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Abstract. The inventory systems are highly variable and uncertain due to market demand instability, increased environmental impact, and
perishability processes. The reduction of waste and minimization of holding and shortage costs are the main topics studied within the inventory
management area. The main difficulty is the variability of perishability and other processes that occurred in inventory systems and the solution
for a trade-off between sufficient inventory level and waste of products. In this paper, the approach for resolving this trade-off is proposed. The
presented approach assumes the application of a state-feedback neural network controller to generate the optimal quantity of orders considering
an uncertain deterioration process and the FIFO issuing policy. The development of the control system is based on state-space close loop control
along with neural networks. For modelling the perishability process Weibull distribution and FIFO policy are applied. For the optimization of the
designed control system, the evolutionary NSGA-II algorithm is used. The robustness of the proposed approach is provided using the minimax
decision rule. The worst-case scenario of an uncertain perishability process is considered. For assessing the proposed approach, simulation
research is conducted for different variants of controller structure and model parameters. We perform extensive numerical simulations in which
the assessment process of obtained solutions is conducted using hypervolume indicator and average absolute deviation between results obtained
for the learning and testing set. The results indicate that the proposed approach can significantly improve the performance of the perishable
inventory system and provides robustness for the uncertain changes in the perishability process.
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1. INTRODUCTION
Nowadays, rapid changes in inventory systems force the devel-
opment of new control approaches which will be able to over-
come the variety of uncertainties appearing in such systems.
One of the important factors contributing to the uncertainty
in storage systems is perishability. Perishable products have
highly varying deterioration rates which means that an uncon-
trolled perishability process can cause high waste [1]. Due to
the high loss ratio of products (about 30% in many countries), it
is highly important to effectively and efficiently control the in-
ventory flow, in particular the level of product perishability [2].
The process of product deterioration usually does not occur uni-
formly, hence, unsteadiness in quality decrease should also be
considered during the control of perishable inventories [3]. New
technologies provide the measurement and control of deteriora-
tion in perishable inventories, e.g. RFID tagging [4, 5], Internet
of Things (IoT) [6]. Therefore, the latest technology advance-
ments create the proper environment for the application of new
control methods to perishable inventories. Novel approaches
have to provide the adaptation to changes and robustness to un-
certainties that nowadays often occur in supply chains [7].
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In inventory, there are a few types of uncertainties, the four
most popular in the literature are: (a) uncertain demand, (b) un-
certain lead-time, (c) uncertain supply (d) uncertain perisha-
bility. The most researched uncertainties are (a), (b), and (c).
For example, demand and supply uncertainty is assumed in [8]
and the methods of bi-objective integer programming are pro-
posed to manage blood inventory – the supply uncertainty of
blood is modelled from regional banks to hospitals. The main
goal of blood banks is to maintain sufficient stock while mini-
mizing wastage due to the expiration of blood. The next work
which also considers demand and supply uncertainty is [9]
where a mixed linear programming model (MILP) is used with
Lagrangian relaxation to reduce memory usage and time. De-
mand uncertainty is also taken into consideration in [10] where
the order quantity is calculated by popular order-up-to policy
and logistic stability is examined. In [11] new variants of peri-
odic review policy and continuous review policy are proposed
to reduce the holding costs and shortages in inventory systems
with demand uncertainty. Approach including lead-time uncer-
tainty is presented in [12] where an optimal ordering decision
model is developed using differential equations. The lead time
tends to change due to capacity constraints, defects in prod-
ucts, delays in material supply, and changes in production pro-
cesses [13]. For both demand and lead times uncertainty, the
research is available in [14]. Dealing with these two uncertain-
ties and NP-hard study is possible thanks to the hybrid solu-
tion approach based on Simulated Annealing and direct search
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method. On the contrary, there is a lack of research on the con-
trol of perishable inventory with an uncertain lifetime of prod-
ucts (d). The uncertain character of perishability is considered
in [15] where a robust optimization model is designed for con-
trolling uncertain parameters. The second work is the recent
research [16] where a multi-objective mathematical program-
ming model is developed to optimize the cost, energy consump-
tion, and traffic congestion associated with such supply chain
operations. What is more, in [16] uncertain lifetime of prod-
ucts is explicitly modelled as a Weibull random variable, and
the perishability process depends on vehicle refrigerator uti-
lization. According to recommendations in [15], it is more ef-
ficient to use multi-objective meta-heuristic algorithms such as
the nondominated sorting genetic algorithm II (NSGA-II) for
problem-solving due to an exponential increase in computation
time.

From this viewpoint, to cope with uncertain perishability
processes this study is devoted to the problem of developing
a new approach for optimizing perishable inventory systems,
especially with uncertain perishability. In a nutshell, this paper
aims to develop a novel approach for control and optimization
using neural networks, state-space models, and evolutionary al-
gorithms. Overall, to identify our contributions, the literature
review reveals that the perishable inventory control with per-
ishability uncertainty has not been widely studied. Most pre-
vious studies on the control of inventory systems without per-
ishability and uncertainty in the perishability process. The main
contributions of this paper are:
1. Development of a novel solution for perishable inven-

tory system with uncertain perishability and first-in-first-
out (FIFO) issuing policy that combines neural networks,
bi-criterial optimization, and robust optimization using the
minimax method.

