developments [161–163] employing the model fields 

formed by interference of the simplest plane waves and 

numerical calculations highlighted the existence of the 

spin-momentum force able to move spherical 

microparticles, as well as situations where such a force can 

be geometrically separated from other optical forces (light 

pressure, gradient force) and reliably detected. 

The first experimental observation of the spin-

momentum force was obtained by using the spatially 

inhomogeneous circularly-polarized light [174–176]. In 

these experiments (Fig. 18), two identical beams obtained 

from a semiconductor laser (𝜆 = 0.67 μm) with the radii 

𝑏 = 0.7 mm (measured at the intensity level 𝑒−1 of 

maximum) approach a micro-objective with focal distance 

𝑓= 10 mm. The beams are parallel to the micro-objective 

axis and are located at a distance 𝑎 = 1.3 mm from it, 

which provides the effective focusing angle  
𝜃 = arctan (𝑎 𝑓⁄ ) ≈ 7.4° and NA = 0.16; after focusing, 

they interfere in the focal region of the micro-objective.  

In the focal plane, the 3-lobe interference pattern is 

formed (Fig. 19). A latex particle (𝑛𝑝 = 1.48) is trapped 

within the central lobe at a certain distance from the axis 

due to the equilibrium between the gradient force “pulling” 

it to the intensity maximum and the orbital-momentum-

induced light pressure “pushing” it out [cf. the first 

equation (43)]. If the incident beams 1 and 2 (Fig. 18) are 

circularly polarized, the asymmetric particle spins due to 

the spin-induced torque (47). Simultaneously, it performs 

an orbital motion [dashed elliptic trajectory in Fig. 19(c)] 

due to the transverse spin-momentum (16) and the 

corresponding force component [first summand of (44)]. 

Note that in this scheme, the light pressure does not 

contribute to the particle motion but merely keeps it inside 

the region where the spin-momentum is maximal. Note that 

the particle orbits against the spin momentum [cf. panels 

(a) and (c)]. Its orbiting reverses the sense with switching 

the sign of circular polarization; in case of linear 

polarization, the particle motion stops. 

Experimental results relating to detection and 

evaluation of the mechanical action of the optical spin and 

spin momentum [149, 160, 174–176] indicate the 

possibility of their application in the micromanipulation 

techniques in which the regulation and switching of the 

regimes is carried out by controlling the polarization, 

 

Fig. 18. Schematic of the experimental setup: (1), (2) input beams, 

(3) objective lens schematized by the double arrow, (4) cell 

with probing particles suspended in water. Axes 𝑥𝑗 and 𝑧𝑗  of 

the involved frames are shown, axes 𝑦𝑗 are orthogonal to the 

figure plane. 

 
Fig. 19. Characteristics of the optical field in the observation plane for 𝜎 = 1 (𝜎= ±1 denotes the polarization handedness), 

viewed against the z-axis: (a) spin-momentum and (b) orbital-momentum maps (arrows) with the intensity distribution as 

a background; (c) view of the trapped particle and the trace of its motion. In panel (a), polarization ellipses are shown on 

the background (because of small 𝜃, they have small eccentricities and visually look like circles); panels (a) and (b) also 

contain contours of a trapped particle (black circle). 
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without changes in the intensity or spatial profile of the 

beam. This technique can offer advantages due to the 

almost complete absence of power loss and the high 

regulation speed.  

From the fundamental point of view, the possibility and 

peculiar features of the spin-momentum-induced particle 

motion reveal the special properties of the spin degrees of 

freedom of the electromagnetic field and the prospects for 

their experimental study. The rotational action of the SAM 

can be used for a measurement of the weak absorption of 

small particles [160] which is difficult to perform in a direct 

way. In addition to the consistent calculations of the 

rotational action produced by the optical OAM and SAM, 

based on the Mi theory, a simplified “ray” model of rotation 

and forced orientation of particles trapped inside beams of 

different nature has been developed [172]. Based on the 

principles of geometrical optics, it is applicable for 

relatively large particles of arbitrary shape (which often 

occurs, for example, in aerosol studies). It is assumed in 

this model that each ray carries a momentum and an angular 

momentum proportional to the local density of these 

quantities, and the interaction of the field with the particle 

is calculated by means of the usual geometric-optics 

principles. The results can be useful, among other things, 

for exploiting the optical levitation traps and in the studies 

of the angular distribution of scattering from complex 

objects. 

