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Abstract: Based on China’s provincial panel data from 2009 to 2019, this paper empirically tests and analyzes 
the effects of industrial agglomeration and other important economic variables on industrial green technology 
innovation efficiency from the perspective of spatial statistical analysis. The results show that the efficiency of 
China’s industrial green innovation has not changed much during the study period, exhibiting an obvious polarization 
phenomenon. Moreover, the improvement of the degree of industrial agglomeration is conducive to the regional 
green innovation efficiency level. This means that industrial agglomeration produces effective environmental and 
innovation benefits. In addition, the influence coefficient of enterprise-scale is negative, indicating that for Chinese 
industrial enterprises, the enlargement of the production scale weakens the promotion effect of R&D activities. 
The influence coefficient of human capital is negative, mainly because the direct effect has a small and positive 
value, while the indirect effect (spillover effect) has a negative and large value, indicating that the spillover effect 
of human capital between regions in China is deficient.

Introduction

Environmental pollution is an important global issue. 
Various models have been raised to solve this problem, such 
as coordination degree model (Haken, 1971), development 
level evaluation model (Wu & Zhao, 2016), space general 
equilibrium analysis model (Hirte, 2013), system dynamic 
model (Jeon, 2015), game theory model (Sun, 2019) and 
surrogate model (Silvia, 2016), etc. However, scholars 
believe that the next focus must be on management practices 
(Adu & Kumarasamy, 2020). They think that the new 
industrialization mode emphasizes the high efficiency and 
sustainable utilization of resources through the enhancement 
of management ability, so that industry development will 
change from resource-consuming to technology-oriented, 
including the establishment of scientific and technological 
innovation system (Wu, 2021), vigorously develop circular 
economy (Wang & Feng, 2018), formulate and improve laws 
and regulations (Kuznetsov & Kuznetsova, 2019), explore new 
regional development pattern (Wu, 2020), etc. Since the reform 
and opening-up, China’s industrial economy has experienced 
several rounds of rapid growth and has now formed a mature 
system that is in a period of transformation, rising with great 
potential. However, the pollution caused by the extensive 
development of the industrial economy has caused serious 

disasters for human beings; the deterioration of the ecological 
environment has become a  major challenge for the country 
while trying to meet the increasing needs of the sustainable 
development of the economy. China has the world’s largest 
industrial scale, among which traditional high-pollution high- 
-consumption industries, including coal, steel and petroleum,
account for a large percentage. This situation will remain in the
foreseeable future. Chinese development may not be like that
of some small Western developed countries that focus on a few
clean industries but instead will need to develop momentum
in green technology innovation and implement it across the
whole process of economic development. Therefore, the
implementation of a  green innovation development strategy
is indispensable for China to promote a  new development
pattern based mainly on the domestic circular economy as
well as to promote the sustainable and healthy development of
the economy in this new development stage. For China, green
innovation development has the following implications (Hu,
2014). First of all, it emphasizes the symbiosis of economic
system, social system, natural system and the diversification
of development goals, that is, the systematism, integrity and
coordination of the three systems, which is very close to
the natural view of “unity of man and nature” advocated in
traditional Chinese philosophy. Second, it is based on the green
economic growth model. The characteristic of the model is the
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proportion of green economy unceasing enhancement, green 
technology, green energy and green capital to stimulate the 
low energy consumption, and to adapt to the human health and 
environment friendly the constant improvement of the relevant 
industries in GDP. 

According to new industrial organization theory, the 
scale economy is one of the key factors that determine market 
structures. The impact of the scale economy is to protect and 
play competitive vitality under market mechanisms and make 
full use of the economic agglomeration effect to improve the 
efficiency of resource allocation to obtain a  higher level of 
social welfare. In essence, industrial agglomeration is a process 
of capital and labor assembly that promotes investment 
and attracts the participation of producers. In addition, the 
agglomeration of the same industry can make it easier for 
producers to obtain the assets of production and reduce 
transportation and information-collection processes of related 
enterprises during the industrial chain, thus saving costs. In 
addition, industrial agglomeration can make full use of public 
facilities, which is convenient for the exchange of scientific 
and technological achievements as well as information to 
improve product quality. Moreover, industrial agglomeration 
can exert a positive influence on various measures to protect 
the ecological environment. Because the concentration of 
industrial enterprises is conducive to the sharing of pollution 
control equipment and technology and the setting of unified 
environmental regulations by the government, thus reducing 
the unit cost of pollution treatments and improving the scale 
effect of pollution controls. For example, the agglomeration of 
producer industries in Shanghai is realized by relying on different 
spatial carriers, including modern service agglomeration 
zone, creative industry park, producer service functional zone 
and others. The establishment of these functional zones has 
accelerated the transformation of the old industrial zones with 
high energy consumption and pollution to functional zones 
for R&D producer services, international energy conservation 
and environmental protection industries (Liu, 2012). Also, 
diversified agglomeration has higher R&D efficiency and 
greater attraction to high-tech industrial zone (Duranton et 
al. 1999), so that the production technology is purified, thus 
significantly reducing industrial pollution emissions in regions. 
However, from the perspective of China’s reality, the areas with 
high industrial agglomeration degree are also the most polluted 
areas (Zhang and Dou, 2016), which seems to be contradictory 
to the traditional agglomeration economic theory. Before 
the reform and opening up, China implemented a  balanced 
development strategy for regional industrial development (Wu 
and Zhao, 2017). Under the common arrangement of census 
registers, employment and other welfare systems, the low-level 
industrial distribution in China’s region seriously damaged the 
high efficiency of the industrial economy. After the reform 
and opening up, market-oriented economic system reforms 
greatly promoted industrial agglomerations (Li, 2014), which 
in turn realized self-strengthening through market expansion 
and technology diffusion effects, becoming an important force 
to promote China’s economic development. For a  long time, 
China’s industrial enterprises have continuously concentrated 
in regions with superior geographical locations and rich natural 
resources and have gradually formed the industrial space pattern 
of the “center-periphery”. Therefore, is the agglomeration of 

industrial enterprises conducive to the improvement of green 
innovation efficiency? This question is worth being tested.

