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Abstract:The applicability of integratedUnmannedAerial Vehicle (UAV)-photogrammetry
and automatic feature extraction for cadastral or property mapping was investigated in this
research paper. Multi-resolution segmentation (MRS) algorithm was implemented on UAV-
generated orthomosaic for mapping and the findings were compared with the result obtained
from conventional ground survey technique using Hi-Target Differential Global Positioning
System (DGPS) receivers. The overlapping image pairs acquired with the aid of a DJI Mavic
air quadcopter were processed into an orthomosaic using Agisoft metashape software while
MRS algorithm was implemented for the automatic extraction of visible land boundaries
and building footprints at different Scale Parameter (SPs) in eCognition developer software.
The obtained result shows that the performance of MRS improves with an increase in SP,
with optimal results obtained when the SP was set at 1000 (with completeness, correctness,
and overall accuracy of 92%, 95%, and 88%, respectively) for the extraction of the building
footprints. Apart from the conducted cost and time analysis which shows that the integrated
approach is 2.5 times faster and 9 times cheaper than the conventional DGPS approach, the
automatically extracted boundaries and area of land parcels were also compared with the
survey plans produced using the ground survey approach (DGPS) and the result shows that
about 99% of the automatically extracted spatial information of the properties fall within
the range of acceptable accuracy. The obtained results proved that the integration of UAV-
photogrammetry and automatic feature extraction is applicable in cadastral mapping and
that it offers significant advantages in terms of project time and cost.

Keywords: land management, remote sensing applications, image segmentation, auto-
matic boundary extraction, UAV mapping
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1. Introduction

Unmanned Aerial Vehicles (UAVs), popularly known as drones, are aerial vehicles or
aircrafts controlled remotely by a human operator or autonomously by an onboard com-
puter (http://nesac.gov.in/uav-applications/). It uses a combination of Global Positioning
System (GPS) navigation technology and aircraft model technology to provide fast and
affordable mapping services (Barnes et al., 2014). These autonomously flying systems
are typically equipped with a variety of navigation, positioning and mapping sensors,
such as still video cameras, and others (Manyoky et al., 2011). Global Navigation Satellite
System (GNSS) enabled UAVs have prospective application for quicker, accurate, and
less costly remote data collection than piloted aerial vehicles (Ajayi et al., 2018).
The growing use of UAVs for photogrammetric mapping in aerial surveys is unprece-

dented. Due to the fact that UAVs are relatively cheap, and the increasing global need for
access to information on land-based properties as a basis for resource planning, growth
and control (Barnes et al., 2014), the utilization of UAVs in land administration and
cadastral mapping is fast gaining acceptable attention and critical investigation. Using
UAVs in mapping custom lands, urban lands, etc., cadastral maps of high resolution can
be easily produced within a short time. The system is fast and easy to use, and it produces
comprehensible plot representations as opposed to polygons with no graphic background.
The high-resolution orthomosaics generated from the UAV-acquired 2D overlapping im-
ages allow the user to identify features that guide property identification and mapping.
Such features include footpaths, fields of crops, building footprints like walls, edges, or
any identifiable features.
It is very important to update information about land boundaries so that changes

in ownership and property division can be documented on time. One of the benefits of
using aerial imageries is that they provide a historical record of the places that may be
revisited to see what changes have occurred in the future. Archived images can thus
provide useful evidence where there are conflicts in the boundary of parcels. In contrast,
classical approaches to land and property surveying are time-consuming and require
a great deal of effort. In remote areas, particularly in mountainous areas, and when
the weather is harsh, it is sometimes very difficult to carry out such surveys. In this
situation, aerial photographs can be used as an alternative to classical survey method
for the acquisition of spatial information where most measurements can be performed
in the office or remotely (Eisenbeiss, 2009). UAV is now employed as a data acquisition
platform for the extraction of spatial information of land-based properties (creation and
update of cadastral maps) due to its rapid development over the past few years though
predominantly through manual delineation of visible cadastral boundaries (Karabin et
al., 2021).
Rijsdijk et al. (2013) investigated the usefulness of UAVs in the juridical verification

process of cadastral borders of ownership at Het Kadaster; the national land registration
service and mapping agency in the Netherlands, using AscTec Falcon 8, Microdrone
MD-4 drones. Also, Crommelinck et al. (2016) and Karabin et al. (2021) presented an
overview of different case studies investigating the applicability and potentials of UAVs
for cadastral mapping and boundary delineation. However, most of the documented case
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studies deal withmanual boundary delineation, with very little attempts to proffer solution
to the problem of automatic delineation of cadastral boundaries which is recently gaining
wide attention with the advent of machine learning and computer vision. Since a large
number of property boundaries are assumed to be visible, as they coincide with natural
or manmade object or features such as building footprints (Zevenbergen and Bennett,
2015; Crommelinck et al., 2017), this makes them potentially extractable automatically
(Jazayeri et al., 2014) using computer vision methods and algorithms that detect object
contours in images.
The aim of this research is to investigate the applicability and efficiency of implement-

ing multi-resolution segmentation (MRS); an object-based approach, at different scale
parameters (SP), for the automatic extraction of visible cadastral boundaries (depicted
by building footprints) from UAV images.

