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PREDYKCJA STEZEN SO,,NOINO, W GLIWICACH Z UZYCIEM SZTUCZNYCH
SIECINEURONOWYCH

W ninicjszej pracy postuzono si¢ wynikami pomiaréw warunkow meteorologicznych do wygenerowania
sieci neuronowych prognozujacych wartos¢ stgzenia na podstawie znajomosci warunkow meteorologicznych.
Wyniki pomiaréw obejmuja: stgzenia trzydziestominutowe: SO,, NO, NO,, parametry metcorologiczne:
kierunck i predkos¢ wiatru, temperatura powietrza, nat¢zenie promieniow-ania stonecznego, wilgotnosé
powictrza 1 klasa stabilno$ci atmosfery. Do analizy danych zastosowano program Statistica Neural Networks
firmy StatSoft. Proces uczenia przeprowadzono stosujac algorytm Levenberga — Marquardta. Dla celow
prognozy zanicczyszezen (SO,, NO,, NO) stworzono, wyuczono i przetestowano okoto 600 sicci dla kazdej
substancji i z nich wybrano trzy najlepsze. Wybrane sieci zostaly wykorzystane do przewidywania wartosci
stezen na podstawic parametrow meteorologicznych. Kolejno uruchamiano modele neuronowe dla: SO,
NO, NO,. Sporzadzono, dla kazdego zanieczyszczenia, wykresy przedstawiajace przebiegi stgzenia
rzeczywistego i prognozowancgo oraz wykresy biedu, jaki popeinia sie¢ podczas predykeji kolejnych stezen.

Summary

The paper presents application of measurements of pollutant concentrations and meteorological
conditions to create neural networks able to predict the pollutant concentrations on the basis of meteorological
conditions. The measured quantities comprised 30-min concentrations of SO,, NO, NO, and metcorological
parameters, such as direction and speed of wind, air temperature, solar radiation, air humidity, and Pasquill
stability class of atmosphere. The data were developed with the use of the StatSoft’s Statistica Neural
Networks computer program. The Levenberg — Marquardt algorithm was uscd to train networks. About 600
networks were created, trained and tested for each of SO,, NO and NO, to predict their concentrations in
ambient air and from among them the best performing network was selected. The chosen networks were
used to compute concentrations on the basis of metcorological parameters. The neural models were run
subsequently for SO,, NO and NO,. Mcasured and computed concentrations of the pollutants were presented
in charts, as well as crrors made by networks while predicting.

INTRODUCTION

The Silesian Agglomeration, a great association of 16 cities, lies in the central part of
Silesia. The city of Gliwice, a greater one in the Agglomeration, occupies about 134 km?
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(over 10% of the Agglomeration area) in its western part. The population density of Gliwice
is 1504.5 people per square kilometer (average for Poland in 2003 was 122 persons per
square kilometer) [18]. Gliwice has very compact building arrangement, especially in
downtown. Main traffic streams run through the central part of the city — there are no
circular routes bypassing the city round. Street ventilation of the city central part is poor,
which is of special importance in rush hours, when the city is practically paralyzed by one,
big and permanent traffic jam, and vehicular pollution reaches its extremes [12, 23, 24].

The main ambient air pollution sources in Gliwice are industry, municipal sources,
“low emission” from domestic furnaces and motor vehicles. Also, but rather in small amounts,
contaminants migrate from neighboring areas [12].

The highest concentrations of pollutants in Gliwice occur in heating season (1995-
2000) [12], and as it especially concerns SO,, suspended dust, NO, and CO, the pollution is
attributed to heating systems using solid fuels, i.e. the electro-power station and domestic
furnaces. However, in Gliwice the greatest all-year-round emission source is the traffic,
contributing about 25% of NO, and CO, and 60% of aromatic hydrocarbons to total emission
to the atmosphere [12, 23, 24]. Such a situation is caused by insufficiently developed
communication system allowing heavy truck transport to run through the city.

In Gliwice, within frames of the Regional Air Quality Monitoring program,
concentrations of the main air pollutants are measured by the automatic station installed in
Kujawska Street. It yields vast sets of data every year. The data had been used merely for
the air quality evaluation, but about 10 years ago the idea of using it in predictions of the air
pollution emerged. The basic tool for predicting concentrations of air pollutants was the
Artificial Neural Networks (ANNSs).