Literature Review
Industrial agglomeration and collaborative development are 
key issues in industrial organization theory and have received 
much attention from academia in recent years (Yang et al. 
2016; Liu et al. 2017; Zhao and Lin, 2019; Shen and Peng, 
2021). By definition, industrial agglomeration refers to an 
economic phenomenon in which the industries in a particular 
sector are interdependent and mutually complementary 
with the characteristics of specialization within a  specific 
space (Storper, 1992). Krugman (1991 a;1991b;  1993) 
emphasized that market proximity is the motive of industrial 
agglomeration, constructed the market potential function based 
on the assumption of increasing returns to scale and its positive 
feedback mechanism (Krugman, 1992), and calculated the 
maximum salary that potential market entrants were willing 
to pay. Marshall (1920) believed that industrial agglomeration 
had effects such as labor pools, personnel flows and technology 
diffusion and could speed up information exchange in the 
agglomeration area, thus driving technology spillover and 
sharing. The rapid spread of knowledge and the spillover effect 
within the agglomeration area can accelerate the technological 
innovation of enterprises.

Later, Porter (1998) posited that, from the perspective 
of the industrial chain, upstream and downstream industrial 
agglomeration is more conducive to the sharing of production 
factors among enterprises and the reduction of transportation 
and communication costs, thus improving production efficiency 
and response speed to market demand, which is conducive 
to enterprises’ long-term development. In addition, from the 
perspective of the spatial dimension, regional differences in the 
development foundation and the “point-surface” development 
model also make spatial heterogeneity an important feature of 
industrial development, which is manifested as an industrial 
spatial agglomeration phenomenon (Xiao and Du, 2017).

Scholars believe that against the background of today’s 
knowledge economy, industrial agglomerations have gradually 
become a  key driving force for national competitiveness 
(Turkina and Van Assche, 2018). Studies show that the vertical 
division of labor of middle and small enterprises provides 
a  decisive advantage for industrial agglomeration, and that 
agglomeration drives the innovation of new products and the 
optimization and upgrading of production methods (Humphrey 
and Schmitz, 1996; Newman and Page, 2017; Kuznetsov and 
Kuznetsova, 2019).

Research on industrial enterprise agglomeration and 
green innovation efficiency mainly includes the following 
studies. Qu et al. (2021) examined the diversification and 
specialization of enterprises on green technological innovation 
efficiency, and Liu et al. (2020) empirically tested the effect 
and regional differences of industry clusters on regional 
green innovation efficiency. The results show that both 
diversification and specialization of industrial agglomeration 
significantly promote regional green technology innovation 
efficiency, and the effect of diversification is stronger. Ji et 
al. (2020) show that industrial agglomeration and regional 
green development efficiency have a  short-term impact 
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on technological innovation, while the influence of green 
development efficiency on industrial spatial agglomeration 
needs to be strengthened. Wang et al. (2019) found an inverted 
U-shaped relationship between industrial agglomeration 
and environmental pollution. Industrial agglomeration in 
most areas is an important cause of environmental pollution. 
Technological innovation and structural optimization play an 
important channel role in industrial agglomeration affecting 
environmental pollution. Chen and Golley (2014) found 
that environmentally friendly technological innovation is 
conducive to enhancing regional green development potential 
and improving regional green development efficiency.

In conclusion, scholars have performed many research 
studies on the green innovation effect of industrial 
agglomeration and have achieved fruitful results, but there 
is still room for improvement. Firstly, the research has had 
a  narrow focus on the independent relationship between 
industrial agglomeration and green innovation efficiency, 
neglecting other important economic variables such as human 
capital, market environment, industrial structure and so on. 
Secondly, there are few studies from the perspective of spatial 
economics, and the research results are thus often incomplete 
with limited relevance for large countries such as China. 
Therefore, from the perspective of spatial differentiation 
and spillover, whether the agglomeration and scale effect of 
industrial enterprises can play a better role in green science and 
technology innovation is very important for China to develop 
effective industrial development, environmental protection and 
science and technology policies. Based on the perspective of 
spatial economics, this paper studies the relationship between 
industrial agglomeration and green science and technology 
innovation efficiency, hoping to provide a  reference for the 
coordination of industrial, environmental and science and 
technology policy in China.

Calculation and dynamic analysis of green 
technology innovation efficiency
Green technology innovation efficiency measurement 
model – SEDEA
Data envelopment analysis (DEA), a digital elevation model, 
was proposed by Charnes, Cooper and Rhode in 1978. DEA is 
a linear programming model, expressed as the ratio of output 
to input. It tries to maximize the efficiency of service units by 
comparing the particular unit with the performance of a group 
of similar units with providing the same service. In this process, 
some units that achieve 100% efficiency are called efficient 
units, while other units that score less than 100% efficiency 
are called inefficient units. This method has many advantages, 
e.g., there is no need to determine the specific form of frontier 
production function, there is no need for input and output items 
to standardization, the efficiency can be evaluated through the 
decomposition efficiency value of the best and the gap, so as to 
find out the best way to improve efficiency. Therefore, DEA is 
widely used in terms of resource and environmental efficiency 
evaluation (Wu and Ma, 2016). According to the characteristics 
of the object, we select a super-efficient slack based model with 
unexpected output to measure the green innovation efficiency of 
provinces in China. Suppose there are n decision-making units 
(DMUs), denoted as DMUj (j=1, 2, ..., n), and each DMU has m 
inputs, denoted as xi (i=1, 2, ..., m) q1 expected outputs, denoted 

as yr (r=1, 2, ..., q1), and q2 unexpected outputs, denoted as bt 
(t=1, 2, ..., q2). Then, for a decision unit DMUk (xk, yk, bk), its 
production possibility set is:
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where si
– represents the relaxation of the ith input; sr

+ represents 
the relaxation of the rth expected output; si

b- represents the 
relaxation of the tth undesired output; and λ represents the 
weight vector.