7. Extraordinary manifestations of structured light 

fields 

The system of DCs introduced and elaborated in the 

previous sections [27, 32, 33, 41, 51] has proven its 

effectiveness in application to special highly-structured and 

localized optical fields [25, 26, 28]. An example of such 

fields is offered by the evanescent waves (EWs), strictly 

localized near the boundaries between materials with 

different optical properties (Fig. 20). Their meaningful 

description essentially involves the concepts of spin-orbital 

interactions, intrinsic rotations and the spin-orbital 

momentum decomposition (10) [165, 177–182]. 

In the EW, the electric and magnetic fields exponen-

tially decay with growing off-interface distance 𝑥; if the 

medium refractive index is 𝑛, they can be described by 

equations: 

𝐄(𝐑) =
𝐴

√1 + |𝑚|2
(1,  𝑚

𝑛𝑘

𝑘𝑧

,  −𝑖
𝜅

𝑘𝑧

)
𝑇

 

               × exp(𝑖𝑘𝑧𝑧 − 𝜅𝑥) 

() 

𝐇(𝐑) =
𝐴

√1 + |𝑚|2
√

𝜀

𝜇
(−𝑚, 

𝑛𝑘

𝑘𝑧

, 𝑖𝑚
𝜅

𝑘𝑧

)
𝑇

 

                × exp(𝑖𝑘𝑧𝑧 − 𝜅𝑥), 

() 

where 𝑘𝑧 > 𝑛𝑘, 𝜅2 + 𝑘𝑧
2 = (𝑛𝑘)2, and 𝐴 is the amplitude 

factor. Formally, (48) and (49) describe a plane wave with 

the complex wavevector 

𝐤 = 𝒆𝑧𝑘𝑧 + 𝒆𝑥𝑘𝑥 = 𝒆𝑧𝑘𝑧 + 𝑖𝒆𝑥𝜅 (50) 

whose real and imaginary parts are orthogonal, Im 𝐤 ⊥
Re 𝐤 [see Fig. 20(a)]. The parameter 𝑚 characterizes the 

polarization state and can be related to the “Stokes 

parameters”: 

𝜏 =
1 − |𝑚|2

1 + |𝑚|2
,  𝜒 =

2 Re 𝑚

1 + |𝑚|2
,   𝜎 =

2 Im 𝑚

1 + |𝑚|2
 .  (51) 

 

Fig. 20. EW and its characteristics: (a) EW generated by the total internal reflection of a plane wave with the wavevector 𝐤𝑖𝑛 

[arrows show the wavevectors, transverse extraordinary spin (blue), and spin momentum (brown)]; (b) z-distribution 

of the instantaneous electric and magnetic fields 𝑬 and 𝑯 for the simplest linear x-polarization [TM mode with  
𝑚 =  0, 𝜏 = 1, see (51)]; (c) cross section of the EW with non-zero 𝜎 (51) [blue arrows show the OM lines 𝐩𝑂 (with 

exponential decay in the vertical x-direction), closed loops, squeezing with growing x, symbolize the elliptic 

polarization whose inhomogeneity generates the transverse SM 𝐩𝑆].    

 



 O. V. Angelsky et al. / Opto-Electronics Review 30 (2022) e140860 20 

 

The energy density w, the orbital 𝐩𝑂 and spin 𝐩𝑆 

momentum densities, and the SAM density s of the EW 

field, presented by (48), (49), and Fig. 20, are expressed by 

equations: 

𝑤 = 𝑔𝜀|𝐴|2 exp(−2𝜅𝑥) () 

𝐩𝑂 = 𝐩𝑒
𝑂 + 𝐩𝑚

𝑂 =
𝑤

𝜔
𝑘𝑧𝒆𝑧 , () 

𝐩𝑆 = 𝐩𝑒
𝑆 + 𝐩𝑚

𝑆 =
𝑤

𝜔

𝜅

𝑘𝑧

(𝑛𝑘𝜎𝒆𝑦 − 𝜅𝒆𝑧) , () 

𝐬 = 𝐬𝑒 + 𝐬𝑚 =
𝑤

𝜔
(

𝜅

𝑘𝑧

𝒆𝑦 + 𝜎
𝑛𝑘

𝑘𝑧

𝒆𝑧) . () 

These results disclose the specific dynamical properties 

of the EW. Usually, as is known, propagating optical waves 

carry the longitudinal (collinear to the main wave vector) 

polarization-independent momentum, as well as the 

longitudinal spin with the value depending on the degree of 

circular polarization. [However, small corrections to this 

rule are evident even in paraxial beams, see (15) and (16)]. 

