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Abstract: The problem of outlying observations is very well-known in the surveying data
processing. Outliers might have several sources, different magnitudes, and shares within
the whole observation set. It means that it is not possible to propose one universal method
to deal with such observations. There are two general approaches in such a context: data
cleaning or robust estimation. For example, the robustM-estimation has foundmany practical
applications. However, there are other options, such as R-estimation or the absolute Msplit
estimation. The latter method was created to be less sensitive to outliers than the squared
Msplit estimation (the basic variant of Msplit estimation). From the theoretical point of view,
the absolute Msplit estimation cannot be classified as a robust method; however, it was
proved that it could be used in such a context under certain conditions. The paper presents
the primary comparison between that method and a conventional robust M-estimation. The
results show that the absolute Msplit estimation predominates over the classical methods,
especiallywhen the percentage of outliers is high. Thus, thatmethodmight be used to process
LiDAR data, including mismeasured points. Processing synthetic data from terrestrial laser
scanning or airborne laser scanning confirms that the absolute Msplit estimation can deal
with outliers sufficiently.

Keywords: laser scanning, robust estimation, M-estimation, absolute Msplit estimation

1. Introduction

The problem of outlying observations is well-known in the geodetic data processing.
It is no doubt that outliers might disturb the estimation of the parameters of the ob-
servation models. It is essential to realize that outlying observations might occur, and
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their sources can be different. Usually, we simply define the concept of an outlier as an
unknowingly occurring gross error in an observation. However, in some modern mea-
surement techniques such as GNSS positioning and LiDAR, outliers might result from
their own specific mostly known characteristics (e.g., Baselga and García-Asenjo, 2008;
Carrilho et al., 2018). In the latter groups of techniques, including airborne laser scanning
(ALS) or terrestrial laser scanning (TLS), some points might be “mismeasured.” Namely,
such points might not concern the surface we are interested in but other structures or
obstacles (e.g. Carrilho and Galo, 2019; Wyszkowska et al., 2021). Several approaches
or methods have been elaborated to cope with outlying observations, considering their
different sources, magnitudes, or percentages of outliers in the observation set. The first
approach is based on the application of several statistical tests to flag outliers and finally,
remove them from the observation set (e.g., Baarda, 1968; Pope, 1976; Lehmann, 2013a,
2013b; Hekimoglu et al., 2015; Duchnowski and Wyszkowska, 2022). In such a case,
we just ignore the observations suspected to be affected by gross errors. The second
approach to outliers is the application of the robust estimation methods. One should list
several methods that belong to the class of robust M-estimations concerning geodetic
applications. The most popular methods are the Huber method, the Tukey method, the
least absolute deviation method (LAD), the Danish method, IGG scheme (Xu, 1989;
Yang, 1994; Hekimoglu and Berber, 2003; Chang and Guo, 2005; Wyszkowska and
Duchnowski, 2020b). In some applications, one can also consider R-estimation usage
(Kargoll, 2005; Duchnowski, 2013). There are also other possible methods, which are
not listed above. Here one could mention a modern estimation method called Msplit
estimation introduced in Wisniewski (2009). Generally, such a method was developed
to process heterogeneous observation sets, not to deal with outliers. However, it could
also be applied in selected problems as a robust estimation method thanks to its gen-
eral features (Li et al., 2013; Duchnowski and Wisniewski, 2020). In such a case, the
method is often modified by applying the additional (virtual) functional model that is
meant to “collect” outliers (Zienkiewicz, 2015). Such an approach can provide correct
results, but under some specific assumptions concerning location of outliers, hence, it
is not universal (Wyszkowska, 2021). The problem is that the basic Msplit estimation
variant, namely the squared Msplit estimation, cannot be classified as a method robust
against outliers (Duchnowski and Wisniewski, 2019, 2020). Thus, this paper focuses
on another Msplit estimation variant, namely the absolute Msplit estimation, in which
the influence functions are derived from the influence function of LAD method. The
empirical tests showed that it made the estimates robust to gross errors of a moderate
magnitude (Wyszkowska and Duchnowski, 2019). Thus, the main aim of the paper is to
compare results of the absolute Msplit estimation with basic M-estimations, and to show
its applicability in the processing observation sets including outliers, especially TLS
measurements.
The paper is organized in the following way: Section 2 introduces the methods

applied,
Section 3 presents basic empirical tests of robustness in the case of the univariate

model, Section 4 shows processing the simulated TLS data in determining one or two
surfaces. Section 5 sums up the tests and conclusions.
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2. Methods and general assumptions