Selection of input and output variables and data 
sources
After introducing the method, we need to select indicator 
variables. The selection process should conform to scientific, 
comprehensive and reasonable principles. The measurement of 
green innovation efficiency needs to include input variables, 
expected output variables and unexpected producer variables. 
For green innovation systems, input refers to the costs paid 
in the innovation process, including not only economic and 
human investment in scientific and technological innovation 
but also efforts for economic development and ecological 
environment improvement. The output is divided into expected 
and unexpected output. The former includes the number of 
invention patents and innovation generated by direct economic 
benefits, which measures the returns gained by investments 
in science and technology. The latter includes industrial 
“three wastes” emissions, which measures the extent to 
which technological innovation and ecological environmental 
governance investment reduce pollution emissions.

The area where the system works includes an administrative 
unit with a provincial agglomeration covering part of the area 
(Korol and Zawartka, 2019). So, for research objects, we select 
30 provinces (municipalities and autonomous regions) in 
mainland China and measure their green innovation efficiency 
over 11 years from 2009 to 2019 within the framework of total 
factor analysis. Tibet, Hong Kong, Macau and Taiwan were 
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not included due to the lack of data. Data were obtained from 
the China Statistical Yearbook, the China Industrial Yearbook 
and the China Environmental Statistical Yearbook from 2010 
to 2020. Cooper et al. (2001) noted that the number of decision 
units in the DEA algorithm needs to meet the condition of  
n ≥ max {m×s, 3(m+s)} to ensure the accuracy of the results, 
where n represents the number of DMUs and m and s represent 
the number of variables for input and output, respectively. The 
paper meets this condition.

According to econometrics, the more data sets, the smoother 
the efficiency frontier can be constructed. In this paper, we took 
all the input-output data within the sample period as the reference 
technology set of the current period and used MaxDEA Pro 6.6 
to calculate the eco-scientific and technological innovation 
efficiency values of various regions in China from 2009 to 2019. 
The results are as shown in Table 2 and Figure 1. The draw of 
Figure 1 is based on the average value. 

From 2009 to 2019, the efficiency value essentially shows 
a small fluctuation, without an obvious variation, which reflects the 
stability presented by China as a huge economy in development. 
Considering different provinces, Beijing (1.409), Shanghai 
(1.166), Guangdong (1.12) and Zhejiang (1.064) are the four 
provinces with the best performance (their efficiency values are 
all greater than 1). We can clearly see that these provinces are the 
most economically developed provinces located in the southeast 
coastal areas. In recent years, with the deepening transformation 
of manufacturing industries and the gradual improvement of 
industrial structure, the labor-intensive, high pollution and 
high energy-consumption enterprises in these regions have 
gradually moved to relatively more backward economic 
areas where the prices of other production factors are lower. 
The economic development of these regions is going through 
a painful period of transformation, and the speed has decreased 
correspondingly. However, the quality and sustainability level 
of regional development has been comprehensively guaranteed. 
The Chinese government’s plan for the future of these provinces, 
which continues to develop fully due to their geographical, 

technological and financial advantages, seeks to have them 
become the world’s most important high-tech research and high-
end industrial manufacturing centers (Wu and Zhao, 2016).

The worst performing provinces (with efficiency scores 
less than 0.2) are Yunnan (0.197), Shanxi (0.173), Heilongjiang 
(0.163) and Inner Mongolia (0.134). These provinces are the 
most economically backward regions of China, all relying 
on traditional manufacturing industries as their economic 
base. The most prominent feature of their development is 
that they all take the traditional industrialization road of high 
pollution and high consumption, and their scientific and 
technological innovation ability is relatively weak. According 
to the government’s regional planning, the future direction of 
these regions is to implement the strictest management system 
to optimize resource allocation, further improve utilization 
efficiency, accelerate the transformation of the production 
mode and energy and resource consumption, strengthen 
punishment for pollution, and avoid further deterioration of the 
ecological environment. In addition, more support should be 
given to such areas to help them build a system for technology- 
-led industrial transformation and upgrades to narrow the 
development gap with other regions.

Dynamic evolutionary analysis of green technology 
innovation efficiency
We further sketch the trend and dynamic evolution of 
China’s industrial green innovation efficiency by using the 
nonparametric estimation method (called kernel density 
analysis). Its basic principle is to let the probability density 
estimation equation of the variable Χ at point x be as follows:

	
  

  

n

i
n p

i=1

x - X1f (x)= K
nh h

  	 (4)

where K(⁪) is the kernel function, h is the bandwidth, and n is 
the sample number. The kernel function and bandwidth should 

Table 1. An evaluation index system of regional industrial green technology innovation

Indicator  
type Indicator name Indicator description and unit

Input  
indicators

Science and technology innovation labor input Total wastewater discharged (Man-year)

Science and technology innovation capital investment Total wastewater discharged  
(10,000 yuan)

Ecological and environmental improvement 
investment

Completed investment in industrial pollution control 
(10,000 yuan)

Energy input Total industrial energy consumption  
(10,000 tons standard coal)

Input  
indicators

Expect output Innovation patent Inventions in force (Piece)

Expect output Innovative economic benefits Revenue from sales of new products  
(10,000 yuan)

Undesired output

Industrial „three wastes” 
discharge

Total waste water discharged  
(10,000 tons)

Undesired output Sulphur dioxide emissions  
(10,000 tons)

Undesired output Common industrial solid wastes produced  
(10,000 tons)



	 Agglomeration and green technology innovation efficiency of industrial enterprises – Based on spatial statistical analysis	 7

Ta
bl

e 
2.