2. The numerical study shows that the proposed robust sys-
tem can find about 18% better solutions than the non-robust
approach in terms of a hypervolume indicator.

We conduct a series of simulations to investigate the perfor-
mance of our approach. The achieved results show that the pro-
posed approach allows the perishable inventory system to ob-
tain good robustness on perishability uncertainty with a view to
customer satisfaction, holding cost, and wastage reduction. The
remainder of this paper is organized as follows. Section 2 re-
views related literature. Section 3 presents the inventory model
with perishable products. A neural controller for perishable in-
ventory is introduced in Section 4. Section 5 is devoted to the
learning process of a neural network using multicriteria opti-
mization. Section 6 reports and analyses the computational re-
sults obtained through simulations in Matlab. Section 7 con-
cludes the paper and provides perspectives for future study.

2. RELATED WORK
Our paper is mainly related to two streams of research in the
literature: robustness of perishable inventory control methods
and their optimization, artificial intelligence methods used for
perishable inventory control problems (especially neural net-
works).

There is a rich body of literature on the control of perishable
inventory systems. The types of products in perishable invento-
ries are mainly food (mostly dairy, fruits, vegetables) and blood.
Major challenges in the blood supply chains are connected to
the shortage and wastage of blood products [8]. The main chal-
lenge of supply chains is keeping enough stock level to pro-
vide full product availability while minimizing the losses due to
outdating [17, 18]. There are also different approaches applied
in perishability simulation. For example, the inventory mod-
els presented in [19–21] contain the constant perishability rate,
which means that for example in each review period 5% of un-
sold stock decays and 95% remains. On the other hand, in [22]
it is assumed that the freshness of the product is a linearly de-
creasing function of the age of the perishable goods. Another
way of perishability modelling is presented in [1] where the de-
terioration rate is affected not only by the storage environment
and the preservation effort but also by different perishability
characteristics of different agri-fresh products (for example, the
deterioration rate for bananas is different from the deterioration
rate for apples). The variable character of perishability is caused
by handling and transportation equipment, product temperature
and air-conditioning, etc. In order to resemble this variability
more, the Weibull distribution is also used to describe a per-
ishability rate [16, 23, 24]. But still, there is a lack of research
in which the uncertain character of process perishability is in-
cluded in simulation research. To the best of our knowledge,
none of these studies has discussed the effects of the uncer-
tainty of perishability rate on the performance of the inventory
system.

2.1. Robustness of perishable inventory control methods
and their optimization

Increasing uncertainty of logistic and production processes ini-
tiated the rapid development of approaches to ensure system
robustness. Authors from [25] develop a robust proportional-
integral-derivative (PID) tuning model based on simulation-
optimization and computational intelligence methods which
provide insensitivity to variability (e.g. demand variability).
They combine surrogate techniques and evolutionary algo-
rithms to decrease the level of computational complexity in the
tuning of PID controller. In turn, a new optimal model-based
sliding mode controller dedicated to the perishable inventory
system is presented in [26] which provides a fast reaction to the
unknown disturbance, e.g. customer’s demand, ensures limited
and smooth orders, and reduces the holding and operating costs.

In [27] new robust approach is proposed which is based on
classical order-up-to policy including various demand uncer-
tainty using robust dynamic programming approaches. What
is more, the solution approach provides optimality of the re-
sults and stable changes in costs in case of demand variability.
The problem of uncertainty in the decay of raw material is ad-
dressed in [15], where methods of robust optimization are ap-
plied. Moreover, multi-objective algorithms are recommended
for more efficient optimization performance (shorter time of
computations), which is utilized in this research.

Optimization of the inventory systems is presented in e.g.
[28–31], which are used only for control parameters tuning, re-
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gardless of possible uncertainties inclusion in the optimization
process, and robust optimization. The robust approach facili-
tates minimizing the possible loss for a worst-case scenario ap-
proach that provides the feasibility of the solutions for all pos-
sible values of the uncertain parameters included in the uncer-
tainty set [32, 33]. The research in [34]] consists of bi-criterial
optimization using two criteria: customer service level (SL) and
overall holding cost (HC) and evolutionary algorithm: NSGA-
II to improve the distribution of the product in a specific type of
logistic systems network (mesh-type).