Let us consider the conventional functional model of geodetic observations in the fol-
lowing linear form:

y = AX + v, (1)
where: y = [𝑦1, . . . , 𝑦𝑛]𝑇 is an observation vector, v = [𝑣1, . . . , 𝑣𝑛]𝑇 is a vector of
random errors, X = [𝑋1, . . . , 𝑋𝑚]𝑇 is a parameter vector, A is a known rectangular
matrix of size 𝑛 × 𝑚; here, it is assumed to be full column rank. We assume that the
expected value 𝐸 (y) = A X and all observations are of the same accuracy. Hence, the
weight matrix of observations is equal to the identity matrix (P = I). Then, the least
squares (LS) estimate of the parameter vector is given as:

X̂𝐿𝑆 =

(
A𝑇 A

)−1
A𝑇 y. (2)

A similar formula could apply to M-estimation leading to the following form of M-
estimator of the parameter vector:

X̂𝑀 =

(
A𝑇 W A

)−1
A𝑇 W y, (3)

where: W is a diagonal matrix of the weights for which [W]𝑖𝑖 = 𝑤 (�̂�𝑖), 𝑤 (�̂�𝑖) is
a respective weight function related to the particular M-estimation variant, �̂�𝑖 is the
standardized error of the 𝑖th observation, [◦]𝑖𝑖 is the 𝑖th diagonal element of the matrix.
The respective M-estimates are computed in the iterative process, which ends when
the parameter vector is no longer changing between the iteration steps. Such a solution
refers to the iteratively reweighted least squares (IRLS); however, other solutions of
the optimization problem, such as the Newton-Raphson method, are also possible (e.g.
Amiri-Simkooei, 2003; Wisniewski, 2009; Wyszkowska and Duchnowski, 2019).
Several different weight functions can be applied in Eq. (3). Here, we consider two

weight functions that are popular in geodetic applications and differ in general features.
The first weight function refers to the Huber method and can be written as follows (e.g.
Gui and Zhang, 1998; Baselga, 2007; Ge et al., 2013):

𝑤𝐻 (�̂�𝑖) =

1 for |�̂�𝑖 | ≤ 𝑎,

𝑎

|�̂�𝑖 |
for |�̂�𝑖 | > 𝑎,

(4)

where: 𝑎 is a positive constant (usually assumed between 1.5 and 3.5). We also consider
the Tukey weight function, which has the rejection points in contrast to the Huber weight
function. It can be given as (Gui and Zhang, 1998; Ge et al., 2013):

𝑤𝑇 (�̂�𝑖) =


(
1 − |�̂�𝑖 |2

𝑎2

)2
for |�̂�𝑖 | ≤ 𝑎,

0 for |�̂�𝑖 | > 𝑎,

(5)

where this time, the constant 𝑎 is generally lower than or equal to 6.
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In the case of Msplit estimation, the traditional functional model of Eq. (1) should be
split into two competitive models (Wisniewski, 2009):

y = A X + v ⇒
{

y = A X(1) + v(1) ,

y = A X(2) + v(2) ,
(6)

where:X(1) andX(2) are the competitive versions of the parameter vectorX, v(1) and v(2)
are the competitive versions of the vector of random errors v. Note that it is also possible
to split the conventional model into 𝑞 competitive ones, which lead toMsplit(𝑞) estimation
(Wisniewski, 2010). Considering the absoluteMsplit estimation (here denoted as AMS es-
timation), the competitive versions of parameters are determined by the Newton-Raphson
method in the following iterative process (Wyszkowska and Duchnowski, 2019):

X 𝑗

(1) = X 𝑗−1
(1) + 𝑑X 𝑗

(1) = X 𝑗−1
(1) −

[
H(1)

(
X 𝑗−1

(1) , X 𝑗−1
(2)

)]−1
g(1)

(
X 𝑗−1

(1) , X 𝑗−1
(2)