1.1. Imagery-Based Boundary Detection – review

In recent years, research efforts have shown how image-based cadastral mapping is being
explored to acquire and modify data quickly and cost-effectively. Manual digitization for
image-based boundary detection and delineation has been performed in early practices
(Manyoky et al., 2011; Ali and Ahmed, 2013; Parida et al., 2014) and the results affirmed
that more landed properties can be mapped in less time using high-resolution imagery.
Research has also recently shown that image processing and computer vision offer new
opportunities to replace manual approaches with an automated approach. Babawuro and
Beiji (2012) detected field boundaries from satellite images using canny edge detec-
tion and morphological activities by connecting the segmented boundaries with Hough
transformation. Though some boundaries were not accurately captured by the method,
the findings of the research showed that the implementation of machine vision and in-
tegrating it with cadastral mapping, brings about substantial benefits like reduction in
personnel and human efforts. Nyandwi (2018) used object-based image analysis (OBIA)
to extract cadastral parcels usingmulti-resolution segmentation and chessboard approach.
An object-based approach refers to the extraction of object outlines based on a cluster
of pixels with similar characteristics and is applied to high-level features which rep-
resent shapes in an image (Crommelinck et al., 2016). The approach was tested using
pan-sharpened Worldview-2 imagery at an urban site and a rural site in Rwanda. For
precision measurement, reference lines were given a tolerance of 5 m. The method ob-
tained an accuracy of 47.4% and completeness of 45% in rural areas. The authors argued
that the findings were counterintuitive in urban areas and that the recovery of residential
parcels is difficult for machine vision because the spectral reflection of the roof, garden,
and fences in this area varies significantly.
Puniach et al. (2018) posited that an orthomosaic and digital surface model (DSM)

generated fromUAV-acquired images can be used for updating andmaintaining a cadaster.
The findings of their research further affirmed that UAV approach can produce signifi-
cantly better results when multiple ground control points (GCPs) are used, compared to
the result obtained from GNSS survey in Real Time Kinematic (RTK) mode.
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Also,Wassie et al. (2018) implemented amean-shift segmentation algorithm; a QGIS
open source plugin used for segmentation of objects, to delineate cadastral boundaries.
Using Worldview-2 images with a resolution of 0.5 m, three rural areas in the Amhara
State of Ethiopia, were used as the test sites for the investigation. The buffer widths from
the reference boundary were 0.5 m, 1 m and 2 m, and the obtained results showed 16.3%,
24.7% and 34.3% overall accuracy for the first (SI1) selected area. The extractions with
mean-shift segmentation are closed object boundaries in vector format and were found
to be topologically correct. The mean-shift segmentation was applied to a full extent
of satellite images while some of the automatic object extraction methods were applied
also using UAV images (Fetai et al., 2019). They also affirmed that almost 80% of the
extracted visible boundaries were adjudged to be correct when buffer overlay technique
was applied, which shows the potential of cadastral mapping based on UAV imagery.
Furthermore, Luo et al. (2017) investigated cadastral boundaries extraction in urban

areas from airborne laser scanner data, designing a semi-automatic workflow with post-
refining and automatic extraction of features. Objects such as buildings and roads were
segmented in the automatic extraction process using canny edge detector, alpha shape,
and skeleton algorithms, while objects such as fences were delineated using centerline
fitting techniques. Since not all artefacts extracted were cadastral boundaries, the post-
refinement process involves manual support. Visual interpretation in this phase was
adopted for the extraction of useful line segments and gaps between line segments were
filled manually. With a tolerance of 4 m from the reference boundaries, the designed
workflow achieved completeness of 80% and correctness of 60%.
In addition, Crommelinck et al. (2017) studied the transferability of globalized prob-

ability of boundary (gPb) contour detection technique to UAV images for the automatic
detection and extraction of contours for UAV-based cadastral mapping. The result of
their investigation using three UAV orthoimages of different extents showing rural areas
in Germany, France and Indonesia, shows that the approach is transferable to UAV data
and automated cadastral mapping by obtaining completeness and correctness rates of
up to 80%.
In order to speed up the process of establishing, maintaining and updating cadastres,

Fetai et al. (2019) investigated the potentials of high-resolution optical sensors on UAV
platforms for cadastral mapping, using the feature extraction (FX) module of ENVI for
data processing. The findings of the study show that about 80%of the extracted boundaries
were adjudged correct, while emphasizing on the importance of filtering the extracted
boundary maps for the improvement of the results. The described image processing
workflow shows that the approach is mostly applicable when the UAV orthoimage is
resampled to a larger ground sample distance (GSD). In addition, the findings show that
it is important to filter the extracted boundary maps to improve the results.
Also, Crommelinck et al. (2020) developed amethodology that automatically extracts

and processes candidate cadastral boundary features from UAV data, consisting of two
state-of-the-art computer visionmethods, namely gPb contour detection and simple linear
iterative clustering (SLIC) super pixels, as well as a classification part assigning costs to
each outline according to local boundary knowledge. The developed methodology also
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included a procedure for a subsequent interactive delineation; a user-guided delineation by
calculating least-cost paths along previously extracted and weighted lines. The approach
was tested on visible road outlines in two UAV datasets obtained from two rural areas
in Amtsvenn and Gerleve (Germany), processed using Pix4Dmapper, and the obtained
results show that all roads can be delineated comprehensively. When the developed
automatic approach was compared to manual delineation, the number of clicks per
100 m reduced by up to 86%, while obtaining a similar localization quality.
Fetai et al. (2020) investigated the applicability of U-Net architecture; a symmetric

