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Classical irreversible thermodynamics versus
extended irreversible thermodynamics.
The role of the continuity equation
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Abstract This brief note focuses on a simple fluid, i.e., a homogeneous,
chemically inert, and electrically neutral fluid, for which, in the linear non-
equilibrium regime, the thermodynamic state is expressed by a relation
between pressure, temperature, and density. The approach based on the
elementary scales is used to check the validity range of both the classical
irreversible thermodynamics and the extended irreversible thermodynamics.
The achieved result reveals that the classical irreversible thermodynamics
fails in providing an adequate response when the mechanical solicitations
exceed limit values.
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Nomenclature
b – generic field function
b(r , t) – spatial (Eulerian) field
b(r0, t) – material (Lagrangian) field
|dt| – elementary time scale
|dr | – elementary spatial scale
D

Dt
b(r , t) = ∂

∂t
b(r , t) +∇b(r , t) · v(r , t) – material derivative

J(r0, t) = ∂r
∂r0

– Jacobian of the coordinate transformation
J(r0, t) = det (J(r0, t)) – Jacobian determinant
l – molecular length
p – thermodynamic pressure
r – Eulerian coordinates
t – time variable
T – absolute temperature
tr – relaxation time
v – velocity
Vt0 – material volume (with constant mass) at

the initial time t = t0
Vt – material volume at the generic time t
∇b – gradient of b
∇v – velocity gradient tensor
‖∇v dt‖ – dimensionless number

Greek symbols

α = α(p, T ) – thermal expansion coefficient
ε = ε(p, T ) – bulk modulus of elasticity
ρ – density

Acronyms

CIT – classical irreversible thermomechanics
EIT – extended irreversible thermodynamics
LTE – local thermodynamic equilibrium
REV – representative elementary volume

1 Introduction

In agreement with the continuum model of the fluid mechanics, the generic
field function b (for instance density ρ, thermodynamic pressure p, absolute
temperature T , etc.) is a regular function of both space and time [1]. The
space continuity is connected to the continuum hypothesis: the fluid is
modeled as a continuum medium, where the single fluid particles are in
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one-to-one correspondence with the points of the Euclidean space. The
minimum volume on which to assess the (average) physical properties of
the continuum is the representative elementary volume (REV) dV . The
use of the method of homogenization implies that the REV must be large
compared to the fluid molecular size and small compared to the size of the
flow domain [2]. Therefore, the space continuity means that

l

|dr | � 1, (1)

where l is a molecular length, |dr | the elementary spatial scale. |dr | can be
assumed proportional to the scale of the generic field function gradient [1]:

|dr | ∝
∣∣∣∣ b∇b

∣∣∣∣ . (2)

As the term |∇b| increases, i.e., the mechanical and/or thermal solicitations
increase, then |dr | decreases. The lower limit value must be in accordance
with the relationship (1). Beyond this lower limit, the continuum model is
not suitable for describing the phenomena.

In classical irreversible thermomechanics (CIT), the time continuity re-
quires that

tr
|dt|
� 1, (3)

where tr is the relaxation time, i.e., the time it takes to restore a local
thermodynamic equilibrium (LTE) condition from a local thermodynamic
non-equilibrium condition, |dt| the elementary time scale [3]. For long relax-
ation time and/or for short elementary time scale, the LTE is invalid, and
tr
|dt|
∼ 1. These kinds of phenomena can be described by the extended irre-

versible thermodynamics (EIT) generalizing the classical thermodynamics
relationships and the constitutive equations (a review of this topic can be
found in [4–6]). It should be stressed that the study approach based on the
elementary scales allows to extend and refine the range of applicability of
the classical irreversible thermodynamics. In [7], the elementary time scale
is used to define a turbulence model able to describe the energy dissipation
in shock waves; in [3] a method based on the elementary scales is employed
to remove the heat conduction paradox concerning the infinite speed of
signal diffusion in the Fourier theory (Fourier paradox). The choice of the
elementary time scale |dt| is not arbitrary. As outlined in the following sec-
tion, the constrain that the continuum model imposes to |dt| can be linked
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to the velocity gradient tensor ‖∇v‖ which, in turn, is linked to the me-
chanical solicitations. This result is related to the study of the continuity
equation. For the sake of clarity, this note is focused on a simple fluid,
i.e., a homogeneous fluid, chemically inert, and electrically neutral, whose
thermodynamic state, in the linear non-equilibrium regime, is expressed by
a relation between pressure, temperature and density [8].