Applications of the ANNSs in air protection, and especially in air pollution forecasting,
are reviewed by Gardner and Dorling [6]. Among many types of ANNs, the most often
applied and important one is a one way (i.e. feed-forward), multilayer network with sigmoid
neurons, referred to as the Multilayer Perceptron (MLP) in the literature. In those networks
information flows in one direction — from input to output. Training methods for MLPs are
simple and easy to implement — usually an MLP is trained with a supervisor (error
backpropagation method and its modifications [22, 27], RLS algorithms [4], Levenberg —
Marquardt algorithm [22, 27]).

In 1993, Bonzar [3] presented possibility of the MLP application in predicting SO,
concentrations in ambient air on the basis of meteorological data. The data came from
aheavily urbanized area of Slovenia. In 1999, Gardner and Dorling [7] published a paper on
prediction of 24 h concentrations of NO_and NO, in London, where they used perceptrons,
and discussed the advantages of their method over regression models. Perez in his papers
proved and broadly discussed applicability of the neural models in prediction of the air
pollution. In 2000, he used a three layer perceptron to predict PM, ; concentrations in
atmospheric air in Santiago, Chile. Beside the standard meteorological parameters, as an
additional input variable he used the PM, , concentration measured the day before [11].
Perez made prognoses of NO, concentrations in air in vicinity of very busy streets using
two additional inputs: the air temperature predicted for the time of anticipated NO occurrence
and NO concentrations measured several hours before this time [10]. In [9], Perez presented
application of the three layer perceptron in forecasting the SO, concentrations in the air. He
obtained the best results by using — beside the standard inputs, 1.e. meteorological data —
SO, concentrations measured 6 hours before the time the concentration prognosis was to
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be done for. Andretta et al. [1], using SO, concentrations and meteorological data as the
network inputs, predicted exceeding of admissible air concentrations of SO,. The network
output was binary: it issued 1 if the concentration exceeded 40 pg/m?, otherwise 0.

The present paper describes an attempt to predict air pollution in Gliwice at the site
monitored by the automatic station (station A5 of the Regional Air Pollution System
Monitoring). The station is located within the premises of the Silesian Technical University
in Gliwice. Its geographic coordinates are: longitude 18°41°03”’E, latitude 50°17°07”’N, altitude
232 m over the see level. The nearest pollution sources were:

— Chemical Works CARBOCHEM —about 1300 m SE,

— Hard Coal Mine GLIWICE —about 500 m S,

— Steel Works “1-go MAJA” —about 1300 m N,

— Electro-Power Station GLIWICE —about 2000 m NE,

— Hard Coal Mine SOSNICA —about 2200 m E,

— Domestic furnaces of downtown — in a circular sector from west to north.

The station was equipped with:

— CO analyzer ML 8830,
—NO_ analyzer ML 8841,

— SO, analyzer ML 88508,
— Suspended dust analyzer TEOM 1400,
— Speed and direction of wind sensor KRONEIS,
— Alr temperature sensor KRONEIS,
— Air humidity sensor KRONEIS,
— Solar radiation sensor KRONEIS.

Air pollutants typical of heavily urbanized and industrialized areas were investigated:

— Sulphur dioxide, SO,, — in ambient air comes from combustion of fuels contaminated
with sulphur: solid (hard coal) in power and electro-power stations, liquid (oils) in
car engines,

— Nitrogen dioxide, NO,, and nitrogen oxide, NO, — excessive amounts of those gases
in the atmosphere come from the production processes (high temperature
technologies, power station furnaces) and car engines.

Anthropogenic sources may emit up to 90% of SO, and NO,_ into the atmosphere in
such areas [19], although this figure may not be adequate to many regions due to insufficiently
recognized emissions (especially low emission from domestic sources and traffic) and
transport of air contaminants.

The scope of works done within the undertaken task was following:

— Transforming raw numerical data into arrays possible to be introduced into the

program,

— Detailed pre-processing of data [16, 21],

— Testing subsequently built networks for their predictive abilities (training, validating,
and testing various networks by presenting them with selected data sets),

— Choosing the best, respect to proper criteria, neural network,

— Applying an ANN to prediction of air pollutant concentrations on the basis of given
meteorological parameters,

— Analyzing the results; comparing computed (predicted) concentrations with
measurements.

The StatSoft’s Statistica Neural Networks computer program, simulating the ANN
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performance, was used to complete all the tasks. The Levenberg — Marquardt algorithm
was used to train the networks [22, 27].

