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Abstract. As nonlinear optimization techniques are computationally expensive, their usage in the real-time era is constrained. So this is the
main challenge for researchers to develop a fast algorithm that is used in real-time computations. This work proposes a fast nonlinear model
predictive control approach based on particle swarm optimization for nonlinear optimization with constraints. The suggested algorithm divide
and conquer technique improves computing speed and disturbance rejection capability, demonstrating its suitability for real-time applications.
The performance of this approach under constraints is validated using a highly nonlinear fast and dynamic real-time inverted pendulum system.
The solution presented through work is computationally feasible for smaller sampling times and it gives promising results compared to the state
of art PSO algorithm.
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1. INTRODUCTION
Model predictive control (MPC), has become one of the first
choice of control strategy in all chemical plant operations as
well as refineries, because it is able to manage multivariable
systems with constraints. Many processes in industry sectors
like paper and pulp, mining as well as food are nonlinear,
and hence models that are linear are inadequate to describe
the process dynamics over the required range of operating
points. Therefore, different nonlinear model predictive control
(NMPC) techniques have been developed [1–3]. For real-time
fast dynamic applications in the area of automotive manufac-
turing, aerodynamics, robotics, cryogenics, etc. a fast sampling
rate is required. It is very difficult to compute online control ac-
tion as the optimization problem is required to be solved at ev-
ery instant of sampling. It is also possible, but only for the class
of nonlinear models, to use successive linearization, that pro-
vides an exact linear model, and then use MPC algorithms [4,5].
However, a change of variables in the feedback may provide
problems with nonlinear constraints. Various efforts have been
made towards the development of efficient optimization tech-
niques and reviewed by [6]. Methods for improving computa-
tional speed have been discussed by adjusting nonlinear pro-
gramming algorithms to adapt to the framework of online opti-
mization, using the optimal control formulation of the receding
horizon problem, constraint and cost approximations based on
state-space partitioning, and re-parameterization of the degree
of freedom in predictions.
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Although some online NMPC solution techniques that are
very fast have been developed, they depend on iterative, approx-
imate solution approaches based on rapid convex optimization
solvers [7, 8]. As a result, they do not necessarily attain the so-
lution speeds obtained by linear formulations of MPC. Some
authors have developed explicit NMPC which moves the op-
timization offline, but it is known to scale poorly as the look
up table that results goes up exponentially in keeping with the
length of the horizon as well as the number of constraints. Due
to this, NMPC, especially on systems with strict computational
constraints, is not suitable for fast, real-time operation. Usually
sequential quadratic programming (SQP) algorithm or its mod-
ified versions prove to be effective as a nonlinear, non-convex
optimization problem solver in the NMPC [9–12]. But it greatly
depends on the strong initial guesses for the starting of compu-
tations which may lead to the local minimum solution and the
resulting NMPC control may be far from an optimal point.

To adapt to these issues, heuristic algorithms can try not to
get trapped in the local minima and benefit from its indepen-
dence on the initial guesses. The primary motivation for select-
ing the PSO as a heuristic algorithm is the fact that its ease of
implementation and shown good performance in many applica-
tions based on the literature. Though PSO does not guarantee
an exact optimum but, because of the availability of a diversity
space searching technique in the algorithm, it has a great chance
to reach towards the global optimum. Various efforts have been
taken by researchers to apply the PSO to the NMPC strategy
for its implementation [13–15] for fast dynamic systems but
still there is scope to improve the PSO algorithm to tackle with
the large horizon length.

In the light of current approaches and their limitations, the
NMPC with modified parallel algorithm of PSO based on

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 4, p. e140696, 2022 1

mailto:supriya.diwan8@gmail.com


Supriya Diwan and Shraddha Deshpande

divide-and-conquer approach (PPSO-DAC) is proposed for en-
capsulating the required control input, which applied to con-
strained NMPC for executing within prescribed sampling time.
In this approach batch wise division of the population is used
to compute the fitness function in parallel to conquer the high
speed computation in the NMPC. The key contributions of the
work are:
• a comparison of proposed strategy PPSO-DAC with PSO in

NMPC algorithm;
• the proposition of efficient constrained PPSO NMPC algo-

rithm with divide-and-conquer approach, tailored for imple-
mentation using fast hardware with on-line optimization;

• validation with SRIP case study, which is the classical ex-
ample of the system with fast dynamics that plays a impor-
tant role as prototype of several robotic applications.