network containing two parts which gives it a U-shaped architecture, for the automatic
detection of visible boundaries fromUAV images capturedwith the aid of aDJI Phantom4
drone. The architecture was designed using Python and implemented in high-level neural
network API Keras (François et al., 2015) running within TensorFlow library, while the
training of the BSDS500 datasets (which were concatenated to increase the flexibility
in the validation split and the number of training samples) was done through Google
Colaboratory which provided a stronger GPU, more memory, and efficient calculations,
with the evaluation metrics of the trained model indicating 0.95 overall accuracy. While
the average %age of correctly detected visible boundaries was estimated to be almost
80% for the tiled UAV images, the study found out that the automatic boundary detection
using U-Net is applicable mostly for rural areas where the visibility of the boundaries
is continuous (Luo et al., 2017). The model was evaluated by monitoring the loss and
accuracy of training, and validation data using binary cross-entropy was used as a loss
function while overall accuracy was adopted as the evaluation metric.
Using Pléiades images, the performance of random forest (RF) when compared

with other classifiers such as the support vector machines (SVM), maximum likelihood,
and the back propagation neural networks in the automatic extraction of building lines or
footprints was investigated by Taha and Ibrahim (2021). Results of the assessment showed
that the RF, SVM,maximum likelihood, and back propagation yielded an overall accuracy
of 97%, 93%, 95% and 92%, respectively, which proved that the RF outperformed the
other classifiers. Also, the completeness and correctness of the extracted footprints using
RF indicated that it can accurately classify 100% of buildings.
While different algorithms have been implemented for automatic boundary delin-

eation or property line extraction, most of such experiments have been conducted on
satellite or other remotely sensed images while there is relatively sparse evidence of past
documented efforts aimed at implementing object oriented automatic feature extraction
algorithms on UAV acquired images for property or cadastral mapping as presented in
this research.

1.1.1. Edge Detection Techniques

Edge detection is one of the most important features in the application of machine vision,
computer vision, image processing and analysis (Zhang et al., 2013; Selvakumar and
Hariganesh, 2016). The goal of edge detection is to extract information from object
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boundaries within the image by detecting discontinuities or abrupt changes in brightness
level. Edges provide the image’s boundaries between different regions. The boundaries
obtained are useful for the recognition of objects within image for segmentation and
for matching purposes (Chai et al., 2012). Edge detection has also attracted enormous
attention inmedical imaging such asMRI (Giuliani, 2012; Aslam et al., 2015), ultrasound
(Chai et al., 2012), CT (Punarselvam and Suresh, 2011; Bandyopadyay, 2012) and X-ray
images (Lakhani et al., 2016), road mapping analysis (Sirmacek and Unsalan, 2010; Qui
et al., 2016), and other applications, even with the enhancement of noisy satellite images
(Jena et al., 2015; Gupta, 2016).
Image segmentation and edge detection are the predominantly used algorithms for

semi-automatic or automatic boundary delineation (Crommelinck et al., 2016). Segmen-
tation refers to partitioning images into disjointed regions, where the spectral charac-
teristics of the pixels are similar to each other (Pal and Pal, 1993). On the other hand,
edge detection algorithms detect edges in brightness and colour as sharp discontinuities
(Bowyer et al., 2001).
Object oriented image analysis has become an important issue in the field of image

processing and interpretation. The basic idea behind this approach is to segment an
image into parcels, extract features from the segmented parcels, and then complete the
image interpretation by classifying its features. The major advantage of object-oriented
image analysis is that it deals with parcels, not pixels. These parcels are objects, which
provide abundant features and spatial knowledge involved in analysis (Aplin et al. 1999).
Object-based image analysis methods are based on aggregating similar pixels to obtain
homogenous objects, which are assigned to a target class.
The basic concept of creating an image object is to merge adjacent pixels where the

heterogeneity is minimized, and while maintaining its acceptability to human vision.
Recently, the implementation of MRS algorithm is gaining wide attention for different
applications. Munyati (2018) implemented MRS for the delineation of savannah veg-
etation boundaries. The result of the studies showed that an overall mapping accuracy
of 86.2% was obtained. He also posited that the successful delineation of the savannah
vegetation communities indicated that pre-segmentation and analysis of potential ob-
jects variance-based texture can provide guidance on parameter values to be specified
for the inherently iterative MRS. Chen et al., (2019) developed an approach for MRS
parameter optimization and evaluation for very high resolution (VHR) remote sensing
images based on mean nanoscience and quantum information (meanNSQI). The findings
of the experimentation showed that a discrepancy measure of 85% accuracy was obtained
which proved that the segmentation parameter optimization and quality evaluation given
by meanNSQI and the discrepancy measure are reliable.
Furthermore, Kohli et al. (2017) investigated the applicability of MRS and estima-

tion of scale parameter (ESP); an object-based approach for the extraction of visible
cadastral boundaries from high resolution satellite images (HRSI). Pixel-based accuracy
assessment method was adopted and the quality of the feature detection and extraction
in terms of error of commission and omission were 75% and 38%, respectively, for the
MRS, and 66% and 58%, respectively for the ESP. Within a 41–200 cm distance from
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the reference boundaries, the localization quality of 71% and 73% was obtained for the
MRS and ESP, respectively. The result showed that it is difficult to achieve a balance
between high %age of completeness and correctness, and concluded that the resulting
segments can potentially serve as a base for further aggregation into tenure polygons
using participatory mapping.