)
,

X 𝑗

(2) = X 𝑗−1
(2) + 𝑑X 𝑗

(2) = X 𝑗−1
(2) −

[
H(2)

(
X 𝑗−1

(1) , X 𝑗−1
(2)

)]−1
g(2)

(
X 𝑗−1

(1) , X 𝑗−1
(2)

)
,

(7)

where: 𝑑X(𝑙) is an increment to parameter vector, H(𝑙) (X(1) ,X(2) ) are the Hessians,
g(𝑙) (X(1) ,X(2) ) are the gradients, 𝑙 is equal 1 or 2. The Hessians and gradients are
defined in the following way:

H(1)
(
X(1) ,X(2)

)
= 2A𝑇 w(1)

(
v(1) , v(2)

)
A,

H(2)
(
X(1) ,X(2)

)
= 2A𝑇 w(2)

(
v(1) , v(2)

)
A,

(8)

g(1)
(
X(1) ,X(2)

)
= −2A𝑇 w(1)

(
v(1) , v(2)

)
v(1) ,

g(2)
(
X(1) ,X(2)

)
= −2A𝑇 w(2)

(
v(1) , v(2)

)
v(2) .

(9)

The matrices w(𝑙)
(
v(1) , v(2)

)
are computed by applying the respective weight functions:

w(1)
(
v(1) , v(2)

)
= diag

[
𝑤 (1)

(
𝑣1(1) , 𝑣1(2)

)
, . . . , 𝑤 (1)

(
𝑣𝑛(1) , 𝑣𝑛(2)

) ]
,

w(2)
(
v(1) , v(2)

)
= diag

[
𝑤 (2)

(
𝑣1(1) , 𝑣1(2)

)
, . . . , 𝑤 (2)

(
𝑣𝑛(1) , 𝑣𝑛(2)

) ]
,

(10)

where: diag(◦) is a diagonal matrix. The weight functions of AMS estimation are derived
in the following forms (Wyszkowska and Duchnowski, 2019):

𝑤 (1)
(
𝑣𝑖 (1) , 𝑣𝑖 (2)

)
=


��𝑣𝑖 (2) ��
2𝑐

for
��𝑣𝑖 (1) �� < 𝑐,��𝑣𝑖 (2) ��

2
��𝑣𝑖 (1) �� for

��𝑣𝑖 (1) �� ≥ 𝑐,

𝑤 (2)
(
𝑣𝑖 (1) , 𝑣𝑖 (2)

)
=


��𝑣𝑖 (1) ��
2𝑐

for
��𝑣𝑖 (2) �� < 𝑐,��𝑣𝑖 (1) ��

2
��𝑣𝑖 (2) �� for

��𝑣𝑖 (2) �� ≥ 𝑐,

(11)
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where: 𝑐 is an assumed small positive constant. The presented iterative process called the
parallel process and the conventional iterative process, convenient for the squared Msplit
estimation, were addressed in detail in the paper (Wyszkowska and Duchnowski, 2020a).

3. Basic empirical tests

First, let us concern the case of the univariate model; hence, let X = 𝑋 , X(1) = 𝑋(1) ,
X(2) = 𝑋(2) . Here, we assume that 𝑋 = 𝑋(1) = 0 and 𝑋(2) = 5. Let the observation vector
be simulated assuming that observation errors are normally distributed for 𝑁 (0, 1). There
are five observations concerning the location parameter 𝑋(1) and a different number of
observations concerning the location parameter 𝑋(2) : one such an observation inVariant I,
two inVariant II, three in Variant III, four in Variant IV, and five observations in Variant V.
Note that in the classical M-estimation, the latter observation group should be considered
as outliers. In the case of AMS estimation, one has a different attitude. We assume a
priori that there are two observation groups whose location parameters are estimated. In
the paper context, from the two solutions, �̂�(1) and �̂�(2) , we are interested only in the first
one. In this section, we neglect the estimate of 𝑋(2) as describing the location of outliers,
which is out of our interest.
Now, let the location parameter 𝑋(1) be estimated by applying LS, M-estimation

methods, or AMS estimation. We use the following steering parameters: 𝑎 = 2 for
the Huber method, 𝑎 = 6 for the Tukey method, and 𝑐 = 0.001 for AMS estimation. To
describe how the outlying observations influence the estimation results, we simulate 1000
observation vectors. It allows us to compute the Monte Carlo estimate of the location
parameters (as the mean value) and assess the estimation accuracy by calculating the
root-mean-square deviation (RMSD):