The contents of the following sections of the paper are as fol-
lows. Section 2 gives a brief review of the NMPC formulation.
The proposed PPSO-DAC algorithm used to solve the NMPC
optimization problem is introduced in Section 3. Section 4 gives
implementation details of the proposed algorithm which is fol-
lowed by experimentation results explained in Section 5 for sin-
gle rotary inverted pendulum (SRIP) as a case study, and the
conclusion is presented in Section 6.

2. NMPC FORMULATION
In general, model predictive control recurrently calculates con-
trol actions which optimize the predicted system behaviour. The
system to be controlled is considered as a nonlinear state-space
model (1) with constraints (2) as follows:

x(t +1) = f (x(t),u(t)); t > 0 at t0, x(0), (1a)

y(t) = h(x(t),u(t)). (1b)

Depending on the constraints imposed by input and output in
the form:

umin ≤ u(t)≤ umax , (2a)

ymin ≤ y(t)≤ ymax , (2b)

ẋ = f (x,u), (2c)

where x(t) ∈ R(nx) is the state vector, u(t) ≤ R(nu) is the input
vector, y(t) ≤ R(nc) denotes the controlled output with the t as
the current sampling instant. f and h are system functions of
the process model. Furthermore, umin, umax and ymin, ymax are
constant vectors. The working principle of the NMPC is de-
scribed in Fig. 1. At sample t a dynamic model of the controlled
system is utilized to forecast a series of Np future output be-
haviours of the system up to time t +Np, i.e., y(t +Np | t) for
Np = 1,2, . . . ,Np. Based on the forecast, Nm optimal future in-
puts u(t+Nc | t) for Nc = 0,1, . . . ,Nc−1 are calculated to reach
the desired output yref, as closely as possible as shown in Fig. 1.
The parameters Np and Nc are the prediction and control hori-
zons respectively. The problem of optimization (3) for NMPC
can be explained as below on the basis of the dynamic model of

Fig. 1. A graphical representation of NMPC

form (1):
min
Uk

J(y(t),u(t)). (3)

The criterion for minimizing the calculation of optimal
movements is usually the quadratic function of the differ-
ence between the expected output signal and the desired ref-
erence output. This cost function J includes the control moves
(u(t +Nm | t)) to minimize the control efforts. A cost function
is as given below:

J =
NP

∑
p=1
‖ȳ(t + p | t)− yref(t + p | t)‖2

Q

+
Nc−1

∑
m=0
‖∆u(t +m | t)‖2

R , (4)

where, Q and R, are weighting matrices. Here, ‖ .‖ is the vector
2-norm, | . | is the absolute value of the vector, and ∆u(t +m |
t) = u(t+m | t)−u(t+m−1 | t). Usually, only the first Nc con-
trol inputs are calculated, and the following (Np−Nc) control
inputs are assumed to be zero.

Only the first control input is used in the Nc control input
calculated from the J minimization; the rest are discarded. The
performance is calculated at the next sampling moment and the
process is repeated with the new measured values and by mov-
ing the horizon of control and prediction ahead. The estimation
of the optimal control inputs for the future is based on the J that
can be accomplished with various optimization algorithms. In
this research paper, what we propose is a parallel PSO method
on the basis of the divide and conquer approach which is dis-
cussed in the next section.

3. PPSO-DAC ALGORITHM
In this section the proposed PPSO-DAC is explain with focus-
ing the classic PSO to the proposed PPSO-DAC.

3.1. PSO
PSO makes use of the population of possible solutions to probe
the search space and relies on data that is being exchanged be-
tween individuals (particles) that make up the population oth-
erwise known as the swarm [16–18]. Each particle modifies its
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trajectory based on the information exchange, going towards
the best position held by it previously, as well as the best posi-
tion held previously that is achieved by the total swarm. These
updated, improved positions will guide the movement of the
swarm. This process will be re-run till a satisfactory solution
is reached. The movement of the particles is updated based on
the particle velocity and its position, which is mentioned in (5)
and (6).

