DIAGNOSIS OF MULTIPLE FAULTS OF AN INDUCTION MOTOR BASED ON HILBERT ENVELOPE ANALYSIS

Ahmet Kabul1), Abdurrahman Ünsal2)

1) Burdur Mehmet Akif Ersoy University, Department of Electrical and Electronic Engineering, 15030, Burdur, Turkey (ahmetkabul@mehmetakif.edu.tr, +90 248 213 2761)
2) Kütahya Dumlupınar University, Department of Electrical and Electronic Engineering, 43100, Kütahya, Turkey (unsal@dpu.edu.tr)

Abstract

Three phase induction motors are widely used in industrial processes and condition monitoring of these motors is especially important. Broken rotor bars, eccentricity and bearing faults are the most common types of faults of induction motors. Stator current and/or vibration signals are mostly preferred for the monitoring and detection of these faults. Fourier Transform (FT) based detection methods analyse the characteristic harmonic components of stator current and vibration signals for feature extraction. Several types of simultaneous faults of induction motors may produce characteristic harmonic components at the same frequency (with varying amplitudes). Therefore, detection of multiple faults is more difficult than detection of a single fault with FT based diagnosis methods. This paper proposes an alternative approach to detect simultaneous multiple faults including broken rotor bars, static eccentricity and outer/inner-race bearing faults by analysing stator current and vibration signals. The proposed method uses Hilbert envelope analysis with a Normalized Least Mean Square (NLSM) adaptive filter. The results are experimentally verified under 25%, 50%, 75%, 100% load conditions.

Keywords: Hilbert envelope analysis, induction motor, multiple faults.

1. Introduction

Induction motors are widely applied in industrial applications such as fans, conveyors, pumps, etc. due to their lower cost, easy maintenance and higher reliability. Induction motors can fail due to thermal stress, vibrations, mechanical forces and alignment problems. These problems may occur simultaneously or consecutively [1, 2].

The distribution of faults in induction motors is approximately presented as 69% bearing, 21% stator winding, 7% rotor faults and 3% as shaft/coupling and other faults [3]. Although the bearing faults have the highest percentage among motor faults, broken rotor bars and eccentricity
faults may eventually result in bearing faults. Therefore, it is important to detect the bearing faults along with broken rotor bars and static eccentricity faults.

Bearings are the most critical parts of induction motors [4]. Only 10% of bearings can reach their L10 life in industrial environment [5]. This may happen due to unqualified maintenance crew and insufficient knowledge, misalignment of motor-load, and simultaneous multiple faults [6]. In order to save bearings, it is important to properly monitor the whole spectrum of fault related characteristic harmonic components of stator current and vibration signals.

During the last decades, detection of single faults of three phase induction motors has been studied extensively. At the same time, only few studies of diagnosis of multiple faults have been reported [7]. Several types of simultaneous faults (broken rotor bars, static eccentricity, and bearing faults) of induction motors may produce characteristic harmonic components at the same frequency (with varying amplitudes). Therefore, the detection of multiple faults is more difficult than the detection of a single fault with Fouriers Transform (FT) based methods.

Stator current signals, vibration signals, acoustic noise signals, temperature, induced voltage, air gap magnetic flux signals are the most commonly used for the diagnosing of faults in induction motors. Fast Fourier Transform (FFT) based methods are commonly used for analysis of stator current and vibration signals [8]. Moreover, portable signal analysers also use FFT based methods to detect faults in induction motors [9–11]. Although FFT is frequently used for the analysis of signals, it has some drawbacks. When the motor load is low, the frequencies of characteristic harmonic components of current signals generated by broken rotor bars are very close to the frequency of fundamental component with low amplitudes (and mostly overshadowed by the fundamental components) [12]. Therefore, FFT based methods are ineffective in detecting characteristic harmonic components through using stator current and vibration signals at lower motor loads [2,13]. In addition, the application of FFT based methods is limited while analysing non-stationary signals [14]. Therefore, FFT based methods are used along with some other methods such as Wavelet [15], Multiple Signal Classification (MUSIC) [16], Artificial Neural Network (ANN) [17], and Artificial Intelligence (AI) methods [18]. A summary of FFT based methods is presented in Table 1 [19–26].