 C
al

cu
la

tio
n 

re
su

lts
 o

f p
ro

vi
nc

ia
l g

re
en

 te
ch

no
lo

gy
 in

no
va

tio
n 

effi
ci

en
cy

 fr
om

 2
00

9 
to

 2
01

9

G
TE

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Av
er

ag
e

R
an

ki
ng

Be
ijin

g
1.

20
0

1.
50

3
1.

44
2

1.
36

7
1.

19
2

1.
18

0
1.

20
8

1.
13

0
1.

05
4

1.
04

4
3.

18
4

1.
40

9
1

Ti
an

jin
1.

04
8

1.
04

2
1.

12
4

1.
10

4
1.

17
7

1.
11

7
1.

13
0

1.
13

9
0.

82
5

0.
67

5
0.

45
7

0.
98

5
5

H
eb

ei
0.

18
9

0.
17

5
0.

20
6

0.
21

3
0.

23
2

0.
22

7
0.

21
7

0.
26

8
0.

23
8

0.
30

4
0.

24
6

0.
22

9
23

Sh
an

xi
0.

14
9

0.
13

4
0.

17
0

0.
16

9
0.

19
1

0.
17

5
0.

14
6

0.
17

4
0.

17
7

0.
21

8
0.

19
6

0.
17

3
28

In
ne

r M
on

go
lia

0.
14

1
0.

11
8

0.
11

9
0.

11
0

0.
11

1
0.

10
9

0.
10

7
0.

12
2

0.
16

8
0.

18
7

0.
18

3
0.

13
4

30

Li
ao

ni
ng

0.
28

9
0.

24
1

0.
30

7
0.

29
5

0.
33

6
0.

31
5

0.
28

3
0.

30
3

0.
28

0
0.

36
4

0.
24

0
0.

29
6

19

Ji
lin

1.
45

8
1.

05
8

1.
12

5
1.

11
2

0.
20

1
0.

27
4

0.
19

2
1.

07
2

1.
15

5
1.

04
9

1.
28

3
0.

90
7

8

H
ei

lo
ng

jia
ng

0.
15

8
0.

15
8

0.
14

7
0.

17
0

0.
16

2
0.

15
3

0.
14

2
0.

15
0

0.
16

8
0.

18
4

0.
19

9
0.

16
3

29

Sh
an

gh
ai

1.
21

3
1.

13
4

1.
14

4
1.

11
6

1.
19

5
1.

08
8

1.
05

6
1.

09
7

1.
35

7
1.

34
8

1.
07

3
1.

16
6

2

Ji
an

gs
u

0.
51

7
0.

64
7

1.
00

2
0.

79
1

0.
79

2
1.

06
7

1.
05

3
1.

03
3

1.
01

8
1.

01
2

0.
52

1
0.

85
9

9

Zh
ej

ia
ng

1.
02

0
1.

06
0

1.
10

9
1.

03
7

1.
10

0
1.

07
7

1.
13

1
1.

09
2

1.
03

5
1.

03
4

1.
01

4
1.

06
4

4

An
hu

i
0.

37
8

1.
01

4
1.

06
0

1.
03

2
1.

07
0

1.
15

3
1.

11
7

1.
18

4
1.

04
4

1.
05

6
0.

49
2

0.
96

4
7

Fu
jia

n
0.

39
1

0.
35

7
0.

38
9

0.
36

7
0.

39
9

0.
40

0
0.

42
9

0.
45

7
0.

42
7

0.
41

0
0.

28
9

0.
39

2
16

Ji
an

gx
i

0.
16

7
0.

18
7

0.
19

8
0.

22
1

0.
28

4
0.

33
8

0.
35

2
0.

53
9

0.
59

6
0.

54
5

0.
43

8
0.

35
1

18

Sh
an

do
ng

0.
41

7
0.

41
6

0.
43

0
0.

41
5

0.
44

6
0.

43
3

0.
41

9
0.

38
7

0.
36

3
0.

35
1

0.
26

3
0.

39
5

15

H
en

an
0.

25
3

0.
23

1
0.

23
7

0.
23

1
0.

28
3

0.
29

1
0.

31
6

0.
28

9
0.

28
7

0.
31

0
0.

23
7

0.
27

0
20

H
ub

ei
0.

32
7

0.
34

1
0.

34
6

0.
34

5
0.

41
5

0.
41

5
0.

49
9

0.
43

5
0.

44
4

1.
00

7
0.

37
8

0.
45

0
12

H
un

an
0.

49
1

0.
47

0
0.

48
8

0.
60

4
1.

01
3

0.
71

4
0.

57
1

1.
00

1
1.

03
9

1.
02

1
0.

37
6

0.
70

8
10

G
ua

ng
do

ng
1.

27
5

1.
16

5
1.

01
0

0.
69

3
0.

77
2

1.
03

0
1.

11
0

1.
31

9
1.

35
6

1.
36

5
1.

22
1

1.
12

0
3

G
ua

ng
xi

0.
26

8
0.

26
1

0.
22

3
0.

23
6

0.
33

6
0.

29
1

0.
31

3
1.

00
0

1.
03

0
1.

01
2

0.
25

2
0.

47
5

11

H
ai

na
n

1.
00

4
1.

05
2

0.
37

8
0.

29
7

0.
33

7
0.

25
6

0.
20

3
0.

25
8

0.
22

6
0.

21
1

0.
19

6
0.

40
2

14

C
ho

ng
qi

ng
1.