On the contrary, for EWs, the “extraordinary” polarization-

dependent momentum [first summand of (54)] and  

the “extraordinary” polarization-independent spin [first 

summand of (55)], both orthogonal to the propagation 

direction, are the main DCs which express the most typical 

features of their behaviour.  

The nature of the transverse spin (55) is understood 

from expressions (48), (49), and Fig. 20(b): the EW field 

contains the longitudinal component shifted by phase with 

respect to the transverse one so that the instantaneous field 

vector rotates in the longitudinal plane. This rotation does 

not depend on polarization and represents an example of 

the “photonic wheel” [30, 31] [Indeed, the picture of the 

electric field rotation in Fig. 20(b) resembles the 

trajectories described by spokes of a rolling wheel]. As this 

spin is spatially inhomogeneous, due to the same 

mechanism as presented in Fig. 15, it generates the spin-

momentum parallel to the z-axis [second summand of 

expression (54)]. However, this spin momentum is directed 

oppositely to the orbital one (53). As a result, the total 

absolute longitudinal momentum, |𝑝𝑧
𝑂 + 𝑝𝑧

𝑆|, appears to be 

less than |𝑝𝑧
𝑂|. Additionally, an EW can carry a “normal” 

elliptic polarization in the transverse plane (𝑥, 𝑦) [see 

Fig. 20(c)] whose inhomogeneity generates the transverse 

spin momentum described by the first summand of (54). 

According to (40)–(46), all the spin and momentum 

constituents can perform their ponderomotive actions while 

the gradient force offers possibilities for a desirable particle 

localization in the vertical x-direction [183]. Particularly, 

the longitudinal and transverse spin components (55) may 

cause the particle rotation within the longitudinal and 

transverse planes [173, 184, 185]. Moreover, the rotation 

around the “vertical” axis 𝑥 can be also detected 

[147, 148, 173] even though the spin 𝑠𝑥 = 0 in (55). This is 

possible because the separate electric and magnetic parts of 

the spin, 

𝐬𝑒 =
𝑤

2𝜔

𝑛𝑘

𝑘𝑧

(
𝜒

2

𝜅

𝑘𝑧

𝒆𝑥 +
𝜅

𝑛𝑘
(1 + 𝜏)𝒆𝑦 +

𝜎

2
𝒆𝑧),  

𝐬𝑚 =
𝑤

2𝜔

𝑛𝑘

𝑘𝑧

(−
𝜒

2

𝜅

𝑘𝑧

𝒆𝑥 +
𝜅

𝑛𝑘
(1 − 𝜏)𝒆𝑦 +

𝜎

2
𝒆𝑧) () 

do contain the vertical contributions. In the resulting spin 

(55), these cancel each other out, but material particles with 

asymmetric electric and magnetic properties react to 𝐬𝑒 and 

𝐬𝑚 differently, and usually the “sensitivity” to 𝐬𝑒 is much 

higher. 

The orbital momentum (53) performs the usual light-

pressure action in the direction of the wave propagation. 

However, since 𝑘𝑧 > 𝑛𝑘, the ponderomotive action in the 

longitudinal direction appears to be higher than, for 

example, in a plane wave with the same intensity [165] [the 

longitudinal spin momentum of (54) performs a 

comparatively small mechanical action]. On the contrary, 

the transverse spin momentum 𝑝𝑦
𝑆 is much more “visible” 

because it performs the polarization-dependent mechanical 

action in the transverse y-direction [165, 173]. Additional 

transverse force following from (44) occurs due to the 

reactive momentum (46) which in the EW of (48)–(51) 

equals 

𝐩𝑅 =
𝑤

𝜔

𝑛𝑘𝜅

𝑘𝑧

(−𝜏
𝑛𝑘

𝑘𝑧

𝒆𝑥 − 𝜒𝒆𝑦). (57) 

The expected mechanical action of its y-component is 

similar to that of the spin momentum but depends on the 

Stokes parameter  signifying the role of the ±45° polari-

zation rather than on the circular-polarization index 𝜎 (51). 