2.2. Artificial intelligence methods used for the perishable
inventory control problem

In the recent decade, there is a significant increase in the pop-
ularity of neural network techniques applied to inventory con-
trol [35]. The most popular application of neural networks in
the inventory control system is demand prediction as in [36,37].
The most popular model of neural network used for inventory
control is the backpropagation neural network. In [38] an online
neural network controller that optimized a three-stage supply
chain is developed which means that the weight tuning process
is a continuous optimization problem in which a backpropaga-
tion (BP) algorithm is applied. However, the standard BP algo-
rithm has inherent disadvantages such as slow convergence, the
problem of converging to a local minimum, a complication of
the system, and random network structure selection. Trying to
overcome these difficulties, researchers develop different im-
proved BP neural network models [35]. In [35] improved BP
algorithms have an advantage both in convergence and predic-
tion accuracy in comparison to the existing approaches. To im-
prove neural network control, the application of evolutionary
algorithms becomes more popular. One of the solutions exist-
ing in the literature is genetic algorithm-based learning. In [39]
is shown that artificial neural networks combined with genetics
for a variety of complex functions can achieve superior opti-
mization solutions when compared with BP. Comparing the BP
and genetic algorithm (GA), it can be observed that BP moves
from one point to another whereas the GA searches the weight
space from one set of weights to another set in many direc-
tions simultaneously which increases the chance of reaching the
global minimum. A more effective process of weights tuning is
achieved in [40] where a method that combines BP and GA
for the learning process is presented. The combination of neu-
ral network and fuzzy logic is also a presence in the literature
on inventory control [41] where a two-layered feed-forward
with a backpropagation learning algorithm is used. In the re-
search [40] the genetic algorithm is used to train the weights
of the neural network which significantly improves the perfor-
mance of the system. However, there is still a gap in the applica-
tion of these methods to uncertain inventory control problems
with perishable products. There are still few studies on con-
trol systems and optimization approaches to deal with uncertain
perishable inventory systems.

2.3. Contribution of this study
The review of the pertinent literature implies that there is a lot
of research on designing control policies with the application to

inventory systems. Most of the work focus on investigating ob-
taining an optimal performance with a view to possible demand
deviations. In addition, a few pieces of research devote study to
developing new approaches for handling the uncertainty of per-
ishability processes. Through the review of these papers, it was
found that there is no comprehensive solution for the determi-
nation of the optimal quantity of orders in perishable inventory
systems affected by uncertain perishability rates. Therefore, de-
signing the approach to resolving this matter is a contribution to
the current state of the art. The main contribution of this study
is the application of the neural network controller and robust
multi-objective optimization to the problem of uncertain per-
ishable inventory system control. The main task of the designed
controller is to calculate order quantity such that the customer’s
demand is satisfied without holding the excess stock.

According to the literature, a lot of new approaches, and
methods are designed for inventory systems without perishabil-
ity and there is a research gap in the research of new methods
which have application in perishable inventory systems. As it
can be noted, there is a lack of work that considers process per-
ishability. Hence, what differentiates this work from the previ-
ous studies is the development of an approach for optimal con-
trol of perishable inventory systems with uncertain perishabil-
ity processes, which is based on Weibull distribution and neural
network controllers. In contrast to earlier results devoted exclu-
sively to the inventory control systems, in this paper control ap-
proach for perishable inventory with uncertainty is developed.
In order to verify our approach usability, simulation research
with a wide range of initial conditions is conducted. To the best
of our knowledge, works [15, 16] as the only two of the few
which have included uncertainty of perishability in the perish-
able inventory model. According to the conclusion in [15] in
this work it is decided to use NSGA-II for optimization in or-
der to shorten the computational time. We also assume a ran-
dom lifetime of perishable products, which is still less studied
than fixed-lifetime perishability and non-perishable products.
Our approach provides robustness for the uncertain character
of the perishability process and the generated order signal is
finite and stable.

3. AN INVENTORY MODEL WITH PERISHABLE
PRODUCTS

3.1. Preliminaries
Let us consider the nonlinear, discrete-time perishable inven-
tory with random lifetime products proposed in [24]. The con-
sidered class of inventory system assumes that stored products
have a limited shelf-life. The main purpose of the inventory sys-
tem is to satisfy customer demand and optimize the stock lev-
els and losses due to perishability. The model fundamentals are
based on the following assumptions:
1. The inventory system considers a single item only.
2. A review period is constant and equals one day.
3. Lead time is deterministic and positive and equals s days

(s > 0).
4. Shortages are allowed but are not backlogged. Excess de-

mand is lost.
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5. There is only one stocking point in each period k.
6. Demand is a time-varying function.
7. The maximum shelf-life l is fixed and known a priori. Lost

units are not replaced.
8. Items deteriorate according to a variable rate. The Weibull

distribution is used to represent the distribution of the time
to deterioration. It is assumed that after a period of l days
distribution function is almost equal to 1. It means that the
error resulting from the assumption of a finite time horizon
is negligible.