Mean
(
�̂�
)
=

1000∑︁
𝑖=1

�̂�𝑖

1000
, RMSD

(
�̂�
)
=

√√√√√√√1000∑︁
𝑖=1

(
�̂�𝑖 − 𝑋

)2
1000

, (12)

where: �̂�𝑖 is the parameter estimate obtained in 𝑖th simulation.
The results are presented in Figure 1. There is no doubt that the outlying observations

disturb estimates of LS and M-estimations. Only in Variant I, the results of the robust
methods are significantly better than the results of LS estimation. The differences between
estimates in question are very small in the other variants, and the effects are unacceptable.
It stems from the fact that the magnitude of the gross errors is not big enough to make
the outliers be detected “easily,” especially when the number of outliers is bigger (see
Variants III–V). In contrast, the results of AMS estimation are similar to each other for
all the variants. They are always better than the results of the other methods, and AMS
estimation predominates over other methods for a growing number of outliers.
The observation sets simulated in the variants at hand seem natural to be processed

by applying Msplit estimation with two competitive split functional models as in Eq. (6).
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Fig. 1. Means and RMSDs for Variants I–V

This is why AMS estimation provides better results than the conventional methods. Let
us now supplement the observation set with an outlier that does not coincide with two
groups of the observations. In each variant, we add one outlying observation simulated
from the uniform distribution in the interval 〈−5, −1〉. Hence, this outlier lies on the
“opposite” side to the second group of observations. Figure 2 presents the results for all
new variants denoted as Variants VI–X.

Fig. 2. Means and RMSDs for Variants VI–X

The additional outlier deteriorates the success of AMS estimation, especially when
we consider the mean value. The results in Variant VI seem the most affected by such
an outlier. Note that we have one group of five observations in this variant and two
outliers lying on the opposite sides of that group. Thus, the AMS estimation algorithm
has a problem with dividing observations into two groups. In Variants VII-X, we have
more observations close to 5; hence, the method has less of a problem with the correct
placement of the location parameter estimates. In those variants,AMSestimation provides
better results than the classical methods. Note that the better results of the conventional
methods in Variants VI-X than in respective Variants I-V result from the placement of
the additional outlier, not from the feature of the methods in question.
The simple tests presented here show that AMS estimation might predominate over

the classical robust M-estimation in the case of a single outlier or when the outliers lie on



Absolute Msplit estimation as an alternative for robust M-estimation 7

the same side of the main group of observations. This conclusion is especially important
for processing TLS data when usually most of the outlying observations are so-called
positive, lying above the surface we are interested in (Carrilho et al., 2018; Wyszkowska
et al., 2021).

4. Processing simulated TLS data

This section focuses on processing LiDAR data. We consider two cases; in the first one,
we process simulated results of scanning a single surface, in the second case – two
surfaces.
Let us consider a terrain profile determined from TLS data by approximation of

polynomials. Of course, it seems that such an assumption is very basic; however, it has
found a practical application. The polynomial approximation of the surface measured
using the TLS technique was used to determine the beam deformation (Cabaleiro et
al., 2015). A similar approach was applied to determine terrain profiles from the real
TLS data (Wyszkowska et al., 2021). Thus, examining such an approach seems to be
advisable from the practical point of view. For the purposes of the paper, we can assume
that the terrain profile of 20 m-long can be approximated well by the polynomial of the
second degree (the theoretical coefficients of the polynomial are accepted as: 𝑐2 = 0.003,
𝑐1 = −0.04, 𝑐0 = 1). It is the base for simulating 100 observations, heights 𝐻𝑖 at the
randomly chosen distances 𝐷𝑖 ∈ 〈0 m, 20 m〉. The observation errors are assumed to
be normally distributed with the expected value of 0 mm and the standard deviation
of 2 mm. We can also imagine that some observations might be affected by gross errors
ranging from +10 to +100 mm. Such outliers simulate mismeasured points, namely
measurements of vegetation cover (shrubs, grass, fallen leaves) or other obstacles in the
TLS data. A detailed description of similar simulations can be found in (Wyszkowska et
al., 2021). The simulated observation sets are presented in Figure 3.
The terrain profile 𝑃 is approximated by applying the estimated polynomial coeffi-