In this paper an alternative method is proposed to detect simultaneous multiple faults of induction motors by using Hilbert envelope analysis along with a Normalized Least Mean Square

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Signal analysing method</th>
<th>Fault type(s)</th>
<th>Analysed data</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>2019</td>
<td>FFT for feature extraction</td>
<td>Rolling element bearings</td>
<td>Current</td>
</tr>
<tr>
<td>[21]</td>
<td>2019</td>
<td>FFT and Principle Component Analysis (PCA)</td>
<td>Broken end-ring and broken rotor bars</td>
<td>Current</td>
</tr>
<tr>
<td>[22]</td>
<td>2018</td>
<td>FFT, Hilbert time – time (HTT) and PCA</td>
<td>Rolling element bearings</td>
<td>Vibration</td>
</tr>
<tr>
<td>[23]</td>
<td>2017</td>
<td>FFT and wavelet de-noising</td>
<td>Rolling element bearings</td>
<td>Vibration</td>
</tr>
<tr>
<td>[24]</td>
<td>2017</td>
<td>FFT</td>
<td>Broken rotor bars and inner race bearing</td>
<td>Vibration</td>
</tr>
<tr>
<td>[26]</td>
<td>2016</td>
<td>FFT – Independent Component Analysis (ICA)</td>
<td>Broken rotor bars and bearings</td>
<td>Current</td>
</tr>
</tbody>
</table>
(NLMS) adaptive filter. Both stator current and vibration signals are analysed with the proposed method.

The studied simultaneous faults are analysed for two cases:

Case 1: Static eccentricity, three-broken rotor bars and outer-race bearing faults.

Case 2: Static eccentricity, three-broken rotor bars and inner-race bearing faults.

This paper is organized as follows. Section 1 and 3 briefly present the adaptive filter and Hilbert envelope analysis consecutively. The experimental test-bed and the implementation are presented in Section 4 and 5 respectively. The experimental results of the proposed method are given in Section 6. The paper is concluded with Section 7.

2. NLMS adaptive filter

The proposed method contains an NLMS adaptive filter to increase the accuracy of proposed method. The NLMS adaptive filter is used to eliminate noise in current and vibration signals. The optimization of NLMS filter tap weights is given in (1)

\[w(n+1) = w(n) + \mu(n)e(n)x(n), \]

where \(e(n) \) is the error signal [27] (see Fig. 1). Adaptive filter weight coefficients filter are updated by the step size factor (\(\mu_n \)) at each iteration to minimize the error. The design of the filter is implemented in MATLAB. The optimum filter order and the step size are chosen as 64 and 0.2 respectively to provide an acceptable accuracy and convergence time. The structure of adaptive filter is shown in Fig. 1.

![Fig. 1. General structure of the adaptive filter.](image)

3. Hilbert envelope analysis

Hilbert envelope analysis is commonly used in signal processing. The process of the proposed Hilbert envelope analysis consists of four steps. The first step is band pass filtering of stator current and vibration signals to focus on the frequencies of characteristic harmonic components. The second step is the Hilbert transform. The Hilbert transform is widely used to detect the faults in induction motors [2, 22, 28]. Suppose that \(x(t) \) is a real time signal, the Hilbert transform of \(x(t) \) is given as follows (2)

\[H\{x(t)\} = \frac{1}{\pi t} \cdot x(t). \]

(2)
The analytical signal \(z(t) \) can be written as in (3)

\[
z(t) = x(t) + jh(t) \tag{3}
\]

The third step is envelope analysis. The envelope of \(z(t) \) can be calculated as given in (4). The aim of this step is to amplify the amplitude of side-band harmonics

\[
E(t) = \sqrt{x^2(t) + h^2(t)} \tag{4}
\]

In the last step, the envelope spectrum is observed by performing spectrum analysis to detect the fault related harmonic components.

4. Experimental test-bed

To verify the performance of the proposed method, an experimental test-bed was used. As shown in Fig. 2 the test-bed consists of a 3 kW induction motor, a 5 kVA self-excited synchronous generator, and a 5 kW resistive load. The nameplate of the induction motor used in the experiments is shown in Table 2.