1.2. Multi-resolution segmentation

MRS is an area-fusing or region based image segmentation algorithm (Witharana and
Civco, 2014) that begins with each pixel forming an entity or region (Baatz and Schape,
2000). It is often used as a general segmentation algorithm in the field of remote sensing
applications (Neubert et al., 2007) because of its ability to generate image objects with
greater geographical significance and strong adaptability (Martha et al., 2011).
The merging criterion for MRS is local homogeneity, which describes the similarity

between adjacent objects. The fusion process stops when all potential fusions meet the
requirements for homogeneity. MRS relies on several parameters, which are image layer
weights, scale parameter (SP), shape and compactness. Image layer weights define the
importance of each image layer to segmentation process. For the experiment reported in
this paper, equal weights have been apportioned to the three layers; Red, Green and Blue
(RGB) of the input image to ensure a more regular shape of the merged parcel because
apportioning different weights to the image layers will cause unfair segmentation which
will affect the regularity of the shape. The most important parameter in MRS is the scale,
which controls the average image object size (Draguţ et al., 2014). A larger SP allows
higher spectral heterogeneity within the image objects, hence allowingmore pixels within
one object. Defining the appropriate SP is very critical for the successful implementation
of MRS algorithm and attempt has been made in this research to explore the effect of
different SPs in the automatic extraction of visible cadastral boundaries and building
footprints with a view to identifying appropriate SP for automatic feature extraction in
cadastral mapping using MRS algorithm.

1.2.1. Merging Criterion

A merge cost function that integrates spectral and shape heterogeneity is designed to
guide the merging of parcels. The use of shape is to make the outline of the merged
parcels more regular. Experimentally, the merging cost function is similar to Eq. (1)
according to Baatz and Schäpe, 2000):

𝑓 = 𝑤 × ℎcolor + (1 − 𝑤) × ℎshape (1)

where𝑤 is theweight dropping in the interval [0, 1] for spectral heterogeneity. A typically
acceptable color weight is 0.9 and form weight is 0.1. This causes unfair segmentation
when the form weight is too large.



8 Oluibukun Gbenga Ajayi, Emmanuel Oruma

The spectral heterogeneity is the parent parcel variance less the sum of the variances
of the two children’s parcels weighted with their respective areas:

ℎcolor =
∑︁
𝑐

𝑤𝑐

(
𝑛merge𝜎

Merge
𝑐 −

(
𝑛1𝜎

1
𝑐 + 𝑛2𝜎

2
𝑐

))
(2)

where 𝑐 is the band count and 𝑤𝑐 is user specified weights for every band (1.0 by default).
The shape heterogeneity (Eq. (3)) is the combination of compactness and smooth-

ness heterogeneity, in which compactness heterogeneity is calculated using Eq. (4) and
smoothness heterogeneity is calculated using Eq. (5):

ℎshape = 𝑤cmpct × ℎcmpct + (1 − 𝑤cmpct) × ℎsmooth (3)

ℎ𝑐𝑚𝑝𝑐𝑡 = 𝑛Merge ·
𝑙Merge
√
𝑛Merge

−
(
𝑛1 ·

𝑙1√
𝑛1

+ 𝑛2 ·
𝑙2√
𝑛2

)
(4)

ℎsmooth = 𝑛Merge ·
𝑙Merge

𝑏Merge
−
(
𝑛1 ·

𝑙1
𝑏1

+ 𝑛2 ·
𝑙2
𝑏2

)
(5)

where 𝑙 is the perimeter of a parcel, 𝑛 is the pixels, 𝑏 is the perimeter of its bounding
box. A commonly suitable setting of 𝑤cmpct is 0.5.

2. Materials and methods

2.1. Study area

The study area selected for this study is popularly known as Kuje Low-Cost, a residential
estate located in Kuje Area Council in the Nigeria’s Federal Capital Territory (FCT),
Abuja. The mapped area has a total area of 224 000 square meters (22.4 hectares). It
lies within the boundary of Northings 982 870.00 mN to 982 300.00 mN and Eastings
306 000.00 mE to 306 700.00 mE. The principal characteristics that informed the choice
of this study area are the configuration of the area’s terrain which is neither too rough nor
too gentle, and also, the area is a planned urbanized zone with land parcels delineated by
visible linear features and clear building footprints. Figure 1 depicts the map of the study
area.