cients. Let them be estimated by the chosen in the previous sectionM-estimation variants,
the Huber and the Tukey methods, and AMS estimation (the values of the steering pa-
rameters remain the same). Note that we consider the split functional model in the case
of AMS estimation; thus, we obtain two competitive solutions. Here, we choose only one
solution, the polynomial whose graph is located lower (Wisniewski, 2009; Wyszkowska
et al., 2021). The general results are presented in panel a) of Figure 4; panel b) presents
the estimated profiles for the chosen interval from 5 to 10 m to underline the difference
between estimationmethods. The best results are obtained for AMS estimation, especially
for the growing percentage of outliers.
To assess the accuracy of the estimated profiles, we use RMSD

(
�̂�
)
in the following

form (Wyszkowska et al., 2021)

RMSD
(
�̂�
)
=

√√√√√√ 𝑛∑︁
𝑖=1

(
�̂�𝑖 − 𝐻𝑖

)2
𝑛

, (13)
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Fig. 3. The simulated observation sets

Fig. 4. Estimated terrain profiles for the Huber, Tukey, and AMS estimates for different percentages of
outliers: for the interval from 0 to 20 m, for the interval from 5 to 10 m (𝑃 is the simulated terrain profile)
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where: �̂�𝑖 are the estimated heights, 𝐻𝑖 are the simulated heights. Here 𝑛 = 41, which
is the number of points for which heights are calculated for distances 𝐷 𝑗 = 𝑗 · 0.5 m
( 𝑗 = 0, . . . , 40).
Figure 5 shows RMSD

(
�̂�
)
determined for all simulated observation sets and three

methods mentioned. M-estimates predominate over AMS method if the observation set
is free from outliers. The accuracy of the Tukey method decreases rapidly with the
growing percentage of outliers. The Huber method and AMS estimation have similar
accuracy up to 30% of outliers; for more outliers, AMS estimation predominates. It is
also worth noting that the accuracy of AMS estimates increases slightly with the growing
percentage of outliers, which is not such an apparent feature of the method. However,
the explanation is natural. If there is a higher share of outliers, then the method can
distinguish that observation group from the group of regular observations easier.

Fig. 5. RMSD
(
�̂�
)
for the Huber, Tukey, and AMS estimates

for different percentages of outliers

In the following numerical example, we consider LiDAR data that refer to two
surfaces. Such an observation set might result from, for example, measuring the terrain
(denoted 𝑃) and the vegetation cover (denoted 𝑃′). Let us assume that measurements
concern the profile of 50 m long. The terrain profile is described by the polynomial
of the first degree (𝑐1 = 0.035, 𝑐0 = 1), and the vegetation cover by the polynomial
of the second degree (𝑐2 = −0.001, 𝑐1 = 0.08, 𝑐0 = 1.4). We simulate randomly 100
observations, heights 𝐻𝑖 at the randomly chosen distance 𝐷𝑖 ∈ 〈0 m, 50 m〉. The
observation errors are assumed to be normally distributed with the expected value of
0 mm and the standard deviation of 50 mm, which are acceptable in the application in
question (e.g. Crespo-Peremarch et al., 2018). We also assume that data might randomly
be disturbed by gross errors from 0.20 m to 0.80 m (if such errors concern the terrain
profile – outliers are considered positive, but if gross errors involve the vegetation cover –
outliers are negative). In the case of AMS estimation, one uses the whole observation set;
however, when applying the classical methods, one should consider two sets separately –
observations of the terrain profile and observations of the vegetation cover, respectively.
The problem is that we do not know the actual data division (the real assignment of
each observation to either of the subsets). Thus, we decided to create the subsets in
the following way: we consider ten intervals of 5 m long; in each interval, the largest-
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valued observations, accounting the half of all, are assigned as measurements of the
vegetation cover, whereas the other observations as measurements of the terrain profile.
The simulated observation sets are presented in Figure 6. Like in the previous example,
the polynomial coefficients are now estimated by applying the Huber and the Tukey
methods and AMS estimation (the values of the steering parameters remain the same).
The estimated profiles are presented in Figure 7. Generally, all methods estimate the
vegetation cover correctly; however, the advantage of AMS estimation application arises
while increasing the number of outlying observations. Almost the same conclusion
concerns the estimated terrain profiles.