Pi(q+1) = Pi(q)+Vi(q+1), (5)

Vi(q+1) = ωVi(q)+ c1r1
(
PL

i (q)−Pi(q)
)

+ c2r2
(
PG

i (q)−Pi(q)
)
, (6)

where, Pi(q) = (Pi1(q),Pi2(q), . . . ,PiN(q)) is the position of the
particle i with i = 1,2, . . . ,SP, population size SP, Vi(q) =
(Vi1(q),Vi2(q), . . . ,ViN(q)) is the velocity of the particle i, N
is the dimension of the search space, PL

i = (PL
i1,P

L
i2, . . . ,P

L
iN) is

the local best within the particle, PG
i = (PG

i1 ,P
G
i2 , . . . ,P

G
iN) is the

global best within the particle of the swarm. q is nothing but
= 1,2, . . . ,ni, where ni is the number of iterations. c1 and c2
are constant positive values called as learning factors, r1 and
r2 are random numbers which uniformly distributed within the
range [0, 1] at each iteration, ω is the inertia weight which is
decreased with the range ωmax to ωmin and each iteration as
ω = (ωmax−ωmin)/ni. Block diagram shown in Fig. 2 gives
the details regarding the PSO based NMPC.

The selection of the parameters for the designing of PSO al-
gorithm is crucial. Based on these parameters the convergence
speed and the performance of the PSO algorithm is neces-
sary. In this paper the parameters are selected empirically. The
pseudo-code of the PSO based NMPC algorithm is given as

Algorithm 1. PSO relies on a population (or swarm) of parti-
cles, which change positions and velocites while searching the
space for global minimum of the cost function, J (4 or 8). When
PSO is applied for NMPC, the particle position is a vector that
corresponds to nu inputs and Nc steps. Hence, the initial posi-
tion is Pi(0) of nuNc elements. The entries of vector Pi(0) for
i-th particle are calculated as random numbers using uniform
distribution between umax and umin (which is positions pmax,
pmin), which is referred to in line 3 of algorithm 1. In the al-
gorithm, PG is the best position visited by the whole popula-
tion as mentioned above, with cost function value F∗; PiL is
the best position visited by the i-th particle, with cost function
value FL

i . Searching for the minimum of J proceeds through
succeeding j = 1, . . . , t iterations. The choice of the ω , c1, c2, t
and ni, as well as prediction control parameters (i.e. Q, R, Np,
Nc) influence the quality of control algorithm and the time of
optimization. Considering that the sequence U(k) provided by
Algorithm 1 is U(k) = {u1,u2, . . . ,uNc}. Within these sequence
first optimal control input u∗1 calculated by the PSO is finally
applied to the plant and others are discarded.

Constraints of the input signal can be handled by penalty
function which is given by (8). The problem of state constraints
is always more challenging. Constraints of any kind can be in-
cluded in optimization process, resulting in minimisation prob-
lem of cost function subject to constraints.

Remark 1. The working mechanism of Algorithm 1 resembles
the working principle of the PSO based NMPC algorithm de-
scribed in the paper [19] but the only difference is the method
of fitness function calculation which is described by (8).

As PSO carrying the unconstrained optimization nature, the
penalty function approach is used to tackle the constraints in

inputs for J

nonlinear model

one step of PSO

Fitness function F

PSO Solver

Random Number

Generator

yref

ȳ(k + 1)

Plant
u1

control values
Uk

(best control values after
ni )

q−1

y(k + 1)

y(k + 1)y(k)

backward shift operator
(moving horizon in NMPC)

yk

predicted outputs

(Q,R)

Nonlinear Model Predictive Control (NMPC)

(Optimization Problem Formulation)

Fig. 2. Block diagram of PSO based NMPC
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Algorithm 1: PSO algorithm for NMPC

Input: y(k): Measured outputs from Plant
Output: u1(k), . . . ,uNc(k): control input
Data: Np, Nc, Q, R, C1, C2, N, i, ωmin, ωmax, N = Nc,

Tolerance, yref, pmax, pmin, q
1 k← 0 // For each sample
2 for i← 1 to Sp do

/* generate random values from normal uniform
distribution within range (pmin, pmax) of N
dimensional swarm where N = Nc; use best
position (PL

i ) obtained at previous NMPC step
for i = Sp */

3 declare Pi(0)
4 Vi(0)← 0
5 PL

i (0)← Pi(0)
6 F∗i ← J(Pi(0))
7 end
8 F∗← min(F∗i ) for all i // (best function value for all