THE DATAFILE

Measured data consisted of 30-min concentrations of sulphur dioxide (SO,), nitrogen
oxide (NO), nitrogen dioxide (NO,) in ambient air, as well as meteorological parameters such
as speed and direction of wind, air temperature, solar radiation and relative air humidity.
Additional information, computed from data provided by the Institute of Meteorology and
Water Resources (IMWR), was Pasquill stability class of atmosphere [8, 14]. The data
covered the period from January 5 to December 31, 1996.

The data statistical parameters were following:

Measured parameter Range of changes Mean  Standard deviation
Wind direction ° 61-89 71 83

Wind speed m/s 0-6.3 24 1.45

Air temperature °C 23-30.3 29 104
Relative humidity % 25-96 74 172

Solar radiation W/m? 0-924 104.2 188.2
Atmosphere stability category - 1-6 - -

SO, concentration pug/m’ 6-303 74.7 455

NO, concentration pg/m? 11-147 447 17.0

NO concentration pg/m? 1-382 18.3 284

Values of the above meteorological parameters, together with proper concentration of
one of the three pollutants, constituted the basic record of data to that pollutant. In the
experiment, 1460 such records, i.e. 1460 various meteorological situations, were used for
eachof NO, NO,, and SO,.

CREATING NEURALMODELS

For each of the three pollutants, NO, NO,, and SO,, the array built of 1460 basic
records was prepared. Each basic record contained 30—min measurements of meteorological
parameters and proper 30—min concentration of a particular pollutant.

The ST Neural Network data file editor was applied to the data.

The input and output variables were chosen. The input variables were the
meteorological parameters, the output variable, in every case, was the concentration of
a pollutant. Designed networks had six input variables (air temperature, relative air humidity,
wind direction, wind speed, Pasquill atmosphere stability category, and solar radiation) and
one output variable (concentration of SO,, NO, or NO).

Network training demands dividing of the data set into three parts: training, validating
and testing subsets. The editor window has three fields, each comprising a number of
records of one of these sets. The testing subset is created to arbitrarily evaluate the network
performance after the designing and training phases. In the presented case, the subsets
were built of records randomly chosen from the main data set (possibility of mixing of
records was provided by the used software).

The next step in the network designing was transforming the raw data into numerical
data, acceptable to the network for further development, and the network output value into
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a value corresponding with the raw data format (pre- and post-processing) [15, 17, 25].

Once the data arrays were loaded into the program, the ANNs resulted from the
standard sequence of the following operations:

— Choosing an initial structure of a network (a network with one hidden layer and an
initial number of hidden neurons being half the sum of numbers of input and output
neurons);

— Choosing the best network configuration (in respect of a validating error determined
for a validating sequence) by iteratively experimenting with each of all possible
configurations;

— Attempting addition of new neurons to the hidden layer (or whole hidden layer) if
the experiments proved under-learning of the network (the network did not reach
assumed error level);

— Attempting removal of some number of hidden neurons (or whole hidden layer) if
the over-learning (the model fits the data from the training set too well; the ANN
loses its generalization abilities) of the network occurred (validating error had
considerably increased before the network was sufficiently trained); the training
records were also added.

In the last step, a linear network was sought to forecast the value of the particular
output variable (concentration), having the error comparable to error of the best MLP.
There exist many problems that are not solvable by using linear methods. However, in many
applications the linear methods perform very well. Due to their simplicity and easiness of
use they should be chosen even in case they give slightly worse effects [17, 22, 27].

In the whole process of looking for the best performing network, 600 models, differing
from each other with their architecture, for each of the three pollutants and all data sets
were tested [13]. The criteria to select the best neural networks were following:

General estimate: Automatically reported by ST Neural Networks as exceptionally

bad, very bad, bad, OK, good, very good, excellent [16, 17].

Regression coefficient: (proportion of standard deviations). It is called sometimes
the quality of a network. If it is greater than or equal to 1, then the model yields
results not better than the model outputting always the same signal being simply
the mean of the earlier observed input values. Value less than 1 means the model
having better output fitting — the lower regression coefficient, the better the model.

Correlation: The coefficient expressing relation between values of concentrations
on input and output of a network; it varies within the interval 0-1; the closer the
correlation to 1, the higher quality of the received network [2, 22].