2.2. Data acquisition and processing

Site reconnaissancewas first conducted to identify suitable locations for the establishment
of ground control points (GCPs), and check points (CPs) in the study area. During
this process, the points or stations identified for the GCPs and CPs were pre-marked.
Dronedeploy; a flight planning software was used to design the flight plan which was
used for the image data acquisition.
GCPs are very important for georeferencing the images and for qualitative analysis

of the positional data. Stations pre-marked for the establishment of GCPs were properly
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Fig. 1. Map of the study area

fixed and established using Hi-Target DGPS receivers to acquire their positional data.
A total of Eight (8) ground stations were established within the study area, out of
which Five (5) were used as the CPs while the remaining three (3) were used as GCPs.
Markers were used to mark the points defining the established stations, a sample of
which is shown in Figure 2b. For the GNSS data acquisition, two units of Hi-Target
DGPS receivers, with one serving as a base (mounted on the base station) while the other
served as rover (roving through the pre-marked ground stations), were used to acquire
positional data of the control stations with the rover spending aminimum of 20minutes of
occupation time on each of the stations. The point datasets (coordinates) recorded on the
Hi-Target DGPS receivers were imported into Carlson with AutoCAD 2012 for further
processing and plotting. Table 1 presents the details of the date and time of observation,
standard deviation of the coordinates (Nrms, Erms and Zrms), and the position dilution
of precision (PDOP) values which describe the error caused by the relative position of the
GPS satellites obtained for each of the established ground control stations. The elevation
mask value was 5 and it was uniformly applicable to all the control points while a uniform
antenna height of 1.881 m was adopted for the measurements.
Also, a total of 785 overlapping images were captured at 70 m flying height, using

DJI Mavic Air UAV on-board camera with an integrated 12 megapixels CMOS sensor
and f/2.8 lens, and with a 35 mm equivalent focal length of 24 mm to shoot high-quality
photos and videos.
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Table 1. Details of the GNSS observation

Name N
(m)

E
(m)

Z
(m)

Nrms
(m)

Erms
(m)

Zrms
(m)

Start date
and time

End date
and time PDOP

Sharing
Sat Num

CP001 981911.090 306084.450 313.442 0.005 0.006 0.010 6/27/19
10:09

6/27/19
10:29 1.3 16

CP002 981896.420 306229.280 314.999 0.005 0.006 0.010 6/27/19
10:57

6/27/19
11:17 1.9 11

CP003 981871.980 306374.400 313.940 0.005 0.006 0.009 6/27/19
11:27

6/27/19
11:47 1.3 16

CP004 982002.170 306389.870 309.929 0.005 0.006 0.010 6/27/19
12:18

6/27/19
12:38 1.7 13

CP005 982116.230 306422.570 303.702 0.006 0.007 0.012 6/27/19
12:52

6/27/19
13:12 1.9 11

CP006 982022.600 306260.250 311.653 0.007 0.008 0.016 6/27/19
13:31

6/27/19
13:51 1.3 16

CP007 982150.160 306264.810 309.656 0.010 0.010 0.021 6/27/19
14:22

6/27/19
14:42 2.2 10

CP008 982041.910 306106.610 314.381 0.006 0.008 0.012 6/27/19
15:04

6/27/19
15:24 1.9 10

All acquired images were processed using Agisoft metashape digital photogram-
metric software. The workflow for the processing includes the following; importation
of photos into the software working environment, alignment of the imported photos,
importation of GCPs, camera calibration, generation of dense point cloud, generation
of Digital Surface Model (DSM), and generation of orthomosaic. The ground sampling
distance of the generated orthomosaic is 1.44 cm/pix.
The orthomosaic generated from the photogrammetric software was imported into

ArcMap 10.5 and eCognition Developer software for further processing and analysis,
which includes the digitization of the land boundaries on the orthomosaic in order to aid
the positional data comparison, and the implementation of the MRS algorithm.

2.3. Automation process

MRS algorithm was implemented in eCognition software (version 9) for the automatic
extraction of the visible land boundaries. MRS is a region-merging technique starting
from each pixel forming one image object or region (Baatz and Schäpe, 2000), which
implies that improperly defined parcel boundary lines are difficult to automatically extract
using this algorithm. This difficulty can however be overcome if the parcel boundary is
defined by visible linear features such as fence lines or building footprints that are not
coveredwith shades or canopies, though the technique gives better result for building lines
and the results are influenced by the choice of SPs. SP is the most important parameter
in the implementation of this algorithm because it controls the average image object size
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(Draguţ et al., 2014). It is a subjective measure that controls the degree of heterogeneity
within an image-object (Draguţ et al., 2010). Each SP can be generated independently
based on the pixel level, or within a hierarchy, where a parent-child relationship exists
between the levels. For this study, the ESP; a tool that builds on the idea of local variance
(LV) of object heterogeneity within a scene was used for the scale parameter estimation
within the eCognition image processing software (Draguţ et al., 2010; Kohli et al., 2018).
Since the key control for MRS algorithm is the SP, five (5) different SPs were

experimented in order to obtain the optimal SP for the automatic extraction of parcels.
The SP values were set at 150, 400, 500, 700, 1000 for the 5 different experiments with
constant or fixed shape, and compactness values of 1.5 m and 0.8 m, respectively.

2.4. Accuracy assessment

For the orthomosaic accuracy assessment, positional data (coordinates) of the CPs were
extracted from the produced orthomosaic. The Easting, Northing and Height (XYZ)
component of the coordinates were compared with the GNSS acquired coordinates of
the same CPs. The difference between the GNSS acquired coordinates and the extracted
coordinates fromUAVproduced orthomosaic was estimated and used for the computation
of change in planimetric coordinates using equation (5) which is the Euler’s distance
formula.