Fi, i = 1,2, . . . ,Sp)
9 PG

i (0)← arg min(F∗) // calculate best position
10 for q← 1 to ni do

// for every iteration and
11 for i← 1 to Sp do

// for every particle:
/* random values normal distribution within

(0,1)) */
12 declare r1, r2

/* Update velocity Vi(q+1) and position Pi(t +1)
*/

13 Vi(q+1) =
ωVi(q)+ c1r1(PL

i (q)−Pi(t))+ c2r2(PG
i (q)−Pi(t))

14 Pi(q+1) = Pi(q)+Vi(q+1)
15 if Pi(q+1)< pmin then

/* consider the constraints;in NMPC pmax,
pmin are nothing but umax, umin */

16 Pi(q+1)← pmin
17 Vi(qt +1)← Pi(q+1)−Pi(q)
18 end
19 if Pi(q+1)> pmax then
20 Pi(q+1)← pmax
21 Vi(q+1)← Pi(q+1)−Pi(q)
22 end
23 F ← J(Pi(q+1)) // (calculate cost function)
24 if F < F∗i then
25 F∗i ← F // (update the best cost function

value,
26 PL

i ← Pi(q+1) //and position for particle i)
27 end
28 if F > F∗i then
29 F∗i ← F // (update the best cost function

value,
30 PG

i ← Pi(q+1) // and global best position
for particle i)

31 end
32 end
33 If stopping criterion satisfied, output the solution

Uk = PG
i (q+1) which is best so far.

34 end
35 The first output solution u∗1 form the set Uk is applied to the

plant until next sampling instant.
36 k← k+1

this paper. The constrained optimization problem (7) can be
represented with the following constraints:

min
u

J(u)

subject to hi(u)≤ 0, i = 1,2, . . . ,m,
(7)

where J is the objective function and u is the decision vector
with nu variables which is defined in (1) as input vector. The for-
mulation of the constraints in (7) is not restrictive, since an in-
equality constraint of the form hi(u)≥ 0 can be also represented
as−hi(u)≤ 0. In the following equation (8), the PSO algorithm
with penalty function approach is introduced to solve the con-
strained optimization problem which is generally defined as:

F(u,σ) =


J(u) if u is feasible,

J(u)+σ

m

∑
i=1

[max{0,hi(u)}]2 otherwise.
(8)

In this way the constrained optimization problem is repre-
sented by unconstrained problem. Three aspects influence how
efficiently a nonlinear programming (NLP) problem may be
solved: the magnitude of the problem, the kind of the prob-
lem, and the optimization algorithm to be applied. The problem
scale or problem style are not addressed in this paper. Because
of nonlinear dynamic systems, improving the optimization al-
gorithm is preferred in this paper for engineering problems.

The swarm particles will explore a pre-defined search space
determined by equation conditions (6), (5) and find the best ini-
tial positions around the global optimum for u. As the NMPC
computation of the optimal input applied to the real-time sys-
tem mainly depends on the number of predictions required to
compute along with the control horizon, the classic PSO al-
gorithm finds some more time requirements because of the
O(n2+1) complexity. Maximizing the number of particles pro-
duced better results than repeated runs with fewer particles for
issues with a large number of design variables and several local
minima. This motivates us to find a solution towards parallel
computations in the NMPC with a reduced computational load
of a single PSO solver.

3.2. PPSO-DAC
The divide-and-conquer approach is proposed by dividing the
computational load of a single solver using multiple parallel
solvers with the division of the swarm population [18, 20, 21].
It achieves the speed of computation within each sampling in-
stant, which is the major challenge of the NMPC. This approach
is beneficial for implementing it on the hardware with reconfig-
urable parallel architecture. All particles also known as design
points are independent of each other for each step of time (de-
sign iteration) and can be easily studied in parallel. PSO as an
iterative method, which depends on the size of the population
and the number of iterations, requires more time to reach to-
wards the optimum value. Therefore, the divide-and-conquer
approach is suggested to decrease the computational efforts.
In this approach, the populations of the swarm (SP) are di-
vided into two sub-swarms, i.e. {SP1 , SP2} so that these sub-
swarms will be used to solve the sub-optimum global solutions
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in parallel fashioned PSO solvers. The final global particle po-
sition is Uopt(k) which satisfies the condition Jmin(SPG), where
SPG = {SPG1 , SPG2}. In online optimization, which is a core part
of NMPC, this benefit of the proposed technique can be surpris-
ingly helpful. A block diagram of the proposed parallel solution
is shown Fig. 3.