Network error: The network error is the square root of the sum of squares of the
errors determined by the network error function for basic records. If in the process
of creation of networks the training, validating and testing sets are formed, then,
while learning, the errors are determined for each of those sets, but only the error
computed for the validating set is referred to while training. Increasing of this error
at some step of the training means the network over-learning. The error computed
for the testing set is the ultimate criterion to verify the network. The selected network
is the best one in respect of the validating set error [2, 17, 22, 27].

When the network error and network general estimate were close, the network was

selected with respect to the correlation.
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NEURAL MODELS

Below, in Table 1, the neural networks selected to predict concentrations of pollutants
and, in Figure 1, the general scheme of the network are presented.

Table 1. The best neural networks and their basic parameters

General | Regression
Output variable | Type Structure Correlation | Error
estimate | coefficient

SO, LNN 6:40 -1:1 good 0.69 0.72 22.82
NO MLP 6:40 -6-1:1 OK. 0.80 0.60 13.86
NO, MLP| 6:40-12-4-1:1 OK. 0.91 0.75 8.82
) inputs hidden layer output

ferugesitirs

wind

speed

wind

direction

relative

air humidity pollutant

concentration

solar
radiation

Pasquill’s stability
category

Fig. 1. Architecture of the three-layer feed-forward network applied in the study

Three-layer network was created for NO — it is presented in Figure 2 in detail. The
network created for NO, is presented in Figure 3, for SO, —in Figure 4; all the three networks
have the same number of inputs.

NEURALNETWORKS IN PREDICTION OF POLLUTANT CONCENTRATIONS

After selecting and training the network once, its performance in predictions of
concentrations of air pollutants was tested.

The trained network, applying acquired knowledge to the whole data set, computes
concentrations of pollutants for given meteorological parameters. Results of computations
are given in arrays; the fragment of one of them is presented in Table 2.

The results were used to draw charts of real and computed concentrations of particular
pollutants. Comparative analysis of real and computed concentrations allowed evaluating
performance of the network for each of the considered pollutants.
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Fig. 3. Scheme of the network for predicting NO, concentrations

Running the network for NO yielded the array of resulting concentrations. On its
basis, Figure 5 was made to compare real (measured) and predicted concentrations. For
every base data record, the values of real and computed NO concentrations are different
but trends of the two concentration functions are similar. Generally, the computations
overestimated concentrations. The negative values of computed concentrations were very
surprising because all the measured concentrations the network was trained and verified
with were positive. Although the mean values of real and computed concentrations are
close (18.44 pg/m* and 18.30 pg/m?, respectively), their highest and lowest values differ
considerably. The lowest computed concentration is — 19.65 ug/m?, the lowest real one is
1 pg/m?. The highest computed concentration is 142.06 pg/m’, the highest real one is
382.0 pg/m’®. The maximum difference between real and computed concentrations is almost
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Fig. 4. Scheme of the network for predicting SO, concentrations

200.0 pg/m*. However, for many records concentration is computed with great accuracy —
achieving even 0.002 pg/m’. The mean difference between real and computed concentrations
is 13.35 pug/m® — it is comparable with the mean concentrations. The most erroneous
concentrations are computed for records with very high or very low real concentrations. It
is due to using the Sum of Squares function as the error function. This function is very
sensitive to particular cases and favors untypical records [22, 27]. The City Block error
function [17], summing absolute values of differences between measured and computed
concentrations instead of their squares was tried as a function computing the network
error. Getting rid of the square dependence in the error function lowered the network
sensitivity to untypical cases and the greatest values of errors dropped [15]. However, in
other cases the errors increased. So, the error function was decided to be left unchanged.
Supposedly, the best solution would be removing untypical records from the data set and
training and running the network again. Because such data items were too numerous, such
an action was given up in view of considerable reduction of the data set.

A plot of the RMS error was done (Fig. 6). From the plot it may be concluded that
despite of the mentioned deficiencies, the network has quite good predictive properties for
the whole data set. For the whole data set the RMS error is low. The error never reaches 0.8,
and in most cases it is several times lower, which means good network performance in the
given regression problem.
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Table 2. The way of presenting results of computations (concentrations of NO)

Computed Difference between o
Real concentration ) Prediction
No. . concentration computed and real
[pg/m’] 5 ) error
[neg/m?] concentrations [pig/m’]

1. 9 13.30 4.30 0.0113
2 8 23.51 15.51 0.0407
3. 56 68.77 12.77 0.0335
4. 64 37.77 -26.29 0.0690
5. 10 27.12 17.12 0.0449
6. 50 .70.39 20.39 0.0535
7. 13 8.84 -4.16 0.0109

In Figure 7, a comparison of real and computed by the network SO, concentrations is
presented. Real and computed concentrations of SO, are close. Differences between the
concentrations are small. Averaging real and computed concentrations gave almost equal
figures (76.29 pg/m® and 76.19 pg/m?, respectively). The highest concentrations differ — the
real highest concentration is 303.0 pg/m?, the computed one is 263.49 ug/m?®. The lower
limits are also close except for negative values appearing among computed concentrations.