Δ𝑑 =

√︃
(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 (6)

where Δ𝑑 is the change in distance in meters, (𝑥, 𝑦 and 𝑥1, 𝑦1) are the coordinate of the
two stations.
Also, the coordinates of the CPs were extracted for comparison with coordinates

extracted from digitized orthomosaic and the discrepancy was computed using the Root
Mean Square Error (RMSE) formula in Eq. (7).

RMSE =

√√√√√√ 𝑛∑︁
𝑖=1

(
𝑦pred − 𝑦ref

)2
𝑛

(7)

where 𝑦pred is the predicted value, 𝑦ref is the reference value, and 𝑛 is the total number of
points.

2.4.1. Accuracy assessment of the automatic feature extraction

Since the output of the automatically extracted features is in vector format, the adopted
strategy for the accuracy assessment was an object-based approach using buffer overlay
method, which was also the method adopted by Fetai et al. (2019). The object-based
approach consists of a matching procedure which is in two folds (Heipke et al., 1997);
firstly, it yields those parts of the extracted data which are supposed to be boundaries,
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road, building footprints, etc, and which corresponds to the reference data, and secondly,
it shows which part of the reference data that indeed corresponds to the extracted data.
In the first step, both networks (extracted and reference data) are split into short

pieces of equal length, after which a buffer of constant predefined width (buffer width
= 150 cm) was constructed around the reference property data. The percentage of the
reference data which is found within the buffer around the extracted data is referred to
as completeness and its optimum value is 1 (i.e. 100%). According to the notation of
McGlone and Shufelt (1994) and CMU (1997), the matched extracted data is denoted as
true positive with length (𝑇𝑃), affirming that the extraction algorithm has indeed found
a property data. The unmatched extracted data is denoted as false positive with length
(𝐹𝑃), because the extracted property line hypotheses is incorrect, while the unmatched
reference data is denoted as false negative (𝐹𝑁).
In the second step, matching is performed the other way round. The buffer is now

constructed around the extracted property data, and the parts of the reference data lying
within the buffer are considered to be matched. The percentage of the extracted property
data which lies within the buffer around the reference network is known as correctness,
and it represents the percentage of correctly extracted property data. Its optimum value
is also 1 (Heipke et al., 1997).
In order to assess the accuracy of the automatically extracted features using the MRS

algorithm, the completeness and correctness of the extraction at each of the experimented
different SPs were computed using equations (8a) and (8b) and (9a) and (9b) respectively,
while the overall accuracy (quality) was estimated using the expression in equation (10):

Completeness =
Length of matched reference
Length of reference

∗ 100% (8a)

𝐶𝑝 ≈ 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100% (8b)

Also,

Correctness =
Length of matched extraction
Length of extraction

∗ 100% (9a)

𝐶𝑟 ≈ 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100% (9b)

𝑂𝐴 =
Length of matched extraction

Length of extracted data + Length of unmatched reference ∗ 100% (10)

where𝑇𝑃 is the true positives, 𝐹𝑃 is the false positives, 𝐹𝑁 is the false negative (Galarreta
et al., 2015), while 𝐶𝑝 is Completeness, 𝐶𝑟 is Correctness for low redundancy.𝑂𝐴 is the
overall accuracy which describes the “goodness” of the extraction. The overall accuracy
which is also referred to as the measure of quality, takes into account the completeness
of the extracted data as well as its correctness (Heipke et al., 1997).
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2.5. Estimation of project execution time and cost

In order to estimate the project execution time for the two methods, the entire project
was subdivided into different project components and the time expended for each of the
component was recorded. Also, the expended cost of each of the project components
was estimated by direct costing. While the approximate project time was documented in
number of days, the project cost was estimated in Nigerian Naira (�). As at the time of
executing this research project (December, 2019), a US Dollar is exchanged to naira (�)
at an average rate of 362.61 naira to 1 USD on a concrete day. This was also around the
same time the minimum monthly wage of Nigerian workers was increased from �18 000
to �30 000 by the Nigerian government.

3. Results and discussion

Figure 2a presents the orthomosaic generated from the acquired images which serves
as the base map for the extraction of land boundaries, building footprints and other
features while Figure 2b is a screenshot of a zoomed portion of the image showing a
sample of the markers used for the GCPs. The land plots and building lines from the
orthomosaic were obtained by two different techniques; which are manual digitization
and automated feature extraction technique using MRS, while the ground survey parcel
data was used as reference. Also, the manually digitized property boundary features were
used as reference information for the automatically extracted features. Figure 3 depicts the
AutoCAD drawing obtained from ground survey approach which was used as reference
data for the UAV survey data.

(a) (b)
Fig. 2. (a) UAV orthoimage of the study area, (b) photo of the marker used for the GCP
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Fig. 3. Manually delineated visible cadastral boundaries surveyed with GNSS receiver,
used as reference data

Other results obtained are the result of the accuracy evaluation of the automatically
extracted visible boundaries using the MRS algorithm at different SPs (see Table 3 and
Table 4), and the result of the cost and time comparison of the UAV and GNSS survey
(see Table 5 and Table 6).