Fig. 3. Block diagram which shows the PPSO-DAC based NMPC
with algorithm

Remark 2. The working mechanism of PPSO-DAC resembles
the working principle of the based algorithm described in the
paper [21]. The swarm is divided and the computed set of con-
trol inputs of each batch is again tested with fitness function
and after this the feasible most fitted u∗1 from Uk is applied to
the plant, is not provided therein.

Remark 3. Because of the iterative and random variable-based
process, the output will vary in magnitude even if the mean
is small for some applications. This issue could be solved by
smoothing the inputs through interpolation of the obtained in-
put sequence with the initial sequence or by using the curve
fitting method [14].

4. APPLICATION OF THE PPSO-DAC-NMPC SCHEME
TO SRIP

It is possible to extend this PPSO-based NMPC scheme and
its real-time implementation to different systems. In this part,
in order to show the superior performance and effectiveness of
the proposed algorithm, we applied the proposed PPSO-based
NMPC algorithm to an SRIP system supplied by QUANSER
(National Instruments). The SRIP is chosen as it requires on-
line computing efficiency. A simplified control relevant model
of SRIP with 2 degree-of-freedom is used to prove the effective
utilization of the proposed algorithm. The system consists of a
rotational arm and a pendulum where the rotation of the arm
is actuated by a motor to balance the pendulum in an inverted
position [22,23]. The design parametrs used for SRIP are men-
tioned in Table 1. A nonlinear state space model is developed
for the same.

Table 1
Parameters of SRIP system

Symbols Description Value (unit)

Rm Motor armature resistance 2.60 (Ω)

kt Motor torque constant 0.00767 (N m/A)

km Motor back-EMF constant 0.00767 (V s/rad)

Kg Total gear ratio 70 (–)

Jr
Motor armature moment of in-
ertia

0.0010 (kg m2)

g Gravitational constant 9.81 (m/s2)

mp Pendulum mass with T-fitting 0.127 (kg)

Lp
Full length of the pendulum
(w/T-fitting)

0.337 (m)

Lr
Distance from pivot to center of
gravity

0.216 (m)

Jp Pendulum moment of inertia 0.00120 (kg m2)

Br
Viscous damping coefficient as
seen at the rotary arm axis

0.00240 (N m s/rad)

Bp
Viscous damping coefficient as
seen at the pendulum axis

0.00240 (N m s/rad)

4.1. Control relevant modelling
The plane of the pendulum is orthogonal to the radial arm. The
SRIP system is derived with mathematical expression as fol-
lows [24]:(

mpL2
r +

1
4

mpL2
p cos(α2)+ Jr

)
θ̈ −

(
1
2

mpLpLr cos(α)

)
α̈

+

(
1
2

mpL2
p sin(α)cos(α)

)
θ̇ α̇

+

(
1
2

mpLpLr sin(α)

)
α̇2 = τ−Brθ̇ , (9a)
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− 1
2

mpLpLr cos(α)θ̈ +

(
Jp +

1
4

mpL2
p

)
α̈

− 1
4

mpL2
p sin(α)cos(α)θ̇ 2

− 1
2

mpLpgsin(α) =−Bpα̇, (9b)

where the torque applied to the base of the rotary arm (i.e.,
at the load gear) is generated by a servo motor described by

τ =
ηgKgηmkt(Vm−Kgkmθ̇)

Rm
. Based on the above nonlinear dy-

namic equation (9) the nonlinear state-space model is derived
where the function f maps the current state and input to the
next state ẋ [5]. This model is used to forecast the state trajec-
tory over a prediction horizon Np and to move the state from a
starting condition to a location that is desired with the required
control action taken. The continuous model described by the
nonlinear state space model is discretized with sample time Ts.
For this, the equations of motion of the pendulum and the ro-
tary arm are defined as equations of difference (10). Provided
the notation vector v(k) and sample time Ts, using the forward
Euler discretization, the differential system equations are ob-
tained, yielding:

xek+1 ≈ xek +Ts fe(xek ,uek) = fd(xek ,uek). (10)