The qualitative conclusions made on the basis of the  

DC expressions (53)–(57) and the dipole approximation  

(40)–(47) are supported by the numerical calculations for 

particles with moderate sizes 𝑘𝑎 ≳ 1 that were performed 

based on the Mie theory [163, 165]. The numerical analysis 

of the EW scattering and the corresponding mechanical 

actions is greatly facilitated by the circumstance that the 

EW can formally be considered as a plane wave inclined 

by an imaginary angle [159]. Some results obtained with 

this approach are illustrated in Fig. 21, and they 

convincingly testify that the “extraordinary” spin and 

momentum of the EW can cause quite detectable 

translational and spinning motions of a particle. 

In addition to the known radiation-pressure longitudinal 

force, vertical gradient force and longitudinal helicity-

dependent torque, extraordinary forces and torques appear. 

The -independent torque 𝑇𝑦 indicates the transverse 

helicity-independent spin in the EW. The vertical  

-dependent torque 𝑇𝑦 reveals the presence of the vertical 

electric spin (56) in the diagonally polarized evanescent 

waves. Finally, the - and -dependent transverse forces 𝐹𝑦 

unveil the presence of the transverse spin momentum (54) 

and the reactive momentum (46), (57). 

Note that the transverse components of the spin and 

momentum exist despite the seemingly planar nature of the 

system (all “events” occur in a plane parallel to the 

boundary 𝑥 = 0), and, therefore, are called “extraordinary”. 

The transverse components arise because the external 

symmetry associated with the plane interface characterizes 

only the external degrees of freedom of the wave field, 

while the polarization degrees of freedom and their 

associated properties remain, in fact, three-dimensional. 

Importantly, the direction of the extraordinary SAM is 

strictly related to the direction of the EW propagation 

(“spin-momentum locking”) which opens the possibility 

for the selective unidirectional excitation of surface optical 
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waves by choosing the circular polarization of the exciting 

radiation [181, 182]. 

Discovery of the extraordinary DCs in the EWs 

stimulated a great number of works dedicated to the search 

of new versions of transverse spin and momentum in 

various wave systems (see, for example, Refs. 27, 31, and 

33). Particularly, the rich and non-trivial structure of the 

spin and momentum distributions is characteristic for the 

simplest field formed by the interference of two 

monochromatic waves with non-collinear wave vectors 

[161, 177]. Like an EW, such a field is seemingly planar in 

nature, but it shows a transverse (orthogonal to the plane of 

both wave vectors) helicity-independent SAM and the 

polarization-dependent spin momentum. The results of 

modelling the interaction of such fields with the test 

microparticles show the possibility of direct detection of 

extraordinary DCs.  

Much effort has been undertaken to detect and measure 

the extraordinary spin and momentum associated with 

EWs. Measurements of the transverse force with an 

accuracy of 10−15 N were performed with application of the 

nano-cantilever placed in the EW formed near the glass 

surface in the total-reflection regime [178]. These results 

clearly prove the presence of optical forces orthogonal to 

the wave vector and proportional to the degree of circular 

polarization. Simultaneously, the existence of the 

transverse polarization-dependent force component, 

caused by the reactive momentum (57), has also been 

proven. 

A series of works [186–191] deal with observations of 

the EW-induced motions of micro-objects in the water 

suspension (Fig. 22). In experiments [148, 186, 187], the 

plate of polyethylene terephthalate (PETP) with dimen-

sions of 200 × 200 × 9 m3 floats over the water layer, and 

the incident beam parameters are adjusted so that the 

incident wave experiences the total reflection at the upper 

surface of the PETP plate and approaches it being linearly 

polarized at 45. The incident beam is formed by the IR 

laser radiation (𝜆 = 980 nm) focused onto a focal spot of 

~50 × 50 m2. As a result, an evanescent wave is formed in 

the air above the plate, and the total-reflected wave obtains 

an elliptic polarization, i.e., non-zero vertical spin. 