9. The part of a new batch of products entering the inventory
could spoil during the transport.

10. The products are sold according to FIFO policy.

3.2. Notation
The variables used in the model are presented in Table 1.

Table 1
Applied notation

Symbol Definition

N The length of the simulation horizon

k ∈ {1,2, . . . ,N} Discrete-time

l The maximal lifetime of the item

i ∈ {1,2, . . . , l} The index of state variables

s Deterministic lead time

dmax The maximum demand in one period k

wi Perishability coefficients

x(k) The vector of state variables

y(k) Inventory level (on-hand stock)

u(k) Order quantity

F(p,γ,λ ,β )
The cumulative distribution function of the
Weibull distribution

λn
The nominal value of scale parameter λ from
the Weibull distribution

λ∆

The perturbated value of scale parameter λ

from the Weibull distribution

∆ Perturbation

z(k) The aggregated amount of perished product

zi(k) The sum of perished product

d(k) Aggregated demand

di(k) Demand for a product of age i

h(k) The aggregated amount of sold product

hi(k) The sold product of age i

n Number of neurons in the hidden layer

v The vector of network weights

a j The activation function in the first layer

e The activation function in the second layer

c j The transformation function in the second layer

3.3. The applied model – in brief
The model reflects the real processes in the inventory system
with perishable products. The main goal of every inventory sys-
tem is to satisfy customer demand. In order to maintain high

customer service and minimize the on-hand stock, the replen-
ishment orders must be just in time delivered. It is important
to note that the orders arrive in the inventory after lead-time
denoted as s. It means, that applied control input makes an im-
pact on the system after the period s. It makes these systems
much more different from the classical systems. The dynamics
of the system are influenced by the on-hand stock and work-in-
progress orders. However, the demand does not affect the dy-
namics and is modelled as an unknown a priori, bounded func-
tion of discrete time 0 ≤ h(k) ≤ d(k) ≤ dmax. There is full de-
mand satisfaction when the number of sold products h(k)∈R≥0
is equal to the current demand d(k) ∈ R≥0, h(k) = d(k) The
maximum value of imposed demand for products per k period
is constrained by dmax ∈ R≥0. The general description of the as-
sumed inventory system is that: (a) the orders are generated in
regular intervals on the basis of the on-hand stock quantity y(k),
work-in-progress deliveries xi(k), where i = {1,2, . . . ,s− 1}
and expected demand d(k), (b) the products are sold accord-
ing to FIFO issuing policy, (c) products ages according to
Weibull distribution. Total demand consists of a sum of de-

mand for products characterized by age i : d(k) =
l

∑
i=1

di(k). In

this model, i represents the age of products, e.g. i = 1 means
that d1(k) ∈ R≥0 is the demand for the freshest products avail-
able in the inventory. The total number of the sold product is

given by h(k) =
l

∑
i=1

hi(k), where hi(k) ∈ R≥0 – sold products

of age i. As inventory systems become more complex, repre-
senting them with differential equations or transfer functions
becomes highly advanced. Considering that, for efficient im-
plementation in Matlab and on computing server, the model is
formulated using a state-space approach. State-space represen-
tation of this system is given by l equations



x1(k+1) = (1−w1)u(k),

x2(k+1) = (1−w2)(x1(k)−h1(k)) ,
...

xl(k+1) = (1−wl)(xl−1(k)−hl−1(k)) .

(1)

State variable xi(k)∈ R≥0 keeps the information about products
quantity of age i. Items start to deteriorate during transport to
the inventory. Order quantity u(k) is a positive and real num-
ber. Perishability coefficients wi ∈ 〈0, 1〉 of product of age i are
provided by the Weibull distribution function

wi =


F1 i = 1,
Fi−Fi−1

1−Fi
i = 2,3, . . . , l,

1 i = l +1.

(2)

Assuming that the inventory deterioration rate follows
a Weibull distribution, its cumulative distribution function can
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be presented in the following form

Fp = F (p,γ,λ ,β ) =

0 p ∈ 〈1,γ〉,

1− e(
p−γ

λ
)

β

p ∈ (γ, l〉,
(3)

where β > 0 is the shape parameter, λ > 0 is the scale param-
eter, γ > 0 is the location parameter defining the beginning of
deterioration, p is the time of deterioration. On-hand stock is
a sum of the products stored to the inventory with different age

i which can be described as y(k) =
l

∑
i=s

xi(k). The products are

sold according to FIFO policy, e.g. the oldest products, that is,
the quantity with the highest i, is consumed first. In order to
preserve the inventory processes, the following inequality must
be met y(k)− h(k) ≥ 0. It means that the system cannot sell
more units than available on-hand stock. Perishability process
of products for each moment k and age i is given by l+1 equa-
tions 

z1(k) = w1u(k),

z2(k) = w2 (x1(k)−h1(k)) ,
...

zl+1(k) = wl+1 (xl(k)−hl(k)) .

(4)

Products perish according to Weibull distribution what means
that perishability can occur for every group of products (accord-
ing to age i). For a general overview of the quantity of prod-
ucts losses, the sum of perished quantities of ages i is given as

z(k) =
l+1

∑
i=1

zi(k).

4. NEURAL CONTROLLER FOR PERISHABLE INVENTORY
Artificial neural networks consist of the number of connected
neuron cells with weights imitating the real processes which
occur in brains. The main goal of this work is to develop a ro-
bust neural network controller for uncertain perishable inven-
tory systems in order to optimize the performance of this sys-
tem using multicriteria optimization. The developed neural net-
work controller consists of three layers: input, hidden, and out-
put layer. It is assumed that the developed network has one hid-
den layer which has n neurons. The hidden layer has the sat-
urating linear transfer function (satlin) whereas on the output
layer is a positive linear transfer function (poslin). The applied
structure of the neural network is depicted in Fig. 1.