The model is extended with an additional delay state to
model the delay between the instant the state variables xek are
evaluated and the time when a new control action ue(k+1) is
made available (11). Considering the new state vector xk =
[xT

ek
xT

uk
]T , the input vector uk = uek , and f (xk,uk) =

[ fd(xek ,xuk)
T uT

ek
]T , the model takes the form:

xk+1 = f (xk,uk) (11)

For the discretization of the model proper selection of sam-
pling time is required. For obtaining greater information about
the process model a smaller sampling time will be useful to im-
prove the controller performance; but if the sampling time is
too small, then it will increase the time required to compute the
control input. If the selected sampling time is large, then a large
error will be generated during the control process despite then
decreased computational burden. This may cause losing the sta-
bility of the system. The system has a damping factor ζ which
is 0.7 and the natural frequency (ωn) is 4 rad/sec. The sampling
time is selected as 20 ms by considering the dynamics of the
system.

4.2. Control mechanism
The system has two main control actions i.e., balance control
and the swing-up control [22]. In this paper, the authors have
focused their research on a balanced control of the inverted pen-
dulum with fast disturbance rejection. According to the current
states of the RIP system at instant k, it is possible to predict the
dynamic states of the next Np steps depending on equation (10)
and Nc is considered for the control prediction. A large pre-
diction horizon gives more information about the dynamics of

the system and results in a better balancing performance of the
SRIP. However, a large value of Np increases the computational
time. A larger value of Nc results in a smooth control action,
but on the other hand, a larger value of Nc is responsible for a
longer computational time. Therefore, a trade-off between per-
formance and the computational time has to be done. Hence,
the value of Np = 23 and then Nc = 3 has been selected by per-
forming iterative simulations. The selection of Q and R is also
based on the consideration of the required output performance
of the rotary inverted pendulum (SRIP) system. The weighing
matrices are selected as Q = diag(1,5) and R = diag(0.1) after
various regulations are performed. The constraint on the po-
sition of the pendulum (output) is −20 ≤ x2 ≤ +20 (degree)
and the input constraint is considered as −10≤ u≤+10 (Volt)
based on the actual output range of the actuator. The reference
for the states is yref = [0; 0; 0; 0]. The values for penalty
are σ = 100 and β = 2. The cost function formulated based on
these design parameters is solved by the PPSO-DAC-NMPC al-
gorithm based on the divide and conquer approach which will
be compared with the PSO-NMPC algorithm.

4.3. Design parameters for PPSO-DAC based NMPC
The proposed PPSO-DAC based NMPC algorithm is extension
of the based PSO based NMPC algorithm. The basic PSO algo-
rithm is developed with the following parameters: the number
of iterations (ni) at 50 with population size (SP) 60 is sufficient
for the computation of the optimum output which is decided
based on a trial-and-error method as is essential for the practi-
cal engineering design to balance between computational effi-
ciency and optimality. Search space, N =Nc = 3 such that better
response within less computational time will be achieved. The
cognitive coefficient c1 is 0.5 and the social coefficient c2 is 1.5.
The inertial weight (ω) varies from (ωmax) 0.9 to (ωmin) 0.4 per
iteration. The values of r1 and r2 are selected randomly in the
program. For the convergence of the algorithm, a tolerance of
10e−4 is considered. Initially, velocity (Vi) is 0. Various com-
binations with population sizes and number of iterations have
been tested. And based on these results best possible combina-
tion of ni = 50 and SP = 80 has been found sufficient for the
desired response of the SRIP. For the PPSO-DAC-NMPC algo-
rithm the population size is divided into two equal groups i.e.,
SP1 = 40 and SP2 = 40 with consideration of the same number
of iterations i.e., 50. Each group of SP1 and SP2 is again equally
divided into Sp11 = Sp12 = Sp21 = Sp22 = 20. The real-time im-
plemented PPSO-DAC-NMPC algorithms results are discussed
in the Section 5 below followed with Subsection 4.4.