 

Fig. 21. Radiation forces (𝐹𝑥,𝑦,𝑧) and torques (𝑇𝑥,𝑦,𝑧) vs. the particle size 𝑘𝑎, calculated for a gold 

Mie particle (𝑛𝑝/𝑛 = 0.32 + 2.65𝑖) in the EW field. All components of the forces and 

torques are shown for six basic polarizations [see (51)]: linear 𝜏 = ±1, diagonal  = ±1, 

and circular  = ±1; orange circles indicate the regions where the dipole approximation 

(40)–(45) is valid, and the extraordinary transverse forces are negligible (cf. Fig. 17). 
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Accordingly, the spin density 𝑠𝑥 is generated inside  

the plate, which causes its rotation (see Fig. 23). 

Simultaneously, the plate performs a translational motion 

caused by the orbital-momentum force. In fact, these 

experiments measure the vertical AM transmitted from the 

incident beam in the reflection process, i.e., reproduce the 

idea of Beth’s first detection of the AM light [8], but 

indirectly demonstrate the vertical spin 𝑠𝑒𝑥 of the EW [see 

first term of the first equation (56)].  

Further experiments [188–191] used the arrangement 

similar to that of Fig. 22 but the incident beam was adjusted 

so that the total reflection occurred at the prism 1 surface, 

and the water layer 3 in the cuvette 2 was completely inside 

the EW field. This configuration permitted to observe the 

EW-induced motions of the erythrocytes and other blood 

cells floating in water. Figure 24 clearly shows both the 

transverse and (much weaker) longitudinal displacements 

of the cell. The extent and direction of the transverse 

displacement could be reversed upon changing the incident 

beam polarization.  

8. Conclusions 

To conclude the current presentation, the authors 

would like to summarize the main research issues, 

associated with the studies of optical singularities and 

related rotational phenomena, that were displayed in the 

above sections. This review presents an attempt of a 

general and systemic description of the structured light 

fields based on the deep intimate associations between the 

singularities and the rotational phenomena in light; and, 

indeed, diverse manifestations of this paradigm can be 

found in many features of the light-field structures or 

physical actions. The rotational features of the light field 

are naturally coupled with its specific dynamical 

characteristics (spatial distributions of energy, momentum, 

angular momentum, as well as their derivatives) and with 

dynamical aspects of the light–matter interaction. These, in 

turn, provide fruitful ideas and powerful instruments for the 

structured-light analysis and characterization.  

This deep, general, and physically meaningful approach 

appears to be relevant and productive when applied to 

many physically consistent and practically important 

special cases. First, an OV has been described as  

a generic prototype of optical singularities, and  

OV-related dynamical characteristics (energy flow, 

momentum and spin distributions) have been scrutinised 

in detail. The difference exists between the “small-

scale” vortex behaviour typical for complex beams with 

singular networks, and the “global” rotational properties 

of circular OV beams of the standard families (e.g., the 

LG𝑝
𝑙  modes). For the latter, the concept treating the OV 

beam as a rotating mechanical body is described which 

enables the consistent and meaningful introduction of its 

mass, moment of inertia, angular velocity, and kinetic 

energy of rotation. The transformations of such beams in 

deformable optical systems are associated with the 

mechanical interactions between the beam field and the 

optical elements. On this basis, the mechanical 

interpretation of the rotational Doppler effect has been 

formulated which discloses additional features of  

its physical nature and mechanisms. The discussion  

of the non-collinear rotational Doppler effect links  

the observed phenomena to the topological-phase 

manifestations.  

The main features of the interference between the 

OVs and the “usual” smooth-wavefront light beams have 

been described, and it is shown how the specially 

 

Fig. 22. Experimental arrangement for the detection of the EW-

induced motion: (1) glass-cut rectangular prism (refraction 

index equals 1.52); (2) 2-mm-high ring cuvette; (3) water 

layer; (4) crystalline plate; (5) white-light illuminating 

source; (6) CCD camera [148, 186, 187]. 

 

Fig. 24. Motion of an erythrocyte in time. 

 

 

Fig. 23. Motion of a birefringent microplate in the transverse 

direction under the action of EW [186]. 
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synthesized interference patterns are used for the 

generation of OVs with desirable properties.  