04
3

1.
09

7
1.

06
9

1.
00

6
1.

01
3

1.
08

4
1.

24
3

1.
14

9
1.

02
0

0.
59

1
0.

36
0

0.
97

0
6

Si
ch

ua
n

0.
33

5
0.

31
4

0.
31

0
0.

36
2

0.
38

6
0.

42
2

0.
44

9
0.

42
3

0.
37

4
0.

33
4

0.
26

8
0.

36
2

17

G
ui

zh
ou

0.
21

5
0.

25
2

0.
26

7
0.

24
2

0.
21

9
0.

23
3

0.
18

8
0.

25
8

0.
22

2
0.

24
3

0.
18

0
0.

22
9

22

Yu
nn

an
0.

18
6

0.
17

6
0.

19
7

0.
20

6
0.

21
3

0.
21

7
0.

17
4

0.
21

7
0.

21
2

0.
21

9
0.

15
1

0.
19

7
27

Sh
aa

nx
i

0.
20

3
0.

22
3

0.
23

2
0.

20
4

0.
21

3
0.

21
2

0.
19

5
0.

21
8

0.
22

4
0.

25
6

0.
22

2
0.

21
8

25

G
an

su
0.

13
9

0.
21

6
0.

22
5

0.
23

7
0.

27
1

0.
27

0
0.

22
7

0.
17

2
0.

19
4

0.
19

7
0.

21
4

0.
21

5
26

Q
in

gh
ai

0.
12

7
0.

05
6

0.
02

7
0.

03
6

0.
04

4
0.

03
0

0.
08

3
0.

12
4

0.
25

5
1.

07
4

1.
00

8
0.

26
0

21

N
in

gx
ia

0.
15

3
0.

18
9

0.
18

5
0.

23
1

0.
27

7
0.

20
6

0.
24

9
0.

21
5

0.
24

8
0.

28
0

0.
20

3
0.

22
2

24

Xi
nj

ia
ng

0.
12

1
0.

19
0

0.
20

6
0.

22
7

0.
27

5
1.

00
3

0.
23

9
0.

25
6

0.
24

6
1.

01
5

1.
06

6
0.

44
0

13

Av
er

ag
e

0.
49

6
0.

51
6

0.
51

2
0.

48
9

0.
49

8
0.

52
6

0.
50

1
0.

58
3

0.
57

6
0.

63
1

0.
54

7
0.

53
4

–



8	 M. Wu, W. Huang

be selected in the specific estimation. The key to the fitting 
result is the setting of the optimal bandwidth. The basic idea 
of bandwidth selection is to minimize the mean square error. 
There are many forms of kernel functions, and we choose the 
most common function – Epanechnikov. The paper selected 
the four years 2009, 2013, 2017 and 2019 as the investigation 
sections, and the distribution diagram of the kernel density 
function for each year is shown in Figure 2.

Figure 2 shows that the dynamic evolution of the green 
innovation efficiency distribution of Chinese industrial 
enterprises presents two obvious characteristics. First, the 
distribution peak did not change much from 2009 to 2019, 
indicating that most provinces in China did not improve during 
this period, but instead, the performance of industrial enterprises 

in green innovation stagnated. Second, all efficiency values 
present a  “twin peaks” model in four years, and the width 
between the peaks did not change obviously. The efficiency of 
industrial green innovation tends to be centralized and close to 
two equilibrium points, one at a lower level (approximately 0.4) 
and the other at a higher level (approximately 1.2), indicating that 
the efficiency of industrial green innovation in China presents 
an evident polarization phenomenon during the research period, 
during which the gap between provinces does not shrink. In 
addition, it is worth mentioning that the peakedness of the two 
peaks in 2019 was significantly higher than that in the other three 
years, indicating that the data series in 2019 had more extreme 
values and more serious polarization, which means that more 
areas were concentrated near the value of inefficiency.

 
Fig. 1. Spatial differentiation of regional green innovation efficiency in China  
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Fig. 2. Kernel density diagram of the green technology innovation efficiency of industrial enterprise
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Spatial statistical analysis of the direct  
and spillover effects of industrial enterprise 
agglomeration on green technology  
efficiency
Method introduction
The most important aspect of the spatial statistical method is 
to combine the object of study with its geographical location. 
The first law of geography states that everything is related 
to everything else but more related to the near one (Wang 
et al. 2015). It should be noted that distance here is a broad 
concept that includes not only geographical location but also 
the closeness of economic cooperation and even the distance 
between interpersonal relationships. As we all know, the 
interaction between development elements can be investigated 
in the decision-making processes concerning management 
(Lukaszewska et al. 2021) and the spatial statistical technique 
(Wiatkowski et al. 2021; Pohl and Kostecki, 2020). Generally, 
scholars typically use the spatial weight matrix to sample 
the spatial distance of the research object. The setting of 
the spatial weight matrix must also meet the requirements 
of the first law of geography, i.e. , the spatial correlation of 
different subjects must decrease with increasing distance. The 
assumption of spatial correlation and dependence in spatial 
economics breaks the hypothesis that each research subject 
is independent of each other in classical economic theory and 
makes the performance of the research subject highly related 
to its geographical location, thus making the research more 
scientific and reasonable as well as more widely applied.

When analyzing spatial econometric models, a benchmark 
model is needed for comparison and reference (Jiang, 2016). 
The ordinary least squares (OLS) model is the most common 
reference model. Therefore, spatial econometric modeling 
starts from the OLS model, and the Lagrange multiplier test 
(LM) is performed with the residuals after OLS regression. The 
test contains two statistics: LM–Error and LM–Lag. If these 
two statistics are not significant, the OLS model is a suitable 
method. If only one statistic is significant, then the LM–Error 
statistical significance points to the spatial error model, while 
the LM–Lag statistical significance points to the spatial lag 
model. In the case if both statistics are significant, Anselin 
(1988) proposed a  Lagrange multiplier test for robustness, 
which correspondingly contains two unified quantities, 
namely, robust LM–error and robust LM–lag. Among them, 
if the robust LM–error statistical value is significant, it points 
to the spatial error model, while the robust LM–lag statistical 
value is significant, it points to the spatial lag model.