2 Continuity equation

The mass conservation principle ensures that∫
Vt0

ρ (r0, t0) dVt0 =
∫
Vt

ρ(r , t) dVt, (4)

where Vt0 is the material volume (with constant mass) at the initial time
t = t0; Vt is the material volume at the generic time t; r and t are the
Eulerian coordinates, with r – the space variable and t – the time variable;
r0 and t are the material (Lagrangian) coordinates; ρ(r , t) is the spatial
(Eulerian) density field. The mapping from r0 to r , given by the continuous
and invertible function

r0 = r0(r , t), (5)

can be used to express the connection between the spatial field b(r , t) and
the corresponding material (Lagrangian) field b(r0, t) as

b (r0, t) = b (r0(r , t), t) = b(r , t). (6)

According to Eq. (6), it follows that

d

dt
b (r0, t) = D

Dt
b(r , t), (7)

where D

Dt
b(r , t) = ∂

∂t
b(r , t) + ∇b(r , t) · v(r , t) is the material derivative,

with v(r , t) the spatial velocity field.
The mapping from r0 to r can be viewed as a coordinate transformation,

where the Jacobian of the transformation J is given as

J (r0, t) = ∂r
∂r0

. (8)
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The Jacobian determinant J(r0, t) = det (J(r0, t)) allows expressing the
connection between dVt0 and dVt as

dVt = J dVt0 . (9)

According to Eq. (9), Eq. (4) becomes:∫
Vt0

ρ (r0, t0) dVt0 =
∫

Vt0

ρ (r0, t) J (r0, t) dVt0 (10)

from which it follows that
1

J (r0, t)
ρ (r0, t0) = ρ (r0, t) . (11)

Equation (11) can be derived with respect to time:

−ρ (r0, t0)
[J (r0, t)]2

dJ (r0, t)
dt

= dρ (r0, t)
dt

. (12)

Using the Euler formula [9]

1
J (r0, t)

dJ (r0, t)
dt

= ∇ · v(r , t). (13)

Eq. (12) reduces to the continuity equation

−ρ (r0, t0)
J (r0, t)

1
J (r0, t)

dJ (r0, t)
dt

= −ρ (r0, t)∇ · v(r , t)

= −ρ(r , t)∇ · v(r , t) = Dρ(r , t)
Dt

, (14)

being dρ (r0, t)
dt

= Dρ(r , t)
Dt

, ρ (r0, t) = ρ (r0(r , t), t) = ρ(r , t). In explicit
form, the continuity equation is given by the well-known equation

∂ρ

∂t
+∇ · (ρv) = 0. (15)

Within the framework of the continuum model, the above procedure is exact
(without approximations). On the other hand, the continuity equation can
be deduced using a second approach [3, 10]. Setting

r∗ = r + dr = r + v(r , t) dt (16)
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the Jacobian tensor J is given as

J = ∂r∗

∂r = ∇r∗ = I +∇v dt. (17)

Defining dV = dV (r , t) and dV ∗ = dV (r∗, t∗) = dV (r + dr , t + dt), with
t∗ = t+ dt, the relationship between dV and dV ∗ is expressed by

dV ∗ = J dV, (18)

where the Jacobian determinant reads as

J = det J = det (I +∇v dt) . (19)

According to this, the mass conservation principle can be expressed as

ρ dV = ρ∗ dV ∗, (20)

where:

ρ = ρ(r , t), (21)

ρ∗ (r∗, t∗) = ρ (r + dr , t+ dt)

= ρ(r , t) + ∂ρ(r , t)
∂t

dt+ ∂ρ(r , t)
∂r · dr

= ρ+ ∂ρ

∂t
dt+∇ρ · dr

= ρ+ ∂ρ

∂t
dt+∇ρ · v dt. (22)

If ‖∇v dt‖ � 1, Eq. (19) can be approximated as [10,11]

J = 1 +∇ · v dt (23)

and Eq. (20) reads as

ρ dV =
(
ρ+ ∂ρ

∂t
dt+∇ρ · v dt

)
(1 +∇ · v dt) dV. (24)

In the case in which higher-order infinitesimal can be neglected, Eq. (24)
reduces to Eq. (15).

