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Abstract: Climate change is driving the transformation of energy systems from fossil to
renewable energies. In industry, power supply systems and electro-mobility, the need for
electrical energy storage is rising sharply. Lithium-based batteries are one of the most
widely used technologies. Operating parameters must be determined to control the storage
system within the approved operating limits. Operating outside the limits, i.e., exceeding
or falling below the permitted cell voltage, can lead to faster aging or destruction of the
cell. Accurate cell information is required for optimal and efficient system operation. The
key is high-precision measurements, sufficiently accurate battery cell and system models,
and efficient control algorithms. Increasing demands on the efficiency and dynamics of
better systems require a high degree of accuracy in determining the state of health and
state of charge (SOC). These scientific contributions to the above topics are divided into
two parts. In the first part of the paper, a holistic overview of the main SOC assessment
methods is given. Physical measurement methods, battery modeling, and the methodology
of using the model as a digital twin of a battery are addressed and discussed. In addition,
adaptive methods and artificial intelligence methods that are important for SOC calculation
are presented. Part two of the paper presents examples of the application areas and discusses
their accuracy.
Key words: battery modeling and simulation, estimation algorithm; equivalent circuit,
introduction, lithium-ion battery energy storage, state of charge (SOC)
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1. Introduction

One of the greatest challenges of our time is the expansion of renewable energies, which is
being driven by climate change. Countries whose share of renewable energies is steadily increasing
and which have reduced or even eliminated generation from nuclear power and fossil fuels are
facing new challenges. One of these challenges is ensuring a reliable and sustainable supply
of energy (particularly electricity). Battery energy storage (BES) for grid use and electrified
vehicles (including plug-in and full hybrid vehicles) can be clearly identified as key technologies
for overcoming these challenges.

Lithium-ion batteries have become the most widespread storage for power systems with a high
proportion of generation from renewable energy sources [33]. Figure 1 shows that, on the one
hand, the forecast demand for lithium for battery production will increase (left side) and, on the
other hand, that most of this demand is required for electromobility (right side).

Fig. 1. Global demand for lithium for the production of lithium-ion batteries in 2017 and forecasts
for the years 2023 and 2028 (left) [31]; worldwide demand for lithium-ion batteries (right) [32]

The production of lithium-based battery cells is a very resource-intensive and costly process;
therefore, an economical and sustainable use of batteries is particularly important. The lithium
deposits are distributed over only a few countries and the amount of lithium extracted in relation
to the rapidly increasing demand is low [34] (Table 1). The state of charge (SOC) refers to the
optimal use of the capacity, whereby this information about the battery condition is decisive for
the operation. Similarly, the SOC can provide information on premature aging and, thus, in turn,
has an influence on the economic efficiency. A new market has emerged in the last few years
that deals with the insurance of lithium batteries. The service life and the risk potential, which,
in turn, depend on environmental conditions, temperature, current load and the use case are the
significant factors that influence the cost of the insurance. Precise SOC models are particularly
needed in order to minimize risks and define stable business models.
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Table 1. Error by the SOC estimation using different modeling methods

Method Model Ref. Battery tested Test cond. Error rate % Pub. year

Coulomb counting Thevenin [8] Lithium-
Mangandioxid NEDC MAE ≤ 3.54

RMSE ≤ 4.10 2019

KF 1RC [9] Li-Ion DST MAE ≤ 5 2011

2RC [10] LiFePO4 NEDC MAE ≤ 1.1 2014

PNGV [11] Li-Ion DST MAE ≤ 1.05 2012

PNGV [12] Li-Ion DST MAE ≤ 1.5 2018

1RC [13] Lithium polymer
batteries DST MAE ≤ 2.0 2012

1RC [14] LiNiMnCoO2 MCT MAE 1.26
RMSE 1.32 2018

1RC [15] LiNiMnCoO2
(NMC) DST RMSE ≤ 0.83 2017

1RC [16] Li-Ion phosphate FUDS MAE 1.3401 2018

Thevenin [17] LMO-LNO/
Graphite NEDC MAE ≤ 1.49

RMSE ≤ 2.23 2019

NN [18] Lithium battery UDDS MAE 8.67
RMSE 2.9453 2017

[19] LiNiMnCoO2 FUDS RMSE ≤ 0.95 2019

+ Particle swarm [18] Lithium battery UDDS RMSE 0.60 2017

Fuzzy logic [20] LiFePO4 RDC MAE ≤ 0.5 2015

Genetic algorithms 1RC [21] Li-Ion battery UDDS MAE ≤ 1 2014

PMGV [22] Li-Ion battery NEDC RMSE ≤ 0.971 2019

DST – Dynamic Stress Test; FUDS – Federal Urban Dynamic Schedule; MCT – Multiple Cycle Test;
NEDC – New European Driving Cycle; RDC – Real Driving Cycle; UDDS – Urban Dynamometer Driving Schedule

The accuracy of the SOC determination is presented in this paper using the example of test
methods for battery storage systems for electromobility and a practical example for the use of
a stationary battery storage system for grid applications.