Averaged difference between real and computed concentrations is small (0.16 pg/m?),
maximum difference between the two concentrations is 94.53 pg/m?, what makes about 33%
of the maximum real concentration.

In general, the RMS error the chart of which is presented in Figure § oscillates between
0and 0.25. Incidentally, the error reaches 0.7. The RMS error assumes such high values for
records with very high real concentrations (computed, i.e. predicted, values are much
lower).

Concluding, in spite of selecting a simple linear network, results of the prognosis of
SO, concentrations are very good. The network performance was very good in predicting
SO, concentrations.

The real and computed concentrations of NO, are compared in Figure 9. There exist
some slight differences between the two concentrations. Averaged concentrations, real
and computed, are almost equal (real: —45.13 pg/m?, computed: — 45.07 ug/m?). Also the
highest concentrations are similar: the highest real concentration is 147 pg/m?, the computed
one is 147.17 ug/m’. However, the lowest real NO, concentration was 11 pg/m’*and the
lowest computed one was equal to 17 pg/m®. The negative values of the computed
concentration did not appear this time. Averaged difference between the real and computed
concentrations of NO, is small and equal to 8.95 ug/m*. Minimum difference between the
two concentrations is 0.003 pg/m?, and maximum difference between them is 48.79 ug/m?®.
The RMS error (Fig. 10) varies between 5.6 -107 and 0.36. Greater values of error, reaching
the maximum, appear rarely and only for records with very high real concentrations (network
foresees considerably lower concentrations).
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CONCLUSION

The paper confirms possibility of predictions of air pollutant concentrations by
applying the ANN to forecasted meteorological parameters. The neural models built for
NO, SO, and NO, show quite good predictive abilities.

Both mean concentrations, computed and real, are close — often differing by no more
than 2%. Trends of time variability of computed and real concentrations are the same for all
the pollutants. Despite of this, the highest and lowest concentrations significantly differ.
The chart of the computed concentrations against time is flattened and extremes are

mitigated.
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Appearance of negative values in the set of computed concentrations may be
considered a surprising curiosity. They occurred in spite of training and testing the network
on the sets of measured data — i.e. the positive values. The appearance of the negative
values was due to the situation where the network attempted to compute concentrations
much higher or much lower than the mean. This is why difficulties in computing extreme
values of concentrations should be considered a deficiency of the received neural models.
It is rather unquestionable that these models can neither be used to predict instantaneous
concentrations nor their maximum values. To build better neural models one should use
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greater sets of learning data containing base records with meteorological data and extreme
values of concentrations.

However, it should be noted that the prediction was done by using the complete,
finite set of measured data, presented to the network once at the stage of training. This way
of running a network is natural in a case of its testing with already existing finite data set.
The practical use of a network in concentration predictions would be related with somewhat
different mode of proceeding. Namely, for each new prediction performed for presently
possessed set of data the network should be trained by using the set used in the previous
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training enlarged by recently received results. It would yield predictions a little worse than
those received in the present work.

Apart from considering the network running and training methods and selecting of
error functions, it should be said that ANNs, or more precisely MLPs, are applicable in
predictions of air pollutants concentrations even within such areas as Gliwice, with numerous
and hard to inventory pollution sources. Many papers confirm that ANNs are better than
regression models or other statistical methods in predicting the concentrations [2, 7, 21,
26]. However, in the present paper the difficulties in modeling of emission fields, due to
problems with prediction of extreme concentrations by neural models, are pointed out. It
follows from the investigations and literature that the safest way for using ANNs should be
limiting their use to predictions of concentrations up to and above admissible level, i.e. to
ascertain exceeding of standards — exactly like Andretta did it in 2000 [1]. Such a division of
air pollutant concentrations to be predicted ensures 90% accuracy as far as the data used
in the present paper are considered.
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