It is demonstrated that the rotational features of the 

“visible” time-averaged optical field are directly 

connected with the “running” picture of the 

instantaneous field oscillations that occur with the 

optical frequency. Remarkably, the orbital momentum 

(orbital angular momentum) of the average field appears 

as a natural kinematic characteristic of the translational 

(rotational) behaviour of the instantaneous oscillations.  

The rotational properties of light are naturally classified 

and interpreted with an explicit involvement of differences 

and interrelations between the spatial (“orbital”) and 

polarization (“spin”) degrees of freedom. The meaningful 

description of the corresponding phenomena is based on 

the principles of spin-orbital (“canonical”) decomposition 

of the “full” field momentum (or the energy flow) into the 

spin and orbital parts. The mathematical features and 

physical peculiarities of the orbital and spin momenta, 

specific aspects of their relations to the polarization and 

spatial properties of light, their physical and mechanical 

manifestations and possibilities for their detection and 

measurement have been the subjects of the careful analysis.  

Particularly, the polarization singularities were 

considered in close relations with the patterns of energy 

flows and momentum distribution in light fields. The 

polarization singularities were shown to be interrelated 

with the singularities of transverse energy flow (P-

singularities); all systems of singularities form coherent 

networks qualitatively characterizing the field “as a 

whole”. 

The dynamical characteristics of practically important 

and physically representative structured fields, especially 

of evanescent waves and of the two-wave superpositions, 

have been theoretically investigated. Existence of the 

extraordinary (orthogonal to the wave vector) polarization-

dependent momentum and polarization-independent spin 

has been shown and explained. Principles of the 

mechanical action of such fields are studied analytically for 

the Rayleigh particles (in the dipole approximation) and 

numerically in the frame of the Mie scattering model. The 

experimental confirmations of the theoretical predictions 

were described.  

At the same time, the authors must emphasize that 

the world of optical singularities and associated 

rotational phenomena is very wide and this review 

inevitably offers its truncated and blurred image. Many 

important topics were only mentioned. For example, the 

vivid activity dealing with the specific interactions 

between the singular light fields and material media, 

including the waveguides, optical fibres [47], media with 

the chiral properties [192, 193], as well as non-linear 

singular optics [19, 194, 195], is left beyond the present 

scope. Another significant branch of research concerns the 

fine details of OV generation methods considered in 

section 3.1. The knowledge of specific features of the OV 

beams obtained with the help of different vortex-generating 

elements, sensitivity of the generated field structures to 

misalignments, regularities of the transformations 

performed in case when the incident beam is already 

singular – all these problems are important not only ‘per se’ 

but for new fruitful approaches to the optical diagnostics 

and metrology [54]. 

Finally, there is a very interesting and meaningful group 

of phenomena in which the “intrinsic” rotational properties 

of light (normally “hidden” in circular-vortex beams or 

non-singular beams with circular polarization) “come to 

light” due to breaking the beam symmetry [142]. An 

important special case is represented by the edge or slit 

diffraction of OV beams [196–200]: here, even a small 

violation of the circular symmetry leads to a singularity 

shift from the initial axial position, and, with further 

propagation, the singularity (or multiple singularities, if the 

incident OV was multicharged) describe the spiral-like 3D 

trajectories, brightly illustrating the helical nature of the 

OV beams [196].  

Another case of the symmetry breakdown is realized 

when the circular beam changes its direction due to 

refraction or reflection at a plane interface [201–204]. In 

beams with circular polarization, the spin-orbit interaction 

[182] contributes to formation of an OV in the longitudinal 

component of the beam field [second summands in 

brackets of (3) and (4)]. This leads to specific asymmetric 

transformations of the beam (optical Hall effect) 

[200, 204, 205–207] expressed, for example, by the famous 

Goos-Hanchen and Imbert-Fedorov shifts [207]. These 

effects supply very impressive manifestations of the 

influence performed by the intrinsic energy flows on the 

“extrinsic” behaviour of the beam “as a whole” and testify 

to the crucial role of the longitudinal field component in the 

optical Hall-transformations of polarized beams. 

All this convincingly indicates that the rotational 

properties and singularities of light offer a huge area of 

fruitful research, equally valuable for the fundamental and 

applied purposes, and promising new fascinating 

phenomena together with practically useful results.  
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