![Fig. 2. The experimental test-bed.](image)

<table>
<thead>
<tr>
<th>Phase number</th>
<th>Connection type</th>
<th>Frequency (Hz)</th>
<th>Voltage (V)</th>
<th>Current (A)</th>
<th>Power (W)</th>
<th>Power factor</th>
<th>Speed (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Y</td>
<td>50</td>
<td>380</td>
<td>5.9</td>
<td>3000</td>
<td>0.87</td>
<td>2850</td>
</tr>
</tbody>
</table>
Two types of fault scenarios (Case 1 and Case 2), were studied with current and vibration signals under 25%, 50%, 75% and 100% load levels of the induction motor. To create a static eccentricity fault, the bearing housing (Fig. 3a) of the end shield was expanded. A PLA (Polylactic Acid) based bushing, produced with a 3D printer (with static eccentricity), was placed into the bearing housing. Broken rotor bars were emulated by drilling three holes in the rotor bars (See Fig. 3b). 6206.C3 type bearings were used in the induction motor under test. The outer and inner race bearing faults were created by drilling holes on the outer and inner races of bearings respectively as shown in Fig. 3c and Fig. 3d.

5. Implementation

Both stator current and vibration signals were recorded at a sampling frequency of 25 kHz with a National Instruments (NI) c-DAQ 9174 data acquisition system (see Table 3). The analyses of the recorded signals were implemented in MATLAB environment. The noise signals are eliminated by the NLMS adaptive filter. Then Hilbert envelope analysis is applied to the filtered signal to detect harmonic components of current and vibration signals. The flowchart of the proposed method is presented in Fig. 4.
Table 3. The specifications of measurement devices.

<table>
<thead>
<tr>
<th>Type of signals</th>
<th>Measurement device</th>
<th>Amplifier</th>
<th>Data acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator current</td>
<td>Fluke i200 AC current clamp</td>
<td>–</td>
<td>NI c-DAQ-9174 with an NI 9225 module</td>
</tr>
<tr>
<td>Vibration</td>
<td>Three axis PCB model 356A31</td>
<td>3 channel ICP sensor signal conditioner model 480B21</td>
<td>NI c-DAQ-9174 with an NI 9225 module</td>
</tr>
</tbody>
</table>

6. Results and discussion

A three phase, 3 kW induction motor was used in this study. Two fault cases were studied. In Case 1, static eccentricity, broken rotor bars and outer-race bearing faults were implemented simultaneously. In Case 2, static eccentricity, broken rotor bars and inner-race bearing faults were implemented. At each test case both stator current and vibration signals were recorded.

6.1. Case 1: Static eccentricity, broken rotor bars and outer-race bearing faults

6.1.1. Analysis of stator current signals (Case 1)

The frequencies of characteristic harmonic components of static eccentricity \(f_{ecn}\) can be calculated using (5) [29]

\[
f_{ecn} = f_s \pm k f_r,
\]

where \(f_s\) is the fundamental component of the supply frequency, \(k = 1, 2, 3\) and \(f_r\) is the rotor (shaft) frequency.

The frequencies of characteristic harmonic components of broken rotor bars \(f_{brb}\) are as follows (6) [12]

\[
f_{brb} = (1 \pm 2ks) \cdot f_s,
\]

where \(s\) is the slip. In the envelope spectrum, the characteristic harmonic component of broken rotor bars is calculated employing \(f_s - f_{brb}\) [30].

The frequencies of characteristic harmonic components of bearing faults in the stator current signals are calculated using (7) [31]

\[
f_{bear} = |f_s \pm k \cdot \text{BPFO}|,
\]

where \(k = 2, 3, 4\) and BPFO is Ball Pass Frequency Outer (Outer-Race Failing Frequency).

The frequency of characteristic harmonic components of the outer-race bearing fault is calculated using (8) [31]

\[
\text{BPFO} = \frac{N_b}{2} \cdot f_r \cdot \left(1 - \frac{B_d}{P_d} \cdot \cos \varphi \right),
\]

where \(N_b\) is the number of balls, \(B_d\) is the ball diameter and \(P_d\) is the pitch diameter, and \(\varphi\) is the ball contact angle. The specifications of the bearing (6206.C3) used in the experiments are given in Table 4.

Table 4. Data sheet of the 6206 bearing [32].

<table>
<thead>
<tr>
<th>Bearing number</th>
<th>(N_b) (Qty)</th>
<th>(B_d) (mm)</th>
<th>(P_d) (mm)</th>
<th>(\varphi) (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6206</td>
<td>9</td>
<td>9.525</td>
<td>46</td>
<td>0</td>
</tr>
</tbody>
</table>
The frequency of characteristic harmonic components of the outer-race bearing fault is calculated in (9)

\[
BPFO = \frac{9}{2} \cdot f_r \cdot \left(1 - \frac{9.525}{46} \cdot \cos 0 \right) = 3.57 \cdot f_r.
\]

The corresponding characteristic harmonic components of current spectra of outer-race bearing faults are presented in Table 5.