It is possible to observe that this second procedure is not exact, and it
introduces some approximations. The comparison between the two proce-
dures implies that for every ∇v there exists dt such that ‖∇v dt‖ � 1. This
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result is intrinsic to the continuum model: within the framework of the con-
tinuum model, the dimensionless number ‖∇v dt‖ is always evanescent (the
larger ‖∇v‖, the lower |dt|); accordingly, the elementary time scale |dt| is
linked to the velocity gradient ‖∇v‖, which, in turn, is linked to mechanical
solicitations. When the mechanical solicitations overcome the limit values,
the LTE assumption is not valid, and the CIT is not suitable for describing
these kinds of phenomena: under these conditions, tr

|dt|
∼ 1, and the EIT

can be used.
It should be stressed that, as ‖∇v dt‖ � 1, then det (I +∇v dt) =

1 + ∇ · v dt is close to 1 and, therefore, also the dimensionless number
|∇ · v dt| is always evanescent, |∇ · v dt| � 1 [3]. Formally, the continuum
model assures that for every ∇·v there exist dt such that |∇·v dt| � 1. This
result can be used to define the REV scale in CIT. In CIT, the differential
state equation reads as [12]

−1
ρ
dρ = −1

ε
dp+ αdT, (25)

where ε = ε(p, T ) is the bulk modulus of elasticity and α = α(p, T ) is the
thermal expansion coefficient. Using the conservation continuity equation

Dρ

Dt
+ ρ∇ · v = 0 (26)

the following relationship holds:

−1
ρ
dρ = ∇ · v dt (27)

and Eq. (25) reads as

∇ · v dt = −1
ε
dp+ αdT. (28)

As |∇ · v dt| � 1, then 1
ε
|dp| ∼ α|dT | or (equivalently) 1

ε
|∇p| ∼ α|∇T |.

In agreement with this result, that is intrinsic to CIT, when the thermal
solicitation is predominant, setting in Eq. (2) b = p and |∇p| ∼ αε|∇T |,
the REV scale can be expressed as

|dr | ∝ 1
αε

∣∣∣∣ p∇T
∣∣∣∣ . (29)
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On the other hand, when the mechanical solicitation plays a predominant
role, setting in Eq. (2) b = T and |∇T | ∼ 1

αε
|∇p|, the REV scale can be

characterized as

|dr | ∝ αε
∣∣∣∣ T∇p

∣∣∣∣ . (30)

3 Conclusions

The continuum model of the fluid mechanics involves the elementary spatial
scale |dr | and the elementary temporal scale |dt|.

On the one hand, |dr | is linked to the scale of the gradient of the generic
field function (see Eq. (2)). When thermal and/or mechanical solicitations
overcome the limit values, the continuum model is not suitable for describ-
ing the phenomena. In classical irreversible thermodynamics, |dr | can be
assumed proportional to |∇p| or |∇T |, depending on what solicitation (me-
chanical or thermal) is predominant (see Eqs. (29)–(30)).

On the other hand, |dt| is linked to the mechanical solicitation through
the velocity gradient tensor. The continuum model assures that for every
∇v there exists dt such that ‖∇v dt‖ � 1 (as ‖∇v‖ increases, then |dt| de-
creases, and the dimensionless number ‖∇v dt‖ is always evanescent); for
every ∇·v there exist dt such that |∇·v dt| � 1 (as ‖∇v dt‖ � 1, then also
the dimensionless number |∇·v dt| is always evanescent). According to these
results, which are intrinsic to the continuity equation, when the mechanical
solicitations overcome the limit values, the local thermodynamic equilib-
rium assumption is not valid, and tr

|dt|
∼ 1. Then, the classical irreversible

thermodynamics is not suitable for describing these kinds of phenomena.
Under these conditions, the extended irreversible thermodynamics can be
used. It should be stressed that the study approach based on the elementary
scales allows to extend and refine the range of applicability of the classical
irreversible thermodynamics.
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