2. Accuracy of the SOC estimation

The information about the actual status of the battery is necessary to achieve optimal and safe
operation conditions in both stationary and mobile applications. The determination of an accurate
SOC value is necessary, especially for the scheduling of the battery operation. The SOC depends
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on multiple battery parameters, such as temperature, state of health and self-discharge over time.
The SOC estimation is, therefore, error-bounded [1]. Of course, the error should be minimized,
however, depending on the application, a small error could be acceptable.

There are different kinds of errors which could be identified based on measurements and
estimation. The root mean square error (RMSE) and the mean absolute error (MAE) which are
utilized in this paper are used most. The RMSE is not generally ambiguous in its meaning, and
is more appropriate to use than the MAE when model errors follow a normal distribution [2]. In
addition, the RMSE satisfies the triangle inequality required for a distance function metric. If the
references do not specify using the RMSE, the MAE can also be used as a universal indicator
helping the choice of an adequate SOC estimation method.

Use of a standard procedure is important for a comparison of the different methods. In the case
of the SOC, the battery cell tested is located in a climate chamber in order to maintain a constant
climate condition (Fig. 2). The battery has been loaded with a standardized load profile by using
the controlled electronic power generator. The measured and estimated SOC obtained in such
standardized conditions can then be compared for different batteries and estimation methods.

Fig. 2. Diagram of the battery test bench at the University of Applied Science Magdeburg–Stendal

A test bench for the measurement of battery parameters is presented in Fig. 22. The Controller
Area Network (CAN) bus system was used as the interface between the test battery storage and
the test environment. Within the test environment, the essential components, such as the load
controller (TDC module), the CAN module, the user interface with the test runs (Test Work
Server) and the measured value database (SQL – Structured Query Language) are interconnected
via the Transmission Control Protocol/Internet Protocol (TCP/IP). The battery management
system (BMS) in turn collects the measurement data from the cells by means of a serial interface
(RS-232 – Recommended Standard 232).

The use of batteries has been growing recently, especially in the mobile sector. The tests
addressed to mobility are suitable for this application.
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The following tests are used for the characterization of the accuracy of SOC estimation
methods in the mobile application:

– New European Driving Cycle,
– Dynamic Stress Test [3, 4],
– Federal Urban Dynamic Schedule,
– Urban Dynamometer Driving Schedule, compatible with U.S. FTP-72 (Federal Test Pro-

cedure),
– Real Driving Cycle,
– Multiple Cycle Test (e.g. Urban Dynamometer Driving Schedule + Dynamic Stress Test +

New European Driving Cycle + Federal Urban Dynamic Schedule).
The requirements on the load dynamic are different in the stationary applications. In the latter,

the specific test corresponding to the local requirements (local load curves) is generally developed
and used [5–7].

Before starting the test, the battery capacity should be measured and the start condition should
be set. Firstly, the battery is fully charged. This is done according to the constant current/constant
voltage (CC/CV) method, with the current usually equal to C/3 for the constant current period
and a maximum of C/20 for the constant voltage period. After reaching the maximum voltage,
a stabilization period of 1 h was utilized. Finally, a discharge was performed with a constant
current of C/3 up to the upper voltage limit. Equation (1) can be used to determine the battery
capacity at full discharge (𝑄𝑛 is the initial, nominal cell capacity and 𝑖(𝑡) is the current flowing
through the battery at time t). This capacity is the basis for calculating the real SOC under different
conditions.

𝜂SOC(𝑡) = SOC(𝑡0) −
𝜂𝑐

𝑄𝑛

𝑡∫
𝑡0

𝑖(𝑡) d𝑡. (1)

Table 1 lists the results of the methods’ accuracy studies in various literature sources.
Nine of the methods compared in Table 1 are based on the Kalman Filter (KF) algorithm and

the other six used artificial intelligence for the estimation of the SOC. Different test conditions,
such as the measuring, are specified in the table. The equivalent model used is also given in the
table. There are some differences in the model names in the literature, thus, the 1RC model is
equivalent to the Thevenin model and the 2RC model is equivalent to the PNGV model.

Taking this into account, general conclusions from these investigations can be drawn:
– The specified errors are calculated based on the measurements in the laboratory envi-

ronments. The error in the real environment will be higher due to uncertainties in the
measurement of current, voltage and other parameters.

– The pure CC is characterized by a relatively large RMSE error of about 4%. This method
is only conditionally sufficient for use in mobile applications. If the total error doubles,
we have an uncertainty of about 30–50 km distance, which is too much for the optimal
planning of the trip.