<table>
<thead>
<tr>
<th>Load level (%)</th>
<th>Ball pass frequency of outer-race (Hz)</th>
<th>2nd current spectra harmonic (Hz)</th>
<th>3rd current spectra harmonic (Hz)</th>
<th>4th current spectra harmonic (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>177.2</td>
<td>304</td>
<td>482</td>
<td>659</td>
</tr>
<tr>
<td>50</td>
<td>175.0</td>
<td>300</td>
<td>475</td>
<td>650</td>
</tr>
<tr>
<td>75</td>
<td>172.9</td>
<td>296</td>
<td>469</td>
<td>642</td>
</tr>
<tr>
<td>100</td>
<td>170.6</td>
<td>291</td>
<td>462</td>
<td>632</td>
</tr>
</tbody>
</table>

The results of the proposed method applied to the current signals for Case 1 are shown in Table 6 and Fig. 5.

<table>
<thead>
<tr>
<th>Load level (%)</th>
<th>(f_r) (Hz)</th>
<th>Broken rotor bars harmonic frequency (Hz)</th>
<th>1st harmonic component of static eccentricity (Hz)</th>
<th>Outer-race bearing fault 2nd harmonic component (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>49.5</td>
<td>0.954</td>
<td>99.50</td>
<td>304</td>
</tr>
<tr>
<td>50</td>
<td>48.9</td>
<td>2.193</td>
<td>98.95</td>
<td>300</td>
</tr>
<tr>
<td>75</td>
<td>48.3</td>
<td>3.386</td>
<td>98.56</td>
<td>296</td>
</tr>
<tr>
<td>100</td>
<td>47.7</td>
<td>4.721</td>
<td>97.22</td>
<td>291</td>
</tr>
</tbody>
</table>

Fig. 5. Characteristic harmonic components of current signal under a) 25% load, b) 50% load, c) 75% load, d) 100% load level of the induction motor.
I_n represents the amplitudes of normalized stator current signals in all figures. In the FFT method, the characteristic harmonic components are detected in pairs as side-bands of the fundamental component. While using the proposed method, the characteristic harmonic components are detected without observing the fundamental component when multiple faults are present. The low-amplitude characteristic harmonic components of broken rotor bars are shifted to 0–10 Hz in the envelope spectrum. Therefore, the proposed method offers an effective solution for problems of overshadowing in dominant harmonic components as presented in Fig. 6. Moreover, the characteristic harmonic components of static eccentricity and outer-race bearing faults are successfully detected with the proposed method.

![Fig. 6. Analysis of the stator current signal at 100% load level of the induction motor using a) FFT method and b) Hilbert envelope analysis.](image)

6.1.2. Analysis of vibration signals (Case 1)

The static eccentricity fault of the induction motor is detected by comparing the amplitudes of $k f_r$ characteristic harmonic components [33]. If the amplitude of $2f_r$ is greater or equal to $1.5 f_r$, the static eccentricity fault is present.

The conventional methods calculate the frequencies of characteristic harmonic components of broken rotor bars (f_{brb}) as in (10) [34], while Hilbert envelope analysis focuses on the $2ksf_s$ harmonic components

$$f_{brb} = f_r \pm 2ksf_s.$$ \hspace{1cm} (10)

The frequency of characteristic harmonic components of the outer-race bearing fault is calculated as presented in (11)

$$BPFO = \frac{9}{2} \cdot f_r \cdot \left(1 - \frac{9.525}{46} \cdot \cos 0\right) = 3.57 \cdot f_r.$$ \hspace{1cm} (11)

The results of the proposed method applied to the vibration signals for Case 1 are presented in Table 7 and Fig. 7.

Table 7. The frequencies of characteristic harmonic components of vibration analysis for Case 1.