3.1. Scale Parameters of MRS

The results obtained when the SP of the MRS was set at 150, 400 and 500 are shown in
Figure 4a–Figure 4c with the blue line depicting the boundary lines of every segment. It
was observed that the output polygon continues to decrease with an increase in the value
of the SP. Likewise, the visual clarity of the output polygon improves with increase in
the value of the SP. When compared to the output of the automatically extracted visible
boundaries using MRS with SP values 150 and 400 (Fig. 4a and Fig. 4b), the pixel level
in the output map was observed to be decreasing continuously with increase in SPs as
observed in the result obtained when the SP value was set at 500 (Fig. 4c).
Figure 5 presents the automatically extracted visible boundaries when the SP value

of the MRS was set at 700, while Figure 6 presents the segmentation result obtained
when the SP was fixed at 1000. Analysis of these two results showed that the pixel
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(a) (b)

(c)
Fig. 4. Automatically extracted visible boundary lines overlaid on the ground truth data.

(a) at SP = 150, (b) at SP = 400, (c) at SP = 500

Fig. 5. Automatically extracted visible boundary lines overlaid on the ground truth data with SP = 700
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level decreased with increased value of SP. The output map of SP = 1000 gives a more
cartographically appealing result based on its stronger pixel level. The yellow line in
Figure 5 shows the boundary lines of every segment when SP = 700 was used while the
red line in Figure 6 shows the boundary lines of every segment when SP = 1000 was
used.

Fig. 6. Automatically extracted visible boundary lines overlaid on the ground truth data with SP = 1000

3.2. Accuracy assessment for the generated orthomosaic and automatic feature
extraction

Table 2 presents the planimetric coordinates and discrepancy between the GNSS ac-
quired coordinates and the extracted coordinates of the CPs from the UAV generated
orthomosaic. From Table 2, Δ𝑁 (m) and Δ𝐸 (m) represents the difference in planimet-
ric (northing and easting) coordinates as obtained from GNSS acquired data and UAV
generated orthomosaic.
The obtained horizontal RMSE (RMSEx, y) as computed using equation (6) is

0.3575. This is consistent with the result obtained by Karabin et al. (2021) and it affirms
the applicability of UAV in cadastral or property mapping.
The result of the estimated completeness, correctness and overall accuracy of the

automatically extracted building footprints at different SPs is presented in Table 3, while
the results obtained from the estimated completeness, correctness and overall accuracy
of the automatically extracted land parcels at different SPs is presented in Table 4.
The result (see Table 3) shows that a completeness, correctness and overall accuracy

of 16%, 12% and 14%, respectively, was obtained when theMRS algorithmwas deployed
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Table 2. Discrepancy between GNSS acquired coordinates and extracted coordinates

Ground Survey UAV Survey Deviations
Control
ID N

(m)
E
(m)

N
(m)

E
(m)

Δ𝑁

(m)
Δ𝐸

(m)
√︁
(𝑥−𝑥1)2+(𝑦−𝑦1)2

CP001 981911.086 306084.448 981911.102 306084.420 −0.012 0.030 0.258

CP002 981896.422 306229.281 981896.467 306229.295 −0.047 −0.015 0.132

CP003 981871.979 306374.395 981872.011 306374.408 −0.031 −0.008 0.207

CP004 982002.171 306389.874 982002.185 306389.891 −0.015 −0.021 0.791

CP005 982116.230 306422.570 982116.216 306422.581 0.014 −0.011 0.329

CP006 982022.596 306260.252 982022.547 306260.251 0.053 −0.001 0.092

CP007 982150.160 306264.810 982150.129 306264.796 0.031 0.014 0.085

CP008 982041.911 306106.608 982041.943 306106.589 −0.033 0.021 0.379

RMSEx, y = 0.3575

Table 3. Result of the MRS accuracy assessment of extracted building footprints

S/N SP Completeness
(%)

Correctness
(%)

Overall accuracy
(%)

1 150 16 12 14

2 400 45 43 37

3 500 76 72 62

4 700 89 91 86

5 1000 92 95 88

Table 4. Result of the MRS accuracy assessment of extracted land parcels

S/N SP Completeness
(%)

Correctness
(%)

Overall accuracy
(%)

1 150 25 19 18

2 400 38 32 22

3 500 43 37 25

4 700 52 48 32

5 1000 65 59 54

for the automatic extraction of the building lines or footprints at a SP = 150. When the SP
was set at 700, 89% and 91% completeness and correctness, respectively were obtained
with overall accuracy of 86% while an overall accuracy of 88% was obtained when
the SP was set at 1000 with 92% and 95% completeness and correctness, respectively.
Meanwhile, a completeness, correctness and overall accuracy of 25%, 18% and 19%was
obtained when the SP was prefixed at 150 for the automatic extraction of land parcels (see
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Table 4), while 65%, 59% and 54% were obtained for the completeness, correctness and
overall accuracy, respectively, when the SP was set at 1000 for the automatic extraction
of the land parcels using the MRS algorithm. The poor completeness, correctness and
overall accuracy obtained from the automatically extracted land parcels when compared
to the result of the building footprints can be attributed to the presence of shadows,
unclear delineation of the boundary lines of the land parcels in vegetated areas, and the
presence ofmixed pixels in the automatic extraction (Horkaew et al., 2015;Wassie, 2016).
The findings show that increase in the SP of the MRS algorithm also leads to increase
in the obtained completeness, correctness and overall accuracy for the extraction of the
building footprints and the land parcels. Also, it was observed that optimal completeness,
correctness and overall accuracy of the automatic feature extraction was obtained when
the SP was set at 1000, while setting the SP at 150 will not yield a reliable result. The
result of the accuracy assessment is consistent with the findings of Luo et al. (2017),
Munyati (2018) and Chen et al. (2019).