The input of the neural network controller is the state vector
x(k)∈R≥0, which is the number of products on every shelf – the
shelf represents the age of the product. The output of the neu-
ral network is the control signal u(k) ∈ R≥0, which is the order
quantity generated in order to satisfy the demand d(k) ∈ R≥0.
The applied structure is a feed-forward network, in which the
activation functions a j, e, and transformations c j and u occur.
Based on the current stock age and work-in-progress deliveries,
the controller can generate the optimal order quantity for each
day k. The weights are the elements of vector v. Neural network

Fig. 1. The applied structure of the neural network controller

learning is conducted for constant demand value d(k), which
is 1 unit per day. However, for simulation purposes, the de-
mand scaling is proposed, which provide the proper controller
behaviour for different value of demand than 1.

5. LEARNING USING MULTICRITERIA OPTIMIZATION
For the tuning of the neural network weights, multicriteria opti-
mization is applied. First, the proper optimization criteria have
been formulated. The first criterion is describing the number of
lost sales due to stock shortages

Jh =
N

∑
k=s+1

(d(k)−h(k)) . (5)

As a second criterion for optimization, the surplus of stock over
demand is considered

Jy =
N

∑
k=s+1

m(k), (6)

where

m(k) =

{
y(k)−d(k) for y(k)≥ d(k)∧_y(k)≤ d(k),

0 otherwise.
(7)

The inequalities in the above relationship (7) eliminate the
penalty for the stock which results only from the initial condi-
tions x0. In other words, the penalty begins to be counted when
the quantity of products from the initial vector is consumed.
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To be more precise, if a free response (response for initial con-
ditions without any orders) _y(k) of the system is equal to or
smaller than the current demand and there is a surplus in stock,
the cost criterion is nonzero. Otherwise, the shortages caused
by initial conditions do not increase the criterion (6). It is im-
portant to note, that the free response of a system is when the
input is zero – when the controller does not generate non-zero
results.

Formulated criteria can be written as the following vector:

J =
[
Jh, Jy

]
. (8)

For a given nonlinear model of the uncertain, perishable inven-
tory system (1)–(4) and the formulated cost vector (8), the op-
timization task can be defined as follows:

min
v

max
∆

J (v,x0,∆)

s.t. −δ ≤ ∆≤ δ ,
(9)

where v is the vector of network weights.
The optimization process is depicted in Fig. 2.

Fig. 2. The structure of conducted optimization process

The process of system optimization starts with the meta op-
timization task. Meta-optimization is used to choose an opti-
mal number of neurons in the hidden layer. It is assumed that
for meta optimization the 5 different numbers of neurons are
considered n = {1,2,3,4,5}. Next, after choosing the number
of neurons n, the learning process of the neural network con-
troller begins. For the learning process, the learning set of the
initial state vectors for the inventory model is generated using
a set of random numbers. The learning set consists of different
inventory states. Taking into consideration the whole range of
assumed initial conditions, the sum of the inventory costs (8)
is calculated. In this way, the performance of the controller is
evaluated not only based on one single case but on a variety
of cases. The main goal of the optimization is to minimize the
shortage and holding costs. Due to uncertainty in real processes,
the next step is highly necessary. In order to make the system
more robust for the uncertainty, the robust optimization process

is included. In this study, we apply the minimax decision rule
which the main goal is to minimize the possible loss for a worst-
case scenario. In this research, a worst-case scenario is the max-
imum value of criteria (8) obtained for a system with uncer-
tainty. For robust optimization, the uncertainty of process per-
ishability is considered, more specifically the scale parameter λ

of Weibull distribution is perturbated. The value of λ determi-
nates the speed of perishability, for example, decreasing value
of lambda means that products deteriorate faster. Based on the
minimax decision rule, the weights of the designed controller
are optimized NSGA-II. The optimization is conducted with the
use of parallel calculation mode in Matlab. The stopping crite-
rion is the maximal number of generations which equals 4000.
The population size is 2000 individuals.

6. SIMULATION STUDY
The simulation research consists of three parts. The first one
compares the optimization performance of controllers for the
selected number of neurons in the hidden layer and the uncer-
tain character of the perishability process. In the second stage,
the testing of learning is conducted – the solution front is gener-
ated for different initial conditions of the inventory model. The
learning set consists of 180 different inventory states. The third
research is focused on the comparison between non-robust and
proposed robust systems.