– Use of an adaptive KF in different configurations halves this error and make this method
very attractive. An RMSE error of less than 1% can be achieved with some modifications,
which is remarkable.
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– The use of artificial intelligence methods, such as a neuronal network, fuzzy logic or
a genetic algorithm (GA), can improve the accuracy of the SOC estimation. In this case, the
highest effort of implementing this algorithm in the controller and associated cost should
be considered.

– It is interesting to note that the equivalent circuit used in all methods are simple 1 or 2RC,
which is positive information because the parametrization of such circuits is limited. The use
of more advanced models did not increase the accuracy of the calculations drastically [23].

The cell-level SOC measurements can usually be scaled up to the entire battery. This is also
the case for the large stationary batteries [24].

Regarding the latter, a specific test procedure is used. Exemplarily, three profiles are used for
testing for a 2 MW, 1/2 h [24] battery:

– constant cycling – discharge and charge the BES between 5 and 95% SOC (three times
during 6 h),

– mixed profile 8 h special profile between 100 and 5% SOC,
– dynamic frequency response – 7 h profile between 55 and 40% of SOC.
The investigations in this case show that:
– There is a high accuracy of the open-circuit voltage and SOC relationship estimation at

both a cell and system level.
– There is a high accuracy of the SOC prediction using a 1RC model and KF technique of

less than 1% mean absolute error.
This was generally expected because profiles for stationary applications are characterized

by less dynamic profiles than those of mobile applications and taking into account the highest
capacity of large batteries, one does not expect a big change in other parameters, especially
temperature, which influences the SOC value and is more visible in the mobile, smaller battery
applications.

3. Example of an SOC-based operation of 5 MW/5 MWh BES

Nowadays, an increasing number of large stationary batteries are being used in the power
system [25]. The BES will play a decreasing role as a flexibility option in the power system,
especially because of the presence of a high amount of renewable generation, the smoothing of
fluctuated inflow and the delivery of system services [26, 27].

Two-years’ worth of monitoring of the 5 MW/1 h BES has been provided to give an overview
of the BES operation in the power system [30]. The BES used has a modular design. The
power section and the storage are housed in separate containers of 20 and 30 ft, respectively.
The storage is divided into five individual containers, each of 1 MWh, in which four separate
battery units, each of 250 kWh, are installed. The battery units are again divided into five battery
strings connected in parallel with battery modules connected in series (Fig. 3(a)). This results in
a technical nominal capacity of 5 MWh. However, the useful capacity is limited to 5 MWh to
protect the battery cells and, thus, extend their service life. The power section is also divided into
modules. In each case, a power converter unit with 250 kW is connected to a battery unit. The
modular design increases the operational readiness or storage availability because the individual
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units can be maintained separately, independent of the overall system, and the overall system is
only limited by the storage power and capacity omitted.

The containers with the power section and the containers with the battery storage are located
in a hangar of the former military airport at Neuhardenberg (Fig. 3(b)).

(a) (b)

Fig. 3. A 5 MW/1 h BES in test: (a) electric schema of the five strings; (b) front view of the BES

Various services are defined for the maintenance of functionality by the network operators
to ensure a safe and reliable energy supply, in addition to the transmission and distribution of
electrical energy. These system services include:

– frequency maintenance,
– voltage maintenance and
– system management and supply restoration.
The two-year operation schedule of the BES monitored is shown in Fig. 4. The battery

was loaded by different services (see top). After the first three-month period, between June and
August 2015, in which the battery was conditioning, the medium SOC value, the ‘red line,’ was
approximately 50%. The SOC stage in the months’ balance was between 70 and 25%. This kind
of strain is very characteristic for a stationary battery.

Fig. 4. Ten-month distribution of the SOC of the battery storage system for the period
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The dynamic of strain and its distribution on the five strings is shown in the daily manner for
a six-month selected period in Fig. 5. The strings are loaded symmetrically and there are no signs
of distortion.

Fig. 5. Measurements of the daily energy quantities of the five storage units including consumption
and losses and the sum of the storage units

4. Alternative method for SOC estimation

The optical measuring method, which is used to determine the SOC and additional cell
information, is a promising alternative electrical measuring method. It is based on the correlation
of a spectral analysis with the physical-chemical properties of the battery. Special sensors have
been developed for the latter, which are located inside the battery cell having been included
in the cell manufacturing process [26]. This alternative method can also provide a continued
spectral analysis. To achieve this, the batteries must be equipped with special sensors, so-called
nanoplasmonic sensors [29]. Being an optical measurement technique, the fiberoptic battery
sensors can be inserted into battery cells. The nanoplasmonic sensor is an optical measurement
technology developed at Chalmers University of Technology. It is a surface-sensitive measuring
method which works with metal nanostructures that are deposited on a substrate and act as optical
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antennas [29]. Incoming electromagnetic radiation (light) induces resonance vibrations in the
electronic structure of the metal nanoparticles. The peak wavelength at which these resonance
vibrations occur shifts with changes in the optical properties of materials in the close vicinity of
the nanostructures. It is possible to follow physical-chemical processes that take place next to the
sensor by observing how the light-material interaction changes over time [35].