The form of the spatial error model (SEM) is as follows:

	
it i i it it itGTE = a +b IND + M +    	 (5)

	 it ik kt it= W +      	 (6)

where GTE represents industrial green technology efficiency; 
IND represents the agglomeration degree of industrial 
enterprises; μ is the normal distributed random error vector; 
λ is the space error coefficient of the n×1 cross-section 

dependent variable vector; and ε is the random error vector. 
Parameter β represents the influence of the control variable M 
on the dependent variable; and parameters λ are the influence 
degree and direction of the observed value of adjacent areas 
on this area.

The spatial lag model (SAR) takes the following form:

	 1it i it it ik kt itGTE a b IND M GTE         	 (7)

where GTE is the dependent variable; ω is the spatial weight 
matrix of n×n order; μ is the spatial regression coefficient; and 
ε is a random error vector.

Analysis of the impact of industrial enterprises’ 
agglomeration on green technology efficiency
Before conducting spatial analysis, the paper first needs to 
select the spatial weight matrix. We did not use the traditional 
spatial proximity matrix (0–1 matrix) but instead chose the 
spatial distance weight matrix, which is based on the distance 
attenuation function between provincial capitals, and took 
the reciprocal of the shortest distance as the spatial weight. 
The advantage of this matrix is that the spillover of green 
innovation activities between spatially close but not adjacent 
provinces may influence and interact with each other.

Then, we used the global index Moran’s I  to analyze 
the dependence and correlation of the spatial distribution of 
China’s industrial green technology efficiency. The test results 
show that the normal statistical value Z of Moran’s I  in the 
study year passes the significance level test of 5% (see Table 3), 
indicating that the industrial green technology efficiency is not 
a completely random distribution, and it is therefore necessary 
to analyze the influencing factors of the industrial green 
technology efficiency from the spatial dimension.

Then, the paper carried out a spatial autocorrelation test on 
the variables, the results of which are shown in Table 3.

From Table 3, we know that the spatial panel regression 
model is more appropriate than the traditional econometric 
model to investigate the impact of industrial agglomeration 
(IND) on the green technology efficiency (GTE) of industrial 
enterprises. Before establishing the relevant spatial panel 
model, the Hausman test should be used on the SEM and 
SAR models. Since the P-value is less than 0.05, the null 
hypothesis is rejected. Therefore, we use the fixed effect model 
rather than the random effect model. In addition, through the 
observation and judgment of the Lagrange multiplier lag, error 
and robustness test, we know that under the spatial distance 
weight matrix, the value of the LM–Lag is significantly greater 

Table 3. Spatial autocorrelation test of estimated residuals  
in the linear panel model

Test variables Statistic P-value
Moran’s I 0.263 0.046

Lagrange Multiplier (lag) 3.8202 0.000
Robust LM (lag) 3.7098 0.000

Lagrange Multiplier (error) 1.877 0.000
Robust LM (error) 1.243 0.003
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than LM—Err and passes the significance level test. Thus, the 
spatial lag model (SAR) is better than the spatial error model 
(SEM). Therefore, we use the SAR model.

For the indicator, we use the number of large- and medium- 
-sized industrial enterprises as the basic index to measure the 
level of regional industrial agglomeration (IND). In addition, 
we also select some other social conditions as control variables 
(Tomczyk and Wiatkowski, 2020), including human capital 
(HUM), which is represented by the number of students in 
colleges and universities per 100,000 inhabitants; Industrial 
structure (STR), represented by the proportion of the value of 
the secondary industry in GDP; Market environment (MAR), 
represented by technical market turnover; Enterprise-scale 
(SCAL), represented by the average number of employees in 
industrial enterprises; and Foreign trade (TRA), represented 
by the proportion of the total volume of foreign trade in GDP 
of provinces. In addition, because the logarithmic treatment 
does not change the original data structure and can eliminate 
possible heteroscedasticity, we take the natural logarithm of the 
above variables by lnIND, lnHUM, lnSTR, lnMAR, lnSCAL 
and lnTRA.

The estimation results of the spatial panel SAR model are 
shown in Table 4.

From Table 4, we can see that all coefficients (ρ) of SAR 
are positive and pass the significance level test of 5% in the 
time-fixed, spatial-fixed or spatial-time dual fixed models, 
indicating that the industrial green technology innovation 
efficiency (GTE) presents a  spatial agglomeration state. 
Among the three types of models, the time-fixed model has the 
highest fitness. Therefore, this paper mainly analyzes the time- 
-fixed model in the following section.