The system parameters are set in the following way: re-
view period 1 day, delivery delay 3 days, perishability hori-
zon 7 days, simulation horizon 8 days, adopted issuing policy
is FIFO. The selected type of perishability is random lifetime
perishability and is modelled by three-parameter Weibull dis-
tribution. For simplification purposes, after l days the whole
batch of products perish, but not all at once. In more detail,
during the storing period, the product quality worsens on daily
basis according to Weibull distribution. It is assumed that the
process of goods perishability is affected by unknown pertur-
bation, bounded by ∆, such that |∆| ≤ δ . The scale parameter
λ∆ of the Weibull distribution is uncertain which is a sum of
a nominal value of the scale parameter λn = 5 and perturbation
∆. It is assumed that the demand scenario is constant and there
is uncertainty about the perishability process in the inventory.
The initial conditions of the state vector x0 are generated using
random numbers in the range (0, 2) containing 180 different
inventory states in total.

6.1. Result of the learning process for neural network
controllers

In this subsection, the results of the learning process are pre-
sented. The learning process is conducted with the use of the
selected structure of a neural network, evolutionary algorithm,
and bicriteria optimization. The used structure of a neural net-
work is presented in Fig. 1 (in the previous section). For learn-
ing the optimization criteria are defined (5)–(6) and NSGA-II
is used.

In Fig. 3, there is obtained Pareto front for the different num-
ber of neurons in the hidden layer n ∈ {1, 2, 3} and different
values of perturbation ∆ ∈ {0,0.2,0.5,1}.
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Fig. 3. Pareto fronts of results obtained for NN controllers and
uncertain inventory model for selected values of perturbation –

learning stage

It can be seen that the controller with 1 neuron in the hidden
layer is dominated by solutions for n ∈ {2, 3} all considered
perturbations ∆. Secondly, the results for n ∈ {2, 3} are similar
for no perturbation and small perturbation range ∆ ∈ {0, 0.2}.
The advantage of structure with three neurons is visible for the
highest perturbations values, in particular, the difference is the
most significant for ∆ = 1. For detailed analysis, in Table 1
the value of the hypervolume indicator (HV) for the obtained
Pareto front is shown – the reference point for HV calculation
is (0.1, 0.2).

Table 2 shows that without perturbation there is no difference
between n = 2 and n = 3, which is consistent with the Pareto
front analysis. Moreover, it can be noted, that the best value of
HV is achieved for n = 3 for the highest value of perturbation
∆ = 1. It is important to note that the higher the HV, the closer
the solution to the optimal point.

Table 2
HV values for the selected number of neurons and perturbation

for a reference point (0.1, 0.2) – learning stage

Number of neurons ∆ = 0 ∆ = 0.2 ∆ = 0.5 ∆ = 1

n = 1 0.679 0.645 – –

n = 2 0.998 0.991 0.951 0.834

n = 3 0.998 0.991 0.935 0.862

Furthermore, we compare the HV calculated for the Pareto
fronts achieved by NN based controller and one of the classical
ordering policies known as the order-up-to policy. Based on the
papers [42, 43], it is assumed that the OUT controller can be
described by the following equation

u(k) =


(yOUT− y(k)−WIP(k))d(k),

for yOUT > y(k)+WIP(k),

0 otherwise,

(10)

where yOUT is the order-up-to level, and WIP(k) represents the
placed but not yet completed orders due to the occuring delays.

For comparison of purpose parameters, the OUT controller
has been computed using multiobjective optimization as for the
NN-based controller. The assumed reference point for HV cal-
culation is (0.1, 3). The obtained results for the zero perturba-
tion case (∆ = 0) show that HV is about 42% smaller than for
the NN-based controller with two neurons. It means that the
NN-based controller significantly improves quality indicators
both in terms of shortages and holding costs in comparison to
the OUT controller.

6.2. Testing of optimized control system structures
In the next stage, the testing for the different seeds of random
initial conditions that are used for learning is performed. As
quality indicators, HV and average absolute deviation (AAD)
between solutions obtained for the learning and testing stage, is
used. Firstly, the HV values for one reference point (0.1, 0.2)
for all considered controllers are presented in Table 3.

Table 3
HV values for the selected number of neurons and perturbation

for a reference point (0.1, 0.2) – testing stage

Number of neurons ∆ = 0 ∆ = 0.2 ∆ = 0.5 ∆ = 1

n = 1 0.694 0.631 – –

n = 2 0.997 0.989 0.931 0.780

n = 3 0.996 0.989 0.911 0.825

Judging by the HV values, the same relationship as in
the learning stage is observed. For smaller perturbations ∆ =
{0, 0.2} the difference between n = 2 and n = 3 is merely visi-
ble. The only increasing value of perturbation ∆ = {0.5, 1} re-
sulted in gaining a significant advantage of n = 3. In order to
see the individual differences between obtained results, Fig. 4
presents the summarized comparison of HV for the learning and
testing stages.