<table>
<thead>
<tr>
<th>Load level (%)</th>
<th>f_r (Hz)</th>
<th>Amplitude ($2f_r$) Amplitude (f_r)</th>
<th>Ball pass harmonic frequency of the outer-race (Hz)</th>
<th>Broken rotor bars harmonic frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>49.5</td>
<td>1.98</td>
<td>177.2</td>
<td>0.954</td>
</tr>
<tr>
<td>50</td>
<td>48.9</td>
<td>1.54</td>
<td>175.0</td>
<td>2.098</td>
</tr>
<tr>
<td>75</td>
<td>48.3</td>
<td>1.52</td>
<td>172.9</td>
<td>3.580</td>
</tr>
<tr>
<td>100</td>
<td>47.7</td>
<td>1.71</td>
<td>170.6</td>
<td>4.864</td>
</tr>
</tbody>
</table>
Figure 8 shows that the proposed method is capable of detecting characteristic harmonic components in vibration signals of simultaneous faults at 100% load condition as effectively as the FFT method. The characteristic harmonic components of static eccentricity and outer-race bearing faults are detected successfully (at greater amplitudes) when they are compared to the results of the FFT method. Since the harmonic components of broken rotor bars are shifted to $0 - 10$ Hz frequency region, the proposed method offers an effective solution for problems of overshadowing in dominant harmonic components as presented in Fig. 8.

6.2. Case 2: Static eccentricity, broken rotor bars and inner race bearing faults

6.2.1. Analysis of stator current signals (Case 2)

The frequencies of characteristic harmonic components of the bearing fault obtained by employing stator current signals are calculated as given in (12) [31]

$$f_{\text{bear}} = |f_s \pm k \cdot \text{BPFI}|,$$

where $k = 2, 3, 4$ and BPFI is Ball Pass Frequency Inner (Inner-Race Failing Frequency).
The frequency of characteristic harmonic components of the inner-race bearing fault is calculated by (13) \[31\]

\[
\text{BPFI} = \frac{N_b}{2} \cdot f_r \cdot \left(1 + \frac{B_d}{P_d} \cdot \cos \varphi \right).
\] (13)

The frequency of characteristic harmonic components of the inner-race bearing fault is calculated in (14)

\[
\text{BPFI} = \frac{9}{2} f_r \cdot \left(1 + \frac{9.525}{46} \cdot \cos 0 \right) = 5.43 \cdot f_r.
\] (14)

The corresponding frequencies of characteristic harmonic components of inner-race bearing faults are presented in Table 8.

<table>
<thead>
<tr>
<th>Load level (%)</th>
<th>Ball pass frequency of inner-race (Hz)</th>
<th>2nd current spectra harmonic (Hz)</th>
<th>3rd current spectra harmonic (Hz)</th>
<th>4th current spectra harmonic (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>267.4</td>
<td>585</td>
<td>852</td>
<td>1120</td>
</tr>
<tr>
<td>50</td>
<td>263.6</td>
<td>577</td>
<td>841</td>
<td>1104</td>
</tr>
<tr>
<td>75</td>
<td>260.3</td>
<td>571</td>
<td>831</td>
<td>1091</td>
</tr>
<tr>
<td>100</td>
<td>256.6</td>
<td>563</td>
<td>820</td>
<td>1076</td>
</tr>
</tbody>
</table>

The results of the proposed method applied to the current signals for Case 2 are given in Table 9 and Fig. 9.

The frequency of characteristic harmonic components of the inner-race bearing fault is calculated in (14). The corresponding frequencies of characteristic harmonic components of inner-race bearing faults are presented in Table 8.

Fig. 9. Characteristic harmonic components of current signal under a) 25% load, b) 50% load, c) 75% load, d) 100% load level of the induction motor.

Figure 10 shows that the proposed method offers an effective solution to the problems of overshadowing in dominant harmonic components in the current signal at 100% load conditions.
Table 9. The frequencies of characteristic harmonic components of current analysis for Case 2.

<table>
<thead>
<tr>
<th>Load level (%)</th>
<th>f_r (Hz)</th>
<th>Broken rotor bars harmonic frequency (Hz)</th>
<th>1st harmonic component of static eccentricity (Hz)</th>
<th>Inner-race bearing fault 2nd harmonic component (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>49.2</td>
<td>0.954</td>
<td>99.2</td>
<td>585</td>
</tr>
<tr>
<td>50</td>
<td>48.6</td>
<td>2.200</td>
<td>98.6</td>
<td>577</td>
</tr>
<tr>
<td>75</td>
<td>47.9</td>
<td>3.390</td>
<td>98.0</td>
<td>571</td>
</tr>
<tr>
<td>100</td>
<td>47.3</td>
<td>4.780</td>
<td>97.3</td>
<td>563</td>
</tr>
</tbody>
</table>

![Fig. 10. Analysis of the stator current signal at 100% load level of the induction motor using a) FFT and b) Hilbert envelope analysis.](image)

6.2.2. Analysis of vibration signals (Case 2)

The frequency of the characteristic harmonic components of inner-race bearing fault is calculated as in (15).

\[
\text{BPFI} = \frac{9}{2} \cdot f_r \cdot \left(1 + \frac{9.525}{46} \cdot \cos 0\right) = 5.43 \cdot f_r.
\]

The results of the proposed method applied to the vibration signals for Case 2 are shown in Table 10 and Fig. 11.