Regardless of which model is selected, the regression 
elasticity coefficient of industrial agglomeration is significantly 
positive, which means that the improvement of industrial 
agglomeration is conducive to regional green innovation 
efficiency. To some extent, industrial agglomeration can promote 
both competition and cooperation among industries in relevant 
knowledge, technology, infrastructure, energy conservation and 
emission reduction. (Liu et al. 2020). Therefore, collaborative 
agglomeration among industrial enterprises can improve 
regional green innovation capacity and efficiency through 
technology spillover, enhancing industrial competitiveness 
and strengthening industrial cooperation (Liu et al. 2020). 
Specifically, the industrial enterprise cluster can, on the one 
hand, effectively reduce the related enterprises in material 
and information resources sharing and transfer costs in time 
and space, thus speeding up the spread of invisible intangible 
resources exchange such as knowledge and technology, and 
playing a spillover effect to realize the sharing and optimized 
configuration of resources. On the other hand, industrial 
clusters also drive the development of the circular economy by 
upstream and downstream enterprises, further improving the 
efficiency of energy utilization, reducing pollution emissions, 
shortening production time, improving production efficiency, 
and reducing the product price and production costs to gain 
greater competitive advantage and market position, all of 
which promote the virtuous cycle of regional green innovation. 
In addition, the agglomeration of industrial enterprises can 
also deepen the complementarity, interaction and integration 
between industries by improving green technology trading 
mechanisms and building information-sharing platforms to 
achieve win-win cooperation between industries. Finally, the 

Table 4. Estimation results of spatial panel SAR model

GTE Spatial-Fixed
Effects Model

Time-Fixed
Effects Model

Spatial- and Time-Fixed 
Effects Model

lnIND 0.0096**
(0.43)

0.3105***
(6.94)

0.297**
(3.45)

lnHUM 0.031
(0.18)

0.26**
(4.27)

0.311*
(1.88)

lnSTR 0.0707***
(0.37)

0. 0643**
(3.72)

0. 0391
(0.5)

lnMAR 0.0117**
(1.07)

0.0452***
(5.36)

0.058**
(3.45)

lnSCAL -0.044**
(-0.98)

-0.4632***
(-9.72)

-0.466***
(-5.16)

lnTRA 0.0138**
(0.9)

0.188***
(12.52)

0.1798***
(8.31)

cons 0.142
(0.09)

-4.092***
(-6.36)

-4.21**
(-2.92)

sigma_u 0.36 0.3 0.16
sigma_e 0.23 0.326 0.332

ρ 0.715** 0.46*** 0.188**
R2 0.505 0.7279 0.436

Note: *, **, and *** represent significance at the levels of 10%, 5%, and 1%, respectively. The value in brackets  
is T-statistic.
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agglomeration of industrial enterprises also helps to make 
environmental regulation measures more targeted and more 
able to effectively alleviate the problems of large energy 
consumption and serious pollution emissions of industrial 
enterprises.

Among the other control variables, only the coefficient 
of enterprise-scale is negative, indicating that an increase in 
Chinese industrial enterprise size is not conducive to green 
technology innovation. The perspective of academia is that 
the impact of enterprise-scale on productivity depends on two 
mechanisms: the effect of pure economic scale and the indirect 
improvement of productivity through technological innovation 
activities (Sun et al. 2014). There exists an inverted U-shaped 
relationship between enterprise-scale and productivity. 
According to the model results, the enlargement of the Chinese 
industrial enterprise production scale is conducive to the 
effect of the scale economy, thus weakening the promotion 
effect of R&D activities, which is a  phenomenon worthy 
of entrepreneurs’ attention. Other factors, including the 
improvement of human capital, industrial structure and market 
environment, all have a  positive effect on green technology 
innovation, which also conforms to common sense.

Analysis of the spillover effect of industrial 
enterprises’ agglomeration effect on green 
technology efficiency
To further investigate this issue, the paper divides the effect 
of industrial agglomeration on industrial green innovation 
efficiency (GTE) into a direct effect and an indirect (spillover) 
effect based on the regression results of the SAR model. The 
specific results are shown in Table 5.

The indirect effect is the spatial spillover effect. In the 
spatial panel model, the coefficient of explanatory variables 
cannot represent the real partial regression result, and the 
coefficient of the spatial lag term cannot reflect the spatial 
spillover effect. Therefore, the spatial effects of industrial 
agglomeration and other control variables on green innovation 
efficiency need to be decomposed.

We can see that both the direct and indirect effects 
of industrial enterprise agglomeration on industrial green 
technology innovation efficiency pass the significance test 
at the 1% level. The direct effect accounted for 8.1% of the 
total effect, and the indirect effect accounted for 91.9%. This 
means that the weight of the indirect effect is greater than that 
of the direct effect. Specifically, an industrial agglomeration 

increase of 1% can promote an increase in local industrial 
green innovation efficiency of 0.051%, but an increase of 
0.579% in adjacent regions indicates that the enhancement 
of regional industrial agglomeration not only promotes the 
improvement of green innovation efficiency but also promotes 
efficiency in neighboring regions. The results show that the 
agglomeration of industrial enterprises has mainly worked 
through competition effects, imitation effects and correlation 
effects (Luo and Liang, 2017). Yet, with the continuous 
development of marketization in China, the trade opening 
channels between domestic regions are gradually unblocked, 
accelerating the diffusion of technology capital and leading 
to an obvious indirect technology spillover effect. Therefore, 
for Chinese enterprises, local enterprises must enhance their 
innovation ability based on product competition, imitation and 
learning to ensure the level of regional innovation.

For other control variables, only human capital (lnHUM) 
and enterprise size (lnSCAL) have negative influence 
values, while the other variables have positive influence 
values. Enterprise-scale has already been explained. For 
human capital, the direct effects are positive, but the value 
is small, while the indirect effects are negative, but the value 
is large, indicating that the higher the education level of the 
residents of a particular area, the higher the green innovation 
efficiency. A  possible explanation is that green innovation 
capability strengthens with an increase in the per capita level 
of education. In addition, people with higher education often 
focus more on enjoying life and have stricter requirements for 
environmental quality. In addition, people with a high degree 
of education usually have a strong awareness of environmental 
protection, which has a  supervisory effect on industrial 
enterprises. For industrial enterprises with high pollution and 
high consumption, people tend to take up the weapon of law 
to protect their own rights and interests, forcing enterprises to 
choose between implementing cleaner methods of production 
or leaving.