Fig. 4. The value of HV – comparison of the results for learning and
testing stages

In Fig. 4, there are HV values for the different number of
neurons in the hidden layer and different values of perturbation
in the perishability process. First, the worst performance is for
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n = 1, because it achieves the lowest value of HV for the se-
lected two perturbation values ∆ = 0 and ∆ = 0.2. It is assumed
that for n = 1 highest values of perturbation are not taken into
consideration. This is because the controller with one neuron in
the hidden layer is not able to find satisfactory results for this
system. The best value of HV is achieved assuming n = 2 and
n = 3 for the system with no perturbation (∆ = 0), for n = 2,
n = 3 for small perturbation (∆ = 0.2). The significant advan-
tage of n = 3 begins to be visible for high perturbation val-
ues (∆ = 1). Secondly, the achievements of the learning process
are analyzed using the testing process. Therefore, the average
ratio of the HV for testing to the HV for learning is equal to
98.6 % for all selected neural network structures and perturba-
tions. Furthermore, it can be seen that the higher the perturba-
tion value ∆, the more significant differences between the HV
for the learning and testing stages. The worst learning effective-
ness among considered cases is for n = 2 and the perturbation
∆ = 1 – 93.8%.

Secondly, let us look at the sets of solutions obtained in the
testing stage. Figures 4(a)–(f) and 5(a)–(d) show the compari-
son plots for low perturbations ∆ = {0, 0.2} and high perturba-
tions ∆ = {0.5, 1}.

Judging by the results depicted in Fig. 6, the set of solutions
obtained in the testing phase is similar to the one achieved in the

(a) (d)

(b) (e)

(c) (f)

Fig. 5. Set of solutions obtained for NN controllers and uncertain
inventory model for low values of perturbation {0.5,1}

learning stage, but some deviations occur. In order to quantify
these deviations, two indicators are used – the hypervolume per-
centage difference (HVD) between HV values for the learning
and testing stage and AAD. In Table 4 a simple summary of the
hypervolume percentage differences between learning and test-
ing sets is provided. The HVD and AAD values are calculated
taking into account marked reference points in Figs. 5 and 6.

(a) (b)

(c) (d)

Fig. 6. Set of solutions obtained for NN controllers and uncertain
inventory model for high values of perturbation {0.5,1}

Table 4
HVD between solutions sets for learning and testing for the selected

number of neurons and perturbation

Number
of neurons

Uncertainty

∆ = 0 ∆ = 0.2 ∆ = 0.5 ∆ = 1

n = 2 0.1% 4.6% 5.0% 6.3%

n = 3 7.1% 5.4% 7.1% 4.4%

Taking into consideration only the cases with uncertainty in
the inventory system, the lowest value of the HVD – is for n =
3, ∆ = 1 – the advantage is equal to 1.9% in comparison to
the result for n = 2. It means that solutions obtained for n =
3 provide the best set of solutions in the testing stage relative
to the learning set. For presented perishable inventory system
with uncertainty, three neurons in the controller structure cause
that system can learn more effectively than the system with two
neurons.

Moreover, the AAD values (Table 5) indicate that for the
small perturbations there is no significant difference between
obtained results for n = 2 and n = 3.

The following relationship is visible: the highest the uncer-
tainty, the more significant the difference between AAD for
n = 2 and n = 3. For the highest perturbation ∆ = 1, the n = 3
controller provides a smaller AAD than for n = 2. On the other
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Table 5
The average absolute deviation between solutions obtained after learn-

ing and testing for the selected number of neurons and perturbation

Number of neurons
Uncertainty

∆ = 0 ∆ = 0.2 ∆ = 0.5 ∆ = 1

n = 2 0.009 0.011 0.041 0.094

n = 3 0.007 0.013 0.053 0.068

hand, the controller with two neurons gives better results for
∆ = {0.2,0.5} which are lower than a three-neuron case by
about 20%. However, the controller with 3 neurons achieves the
best effectiveness of the learning process for ∆ = 1 because the
testing set deviates about 30% less from the learning set than
for n = 2.

6.3. Comparison of the robust and non-robust neural
network controller

In order to verify the proposed robust controller, numerical sim-
ulations of the perishable inventory flow process have been per-
formed. In Fig. 7, the specific points are selected to analyze the
time responses of the designed controllers.

Fig. 7. Selected points from the Pareto fronts of results obtained for
NN controllers and uncertain inventory model for selected values of

perturbation at the learning stage

The points are selected using the following criteria: (a) 1%
average of shortages, (b) 1% average of excess stock, (c) 10%
average of excess stock – in the whole range of initial condi-
tions x0. It is important to note that Jh and Jy are calculated
in these cases on which the controller has an impact. In detail,
the controller does not have an impact on the initial conditions
x0 so the criteria are calculated apart from the impact of the
initial conditions x0 which is reflected by equations (5)–(7). In
Table 6, there are the symbols of marked points from Fig. 7
and the average of optimization criteria (5)–(6) obtained in the
learning process for a certain value of perturbation ∆.

As we can see, the values of cost functions are the smallest
for the controller n = 3. The difference in shortage costs Jh be-
tween robust systems increases about 20% for (c) than for (b).
For the purpose of an analysis of the controller performance,

Table 6
Selected points and cost function values for assumed cases

Case Point J1 J2

(a)
Jh = 0.01

P211
P312
P303

0.010
0.010
0.010

0.100
0.080
0.000

(b)
Jh = 0.01

P302
P313
P212

0.000
0.045
0.050

0.010
0.010
0.010

(c)
Jy = 0.1

P311
P211

0.004
0.010

0.100
0.100

one case of initial condition x0 is selected based on the maxi-
mal difference between values of criterion Jh for a non-robust
(NC) and robust system (RNC). In order to compare the per-
formance of the selected case, the time plots for case (a) are
presented (Figs. 8 and 9).