Based on the components of the wavelengths 𝜆 measured in the range from 350 to 1100 nm
(see Fig. 6 for five charge-discharge cycles), reproducible conclusions can be drawn regarding the
battery state (e.g. SOC, state of health). A battery should, for example, be assigned a unique SOC
based on unique spectrum characteristics. This method is intended to improve dynamic effects,
such as temperature dependency, internal resistance and capacity attenuation, and the influence
of the battery state, intrinsic safety, parameter errors, sensor inaccuracy and measurement noise
on the performance and the evaluation quality. One of the biggest challenges of this technology
is the reproducible interpretation of the measurement results, considering the dependencies on
environmental influences, such as temperature, pressure or cell current, in order to achieve high
accuracy for both SOC and state of health.

Fig. 6. Measurement results for cycling procedure

5. Conclusion

In this first part of the scientific article, the established and most important methods for
calculating the SOC were presented and explained in detail. In the second part of the scientific
article, examples of the areas of application are presented and discussed. The weaknesses and
strengths of individual methods are also discussed.

In the following part II, examples of battery storage systems from electromobility and sta-
tionary energy storage systems are explicitly discussed. In addition to the theoretical basis of
SOC calculation methods, the reader is also provided with practical results from modeling and
measurements. The 2nd paper is therefore a continuation of the 1st paper.
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A precise and actual SOC is a very important value for an optimal, efficient, low-wear and,
finally, economic operation of BES. The estimation of the SOC is imprecise and prone to error
due to the modular design of battery storage and dependence on various battery parameters. An
accurate estimation of SOC plays an important role especially in the mobility sector.

Various approaches have been considered and investigated for SOC estimation and new
methods have been developed in recent years. An accuracy of about 1% and less achieved is
generally sufficient for BES and specifically for automotive applications.

Most SOC used methods are based on battery models. The exact parameterization of the
chosen battery models is therefore an essential task (see also part 1 of the paper). Accordingly, the
tests for the different battery cells have to be reproducible and comparable, therefore, a special test
bench has been designed and used. Different standardized test procedures have also been developed
as a basis to perform an accuracy study of different SOC estimation methods for comparability.
The test scenarios developed contain synthetic load schedules. The latter correspond to specific
use cases, such as driving cycles, in the case of vehicle traction batteries, or load schedules based
on power supply behavior in industries or grid applications (system services) for stationary small,
medium and large battery systems.

The parameterization and operation of batteries can be successfully performed using the
methods presented.

The KF method for the estimation of the SOC in automotive and stationary applications is the
one most commonly used. This basic method has several modifications that increase the accuracy
of the SOC estimation. The additivity of the Kalman approach is particularly useful when the
initial SOC is not known precisely.

Some artificial intelligence methods developed in recent years, for example, neuronal networks
or fuzzy logic, are accurate enough to be used specifically for mobile battery applications. A very
high accuracy (a mean squared error less than 1%) can be achieved using extensive training
datasets, but the implementation of this method requires a high-performance microprocessor and
adjustment of parameters due to battery aging.

Several methods of SOC estimation have already been patented.
The megawatt trend will continue in the stationary application of batteries in the next few

years. These batteries are typically charged between 25 and 75% of their capacity and provide
various system services necessary to operate the power system with a very high (up to 100%)
amount of renewable energy.

Some batteries used in the automotive sector can be secondarily used in stationary applications
because of the type of battery maintenance. This second life of Li-Ion batteries could increase
the efficiency of these expensive technologies effectively.

When considering the automotive sector, the focus is increasingly not only on the traction bat-
tery, which supplies the electric motor and smaller consumers (including convenience consumers).
A lot more concepts are currently being developed to supply additional electrical consumers in
utility vehicles with adaptive battery systems, such as medical devices in ambulances or special
vehicles. The special feature here is the consideration of the battery storage as a multi-storage
system. A battery storage system supplies the powertrain (dynamic demand) and another one
supplies the consumers (static demand). However, since both systems are to be charged via one
charging point and have different requirements, these systems will influence each other. This mu-
tual influence must be taken into account when modeling to determine the SOC. Life-threatening
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situations can arise, especially in the case of an incorrect SOC assessment in an ambulance, if,
for example, lung ventilators and defibrillators fail.
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