4.4. Real-time implementation
An advanced model based design platform for control algo-
rithms verification and prototyping must make easy the prac-
tical implementation with the same used hardware target and
software tools. In this paper, the hardware-in-loop (HIL) simu-
lation is carried out for testing of the algorithm which depicted
in Fig. 4. The optical encoders used to measure the arm position
and pendulum position and the power amplifier gain is used to
boost the small control input applied to the SRIP. All the in-
terconnections of the set-up are developed with the LabVIEW
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Fig. 4. Schematic diagram of the experimental setup of the SRIP

platform. The controller is implemented on the national instru-
ments cRIO, hybrid embedded hardware which has processors
of ARM and the field programmable gate array (FPGA) of par-
allel computing ability, which leverage fast processing speed.
Because of this hardware and software co-design, the feasibil-
ity of the proposed control algorithm for the particular real-time
hardware will be tested rapidly.

5. RESULTS AND DISCUSSION
Several experiments were carried out to find the best SRIP op-
timised with the PPSO in terms of variation in the number
of iterations in order to demonstrate the performance of the
PPSO with the divide-and-conquer approach. The main goal is
to compare the results obtained by NMPC with the Basic PSO
and the PPSO-DAC. The response of the SRIP to the proposed
PPSO-DAC-NMPC algorithm is depicted in Fig. 5a and 5b. As
previously stated, only the balance control of the inverted pen-
dulum is observed in the first case, which yields excellent re-
sults because the root mean-square error of the pendulum po-
sition for a 5 second simulation is only 0.7108 degree within
8.27 ms when compared to the basic PSO based NMPC Ta-
ble 2. This proves the efficacy of the algorithm as its main mo-
tivation is to compute the control input within sampling time
i.e. 20 ms.

Table 2
Computational time and the RMS (error) results for balancing

the inverted pendulum without applying the disturbance

Drive system
RMS error
(α) deg.

Computational
time (sec)

Control input
(volts)

Average Max Min Max

PSO based
NMPC

0.7525 0.05601 0.1024 –0.7201 0.7168

PPSO-DAC
based NMPC

0.7108 0.00827 0.009532 –0.4661 0.4331

For testing the robustness of the controller, one step input
of 15 degrees with for 5 s to 15 s is applied as a reference
for the rotary arm position. The performance of the controller
in Fig. 5b shows that the pendulum balanced within a sec-
ond to reject the disturbance. It shows the 0.8625 degrees root

(a) Response of the the SRIP balancing in normal inverted position

(b) Response of the balance control of SRIP for the step changed arm position
as a disturbance to Inverted pendulum

Fig. 5. Response of the inverted pendulum by applying PPSO-DAC
based NMPC controller

mean square (RMS) within the average computational time of
8.68 ms which shows the fast disturbance rejection capability
of the proposed controller Table 3.

Table 3
Computational time and the RMS (error) result for balancing the
inverted pendulum by applying the disturbance to the rotary arm

Drive system
RMS error
(α) deg.

Computational
time (sec)

Control input
(volts)

Average Max Min Max

PSO based
NMPC

0.9423 0.06021 0.1101 −1.962 1.9922

PPSO-DAC
based NMPC

0.8625 0.00868 0.01601 –1.48 1.15

The particle swarm global optimizer was implemented in
parallel in this study. When each fitness evaluation took the
same amount of time, the findings for speedup and parallel ef-
ficiency were good. Overall, parallel PSO is a new solution for
computationally intensive engineering optimization problems
that makes efficient use of computer resources.

6. CONCLUSION
Tables 2 and 3 present a comparison of the basic PSO-based
NMPC and the proposed PPSO-based NMPC. This demon-
strates that the proposed algorithm is significantly more effi-
cient in terms of average computational time, RMS of the in-
verted pendulum position (deg), and an optimal control input
(volts).
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Within the defined constraints, the computing time, which
is dependent on the number of iterations, population, and con-
straints in the prediction horizon, does not exceed 20 ms for the
entire process. As a result, the proposed PPSO-NMPC algo-
rithm is fast enough to meet the computational speed require-
ment. It should be noted that classic PSO does not meet the
20 ms time step requirement, despite having a lower RMS than
the proposed PPSO-NMPC algorithm. The outcome may differ
due to the randomness of the population and the time required
to compute the optimal output for each parallel batch.

In conclusion, the parallel particle swarm optimization al-
gorithm introduced in this paper performs well in parallel as
long as individual fitness evaluations take the same amount of
time. In order to save wasted CPU cycles while maintaining
high parallel efficiency, an improved modified approach may
be required for optimization problems when the time required
for each fitness evaluation varies significantly.
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