Table 10. The frequencies of characteristic harmonic components of vibration analysis for Case 2.

<table>
<thead>
<tr>
<th>Load level (%)</th>
<th>f_r (Hz)</th>
<th>Amplitude ($2f_r$) / Amplitude (f_r)</th>
<th>Ball pass harmonic frequency of the inner-race (Hz)</th>
<th>Broken rotor bars harmonic frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>49.5</td>
<td>2.52</td>
<td>267.4</td>
<td>1.001</td>
</tr>
<tr>
<td>50</td>
<td>48.6</td>
<td>2.09</td>
<td>263.6</td>
<td>2.289</td>
</tr>
<tr>
<td>75</td>
<td>48.0</td>
<td>1.71</td>
<td>260.3</td>
<td>3.529</td>
</tr>
<tr>
<td>100</td>
<td>47.3</td>
<td>2.27</td>
<td>256.6</td>
<td>4.721</td>
</tr>
</tbody>
</table>

Figure 12 shows that the proposed method is capable of detecting characteristic harmonic components in vibration signals of simultaneous faults at 100% load condition as effectively as the FFT method.
Fig. 11. Harmonic components of vibration signal under a) 25% load, b) 50% load, c) 75% load, d) 100% load level of the induction motor.

Fig. 12. Analysis of the vibration signals at 100% load level of the induction motor using a) FFT method and b) Hilbert envelope analysis.

7. Conclusions

In this paper, simultaneous multiple faults including static eccentricity, broken rotor bars, outer/inner race bearing faults of a 3 kW induction motor under 25%, 50%, 75% and 100% load levels are investigated by applying Hilbert envelope analysis to the stator current and vibration signals.

The FFT based methods are limited when the motor is lightly loaded with simultaneous faults. The performance of the proposed method has been tested under varying load levels of the induction motor. The results show that the performance of the proposed method is better than the performance of the FFT analysis of the current signals of the induction motor with simultaneous faults at low load levels. It can be seen in Fig. 6 (Case 1) and Fig. 10 (Case 2) that low amplitudes of characteristic harmonic components would not be properly detected by the FFT method (even if the induction motor operates at full load) due to the existence of the dominant fundamental component of characteristic harmonic components.

Although the FFT method offers superior results in the detection of characteristic harmonic components of static eccentricity and bearing faults based on vibration signals, its application is limited in the case of detection of broken rotor bars. The results show that the proposed method successfully detects the characteristic harmonic components of simultaneous broken rotor bars, static eccentricity and outer/inner-race bearing faults at four different load levels of an induction motor.
motor by using vibration signals. In addition, the proposed method solves the overshadowing problems of characteristic harmonic components of broken rotor bars and static eccentricity faults of induction motor at low load levels on the part of the dominant fundamental component.

The major contribution of this work is successful detection of low amplitude characteristic harmonic components of simultaneous faults of induction motors.

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with a grant number 116E302.

8. References

References

Ahmet Kabul received his B.Sc. in electrical-electronic engineering from Anadolu University, Eskisehir, Turkey, in 2009; and his M.Sc. in electrical-electronic engineering from Dumlupinar University, Kutahya, Turkey, in 2013. He is currently pursuing the Ph.D. degree in electrical-electronic engineering at Kutahya Dumlupinar University. From 2009 to 2018, he worked as a research assistant at Dumlupinar University. From March 2018 to May 2019, he worked in a textile factory as a maintenance engineer.

From May 2019 to present, he has been with the Department of Electrical-Electronic Engineering of Burdur Mehmet Akif Ersoy University as a research assistant. His research interests include diagnosing of induction motor failures.

Abdurrahman Ünsal received his B.Sc. from Gazi University (Ankara/Turkey) in 1992, his M.Sc. degree from Oklahoma State University (USA) in 1996, and his Ph.D. degree from Oregon State University (USA) in 2001. He is currently working as a Professor at the Department of Electrical and Electronic Engineering of Kutahya Dumlupinar University in Turkey. His research interests are power quality, fault detection and control of electrical machines, renewable energy, and smart grids. He has been an IEEE member since 2000.