In Fig. 8, it can be seen that the non-robust system (learned
without perturbation δ = 0 – marked as NC) orders the smallest

(a) λ = 4

(b) λ = 6

Fig. 8. Order quantity of three systems for chosen initial conditions
x0, constant customer service level (Jh = 0.01), perishability parameter
λ = {4,6}, and two or three neurons in the neural network n = {2,3}
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(a) λ = 4

(b) λ = 6

Fig. 9. Time plots (h(k) – sold goods, y(k) – inventory level) of three
systems for chosen initial conditions x0 (maximal difference on Jh),
constant customer service level (Jh = 0.01), perishability parameter
λ = {4,6}, and two or three neurons in the neural network n = {2,3}

amounts of products in the two first-time moments k = {1,2}.
From the third day, the non-robust system orders the same quan-
tity on the whole simulation horizon for λ = 4, for λ = 6 it de-
creases slightly after k = 5. Moreover, the controller with two
neurons (n = 2) starts with the highest order quantity and af-
ter k = 5 maintains high orders. Figure 8a shows that the ro-
bust network controller (learned including perturbation δ = 1
– marked as RNC) for n = 3 provides total demand fulfilment
(without shortages), whereas the NC, n = 3 system achieves
about 5% loss in sales. The RNC, n = 3 thanks to maintaining
about 4% higher stock can flexible response to the uncertain
character of the uncertain process. The robust controller with
two neurons keeps about 6% higher stock than the controller of
n = 3 (Fig. 9). What is more, two considered closed-loop sys-
tems states converge in finite time (about 8 steps). These results
suggest that the proposed robust optimization approach with the
uncertainty set is effective in dealing with perishability distri-
bution uncertainty. What is important, the robust system keeps

the higher stock only for one period, and when demand is sta-
ble, the system keeps the smallest possible stock, which can be
seen starting from k = 6.

Finally, in order to show the superiority of the robust con-
troller for n = 3, the simulations for the test set of initial con-
ditions x0 are performed. In detail, the solutions in the objec-
tive space are generated using obtained weights from the learn-
ing process from section A. Two types of controllers: NC and
RNC are simulated for the same value of perturbation. It is as-
sumed that the perturbation of the perishability process is equal
to ∆ = 1, where the nominal value of the scale parameter is
λn = 5. Instead of picking a single scenario of initial condi-
tions like in section C, the test set of 180 initial conditions is
taken into consideration. For the purpose of the testing phase,
the new set of initial conditions x0 is generated with the same
distribution as in the learning phase but with a different seed.
The obtained solutions sets are depicted in Fig. 10.

Fig. 10. Solution space for the neural controller and robust neural
controllers for the test of the set initial conditions x0

As can be seen from Fig. 10, the best results are for robust
neural controllers in the majority of the time horizon. The RNC,
n = 3 provides about 18% higher quality of solution space in
terms of HV than for NC, n = 3. It means that RNC, n = 3
can minimize the uncertainty of perishability more effectively,
especially for the solutions of the smallest value of shortage
cost, i.e. Jh < 0.02. Among robust controllers, the RNC, n = 3
achieves about 5% higher HV than RNC, n = 2 which shows
that the controller with a three-neuron system is more robust
than the two-neuron controller. Consequently, in the case of
significant perturbation, i.e. ∆ = 1 RNC, n = 3 can crucially
maintain less stock providing higher demand satisfaction at the
same time. This also means that for robust systems there are
smaller losses due to product perishability.

7. CONCLUSION
Improving the approaches of goods flow in the production-
logistic systems is highly desirable in nowadays industry, which
makes the research on inventory control approaches of utmost
importance. Not only does the proposed solution reduce the
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costs but also provides robustness for the uncertain character of
perishability. We show that a robust neural network controller,
especially for n = 3, exhibits improved performance compared
with the classical neural controller and robust neural controller
with a lower number of neurons in the hidden layer. This work
also shows that multicriteria optimization can be used for neu-
ral network optimization in the problem of perishable inven-
tory control. What is important, this is evident that the con-
troller with three neurons limits the stock and provides full de-
mand satisfaction at the same time. The research shows that the
cost performance obtained by applying the robust state-space
controller to the model with uncertain parameter λ is superior
to the non-robust controller. It is found that a robust system
can achieve about 18% better solutions than the non-robust ap-
proach in terms of hypervolume indicators. Our proposed so-
lution approach provides formal ground for real-life inventory
optimization and can improve warehouse management systems
to make ordering decisions under perishability uncertainty. Fur-
thermore, the approach can be also adopted for inventory sys-
tems with multiple items.

Further research should focus on a perishable inventory
model with two uncertainties such as lead-time, demand, and
development of the proposed approach to perishable inventory
system optimization.
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