3.3. Cost and time comparison

The results obtained from the time and cost analysis of the integrated UAV-
photogrammetry approach and the GNSS survey methods used for the survey of 248
land parcels are presented in Table 5 and Table 6, respectively.

Table 5. Summary of the project components and the execution timeframe (number of days)

UAV Photogrammetry method

Activities Reconnaissance GCPs and CPs UAV flight
mission

Image
processing Digitizing Other

duties
No of days 2 1 1 2 3 3

No of persons 3 2 3 2 1 2

Total No of Days = 12

Total No of Persons = 13

Classical (GNSS) method

Activities Reconnaissance Data Acquisition Data filtering, processing and plotting Others

No of days 2 18 7 3

No of persons 3 6 4 3

Total No of Days = 30

Total No of Persons = 16

From the results presented in Table 5 and Table 6, it can be observed that the parcel
boundary extracted using GNSS method requires more intense field observation, thus,
it consumes more time and cost. However, cadastral boundary extractions from UAV
generated orthomosaic involves less field work and more off-field processing, and it is
also more economical when compared to the GNSS method. Based on the time analysis,
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Table 6. Cost comparison between UAV mapping and classical GNSS survey approach

Activity Number of days Cost (N)

UAV survey

Reconnaissance 2 80 000

GCP 1 70 000

UAV Flight mission 1 200 000

Image Processing 2 500 000

Digitizing 3 150 000

Other 3 190 000

Total 12 1 190 000

Number of land parcels surveyed 248

Estimated cost of survey per land parcel (N) 4 798

Ground survey

Reconnaissance 2 140 000

Data Collection 18 10 620 000

Data filtering, processing and plotting 7 250 000

Others 3 150 000

Total 30 11 160 000

Number of land parcels surveyed 248

Estimated cost of survey per land parcel (N) 45 000

it was observed that the total time taken to map the 248 properties using the UAV
photogrammetry approach was just about one-third (1/3) of the total time expended
when GNSS method was adopted. While the project was executed within just 12 days
using the UAV approach, it took a total of 30 days for the project to be completed using
the conventional GNSS approach which shows that the integrated UAV approach is 2.5
times faster than the conventional GNSS approach, even when the same manpower was
deployed for the project.
It was also observed that the cadastral boundary obtained using GNSS method

requires more personnel, equipment and resources for detail field observation and data
processing. However, less human effort with very few equipment is required for UAV data
capturing and image processing, and also in vectorizing the UAV generated orthomosaic,
which is also consistent with the findings of Karabin et al. (2021). The results obtained
from the cost comparison of these two approaches as presented inTable 6 shows that a total
amount of N1 190 000.00 was expended for the mapping of 248 land parcels at the cost
of less than N5 000.00 per parcel when the UAV approach integrated with the automatic
feature extraction was used, while an approximate cost of N11 160 000.00 was expended
when GNSS approach was used to survey the same 248 land parcels at an average cost of
N45 000.00 per parcel. This implies that for large scale property mapping, the presented
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UAV approach integrated with automatic feature extraction is approximately nine (9)
times cheaper or less expensive than the classical GNSS surveying approach without
compromising the obtainable accuracy.

4. Conclusions

The principal objective of this research is to investigate the applicability of UAV pho-
togrammetry integrated with automatic feature extraction for cadastral mapping. MRS
algorithm with different SP was implemented for the automatic extraction of visible
cadastral boundaries defined by linear features defined nodes and building footprints.
The result obtained from the automatic feature extraction shows that the accuracy of the
cadastral boundary line extraction depends majorly on the SP which is the key control of
theMRS algorithm. For the experiments conducted using varying SPs and constant shape
and compactness value, the result obtained shows that the pixel level in the output map
decreases continuously with increase in SPs while the optimal result of the conducted
experiment was obtained when the SP was set at 1000, while the shape and compactness
values were set at 1.5 m and 0.8 m, respectively. The result of the evaluation of the
reliability of the automatic extraction also shows that the completeness, correctness and
overall accuracy or quality increases with increase in the value of the SPs. Also, the MRS
algorithms proved to be more efficient in automatically extracting building footprints
when compared to its performance in the extraction of land parcels.
Furthermore, the results of the accuracy assessment obtained from the integrated

UAV approach when compared with conventional survey approach shows that 99% of
automatically extracted property boundaries from the UAV survey falls within the min-
imum acceptable horizontal accuracy for cadastral and property mapping of third order
(1:5,000). Further analysis on the cost and time expended for the property mapping using
the integrated approach shows that the approach is approximately 2.5 times faster and 9
times cheaper than the conventional ground surveying approach, especially when GNSS
receivers are used for the spatial data acquisition. While MRS algorithm has proved to be
a veritable model for automatic extraction of building footprints in cadastral mapping in
this study, further research efforts shall seek to investigate the applicability of other seg-
mentation algorithms in the automatic extraction of land parcel boundaries for cadastral
applications. Meanwhile, it should be noted that the automatic extraction of boundaries
is only a step to the facilitation cadastral mapping, as mere detecting and extracting the
boundaries alone is not sufficient for complete and correct cadastral mapping.
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