Fig. 6. The simulated observation sets (red – observations assigned to the vegetation cover;
blue – to the terrain profile)

One can say that the biggest problem concerns estimation of the vegetation cover and
the terrain profile at the end of the interval under consideration (where𝐷 is close to 50 m).
It stems from the fact that both estimated lines are tight together, and the occurrence of
outliers makes the subset separation even harder. To compare the results of different
estimation methods, we also compute the accuracy of the fit of all estimated profiles by
applying Eq. (13). The respective RMSDs are calculated like in the previous example,
but by taking 𝑛 = 101; they are presented in Figure 8. The Huber method provides
the most accurate results when outliers account for no more than 10%; the effects of
AMS estimation are only a little bit worse in such a case. For the growing percentage of
outliers, AMS estimation predominates. It shows that conventional methods cannot cope
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Fig. 7. Estimated terrain profiles for Huber, Tukey, and AMS estimates for different percentages of outliers
(𝑃 is the simulated terrain profile, 𝑃′ is the simulated vegetation cover profile)

with a higher share of outliers. One should also realize that the conventional methods
process the separated subsets, whereasAMSestimation uses no a priori information about
observation assignment. Such an assignment is done during the estimation process. That
numeric example proved that approach as better and more efficient than the classical one.

Fig. 8. RMSD
(
�̂�
)
for Huber, Tukey, and AMS estimates for different percentages of outliers

(𝑃 is the simulated terrain profile, 𝑃′ is the simulated vegetation cover profile)

5. Conclusions

The absolute Msplit estimation is a novel method of processing geodetic observations. It
was created to process heterogeneous observation sets (usually, we assume that we deal
with two subsets; however, it is possible to take a higher number of observation groups).
The general features of themethod allow us to use it for other purposes. That paper focuses
on applyingAMSestimation as a robust estimationmethod. The previous research showed
that AMS estimation could deal with gross errors of a moderate magnitude; however, the
method cannot be classified as robust against outliers in general.
The numerical tests performed for the univariate model show that AMS estimation

provides better results than the classical robust method belonging to the class of M-
estimation if only outliers lie close to one another. In such a case, the magnitude of gross
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errors is irrelevant. If outliers are not grouped, the results of AMS estimation worsen;
however, the method itself is still a good alternative for the classical robust methods. It
is especially evident for the growing number of outliers, where the accuracy of AMS
estimation is much higher than the accuracy of M-estimation. The iterative process
of AMS estimation is more complicated than the classical process of M-estimation,
and it requires more time. However, the difference in processing time has no practical
significance.
The paper shows that AMS estimation can be used for processing LiDAR data. The

numerical examples concern approximation of one surface or two surfaces from one TLS
or ALS data. The difference between those cases is significant. In the first example, we
have an observation set that is “natural” for AMS estimation – there are two observation
groups: regular observations and outliers. In the second case, we have two groups of
regular observations and additional outliers, making the estimation more difficult. Both
examples confirmed that AMS estimation is a good alternative for other robust methods.
The case of one surface estimation illuminates not an obvious feature of Msplit estimation.
For the growing percentage of outliers, the accuracy ofAMSestimation increases. It stems
from the fact that it is easier to distinguish two groups of observations when the number of
outliers is high. Hence, it is also easier to estimate parameters within the split functional
model. That example also shows that AMS estimation predominates over M-estimation
when the percentage of outliers is higher than 20%. In the second example (ALS data
processing), AMS estimation provides better results when the share of outliers is equal to
or higher than 10%. However, we should realize that we simulate outlying observations
that might be far from the respective surface (terrain profile or vegetation cover) but
usually between those two surfaces. Such outliers correspond typical mismeasured points
in LiDAR data.
The basic tests and numerical examples of LiDAR data processing confirm that AMS

estimation should be considered an alternative for classical methods, especially when
we suspect that observation sets are affected by outliers. TLS or ALS data often contain
some mismeasured points; hence it is no doubt that such data might be processed by
applying AMS method successfully.
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