Conclusions
Based on the relationship analysis between industrial 
agglomeration and green innovation efficiency, this paper 
establishes a  spatial panel model of how the industrial 
agglomeration level and some other important economic 
variables affect industrial green innovation efficiency. The 
results show that (1) China’s industrial agglomeration has 

Table 5. Decomposition of direct impact, spillover impact and total impact effect based on the SAR model

Variable
Based on spatial distance

Direct T-value Indirect T-value Total T-value
lnIND 0.051* 0.64 0.579** 3.44 0.63*** 3.85

lnHUM 0.282* 1.62 -1.506*** -3.85 -1.224** -3.2
lnSTR 0.061* 1.38 0.035 0.38 0.096 1.07
lnMAR 0.024** 1.21 0.089** 1.77 0.113** 2.36
lnSCAL -0.207* -2.35 -0.471** -3.09 -0.678*** -5.15
lnTRA 0.017* 0.35 0.01 0.1 0.026 0.3

Note: *, **, and *** represent significance at the levels of 10%, 5%, and 1%, respectively.
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a positive impact on industrial eco-efficiency, indicating that 
industrial agglomeration has produced good environmental 
benefits and innovation benefits. (2) According to the estimation 
results of the SAR model, the influence coefficient of enterprise 
scale is negative, indicating that for Chinese industrial 
enterprises, the enlargement of production scale weakens the 
promotion effect of R&D activities on productivity, which is 
worth being concerned about. (3) Based on the analysis of the 
spatial spillover effect, the indirect effect of China’s industrial 
agglomeration on the efficiency of industrial green innovation 
is much greater than the direct effect. In addition, the impact 
of human capital is negative, mainly because the direct effect 
is positive but the value is small, while the indirect effect is 
negative and the value is large, indicating that the spillover 
effect of human capital is weak.

As China’s economy enters its new stage, the structural 
contradictions in industrial economic development become 
increasingly prominent. It can be predicted that the key point 
of China’s industrial economic development in the future 
will no longer be the speed of development, but rather the 
mode of transformation and structural adjustment; it will no 
longer be just about increasing the total amount, but rather 
improving innovation and ecological efficiency. At present, 
China’s industrial economy, with a  high degree of external 
orientation, is still faced with problems such as immature 
market development, insufficient innovation ability, the poor 
added value of products and increasing pressure of energy 
consumption and resource and environment constraints. 
China’s future development needs to adapt to the new situation, 
new tasks and new requirements as well as to strive to resolve 
and break through deep-rooted problems that have created 
bottlenecks in the industrial economy.

The next most important task of the Chinese government 
is to promote the ecological transformation and technological 
upgrading of industrial clusters and to improve the form 
of industrial chains. In China, spatial agglomeration is an 
important form of industrial development. However, in recent 
years, the model of some industrial agglomeration areas has 
been blind expansion and extensive development. In addition, 
China’s industrial layout is scattered, and the scale and pattern 
of development are unbalanced, leading to spatial imbalance 
and to the internal vicious competition among industrial zones. 
Accelerating the ecological transformation and technological 
upgrading of agglomeration areas is an important measure to 
improve the efficiency of industrial green innovation. Firstly, the 
government should adhere to the principle of prioritizing energy 
saving and improving energy efficiency. In addition, industrial 
enterprises need to increase R&D investment in energy-saving 
technology to promote energy-intensive industries and key 
enterprises to speed up technology upgrading, technology 
innovation, equipment updating, and the implementation of 
comprehensive energy-saving transformation; there is a need to 
drive industrial energy-saving technology from the local level, 
to the whole process. Secondly, the government should push 
stricter cleaner production audit systems to reduce the emission 
intensity of pollutants. For example, transforming cleaner 
production technologies in key polluting industries, improving 
and promoting cleaner production models based on ecological 
progress, and making the industrial chain “longer” and “thicker”. 
On the one hand, based on the positioning of leading industries, 

in-depth investigation and research should be carried out around 
the missing and supporting links of the ecological development 
of the industrial chain to accelerate bringing in leading high- 
-quality and high-tech enterprises and cultivating local enterprises 
to continuously improve the industrial chain. On the other hand, 
the coupling agglomeration of industrial industries should be 
accelerated to promote the concentration of homogeneous and 
related industries to form industrial chains and networks while 
realizing dislocation competition and improving the output ratio 
of resources and competitiveness.

In addition, the SAR regression coefficient and spatial 
spillover effect at the corporation scale are both negative, 
and the spatial spillover effect of human capital is negative. 
For these two variables, first, the enlargement of enterprise- 
-scale has a  negative impact on the improvement of green 
innovation efficiency, indicating that, from the perspective 
of efficiency, the technological innovation efficiency of 
large enterprises is offset by the low efficiency of their 
scale. Due to the obvious advantages of vitality, flexibility 
and the forces that drive competitive innovation, small- and 
medium-sized enterprises are better than large enterprises 
in technological innovation efficiency. In the future, regions 
are more likely to benefit from clusters other than increasing 
their size. Therefore, local governments should formulate 
targeted policies to bring in some advantageous scale-forming 
industrial enterprises integrated into interregional industrial 
clusters to formulate effective development patterns. The 
strategies should be implemented primarily in provinces where 
reduction potential is the largest (Bochenska and Rzeznik, 
2019). Second, the spatial spillover effect of human capital is 
negative, which indicates that there are problems in China’s 
regional human capital flow mechanism. Therefore, the next 
important step is to improve the environment and mechanism 
for the flow of human capital. In China, the important reason 
for differences in China’s human capital stock is the state’s 
unbalanced investment (Wu and Zhao, 2017). Therefore, the 
state should adjust investment policies appropriately to narrow 
the gap of unbalanced investment between different regions. 
Strengthening the dynamic management of human capital, 
i.e., improving the management mechanism of human capital, 
enhances workers’ sense of competition and efficiency.
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