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Abstract

The purpose of this paper is to compare two approaches applied in property
valuation: artificial neural networks and spatial regression. Despite the fact
that artificial neural networks are often the first choice for modeling in the
big data era, spatial econometrics methods offer incorporation of information
on dependences between multiple objects in the studied space. Although this
dependency structure can be incorporated into artificial neural network via
feature engineering, this study is focused on abilities of reproducing it with
machine learning method from crude coordinate data. The research is based on
the database of 18,166 property sale transactions in Warsaw, Poland. According
to this study, such volume of data does not allow artificial neural networks
to compete in reflecting spatial dependence structure with spatial regression
models.
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1 Introduction
In his 1970 paper, American-Swiss geographer W.R. Tobler remarks that “everything
is related to everything else, but near things are more related than distant
things” (Tobler, 1970). This idea is referred to as the “first law of geography”
(Annamoradnejad et al., 2019) and was a starting point for construction and
verification of many research hypotheses in many fields: from education, through
the labor market and even to organized crime (Dietz, 2002). This observation had
an impact on the achievements in economics, as well as in its auxiliary science:
econometrics. As part of the latter, a separate trend in the area of quantitative
research has been developed, which is more broadly known as spatial econometrics.
One of the areas within the application of spatial econometrics is the identification
of sources of real estate price volatility – both for land and housing (Krause and
Bitter, 2012). The importance of this issue is reflected in the amount of capital that
is related to the real estate market. According to the Report on the situation of the
residential and commercial real estate market in Poland in 2018 (prepared by the
Economic Analysis Department of the National Bank of Poland), the estimated value
of residential real estate assets in Poland – at the end of 2018 – amounted to over PLN
3.8 trillion; see https://www.nbp.pl/publikacje/rynek_nieruchomosci/raport_
2018.pdf. The research problem, that economists are trying to explore, is whether
the neighborhood has an impact on real estate prices. While intuition provides many
arguments to support this hypothesis, it is the task of econometricians to confirm it
quantitatively.
However, these past few years seem to open up a new era of modelling, one that
is based on the concept of big data. The definition of this new phenomena, as is
proposed by De Mauro et al., requires dedicated analytical methods in order to make
proper use of information kept in vast volumes of data (De Mauro et al., 2016).
Oswald et al. enumerate big data analytical methods that can be applied in the
field of social sciences: random forests and gradient boosted trees, artificial neural
networks (ANNs), and support vector machines (Oswald and Putka, 2017). Due to
the little assumptions that must be made when using these machine learning (ML)
methods, their application has become very popular. The use of ML methods in
property valuation constantly grows in popularity. Accoriding to Masias and Valle,
ML techniques can provide a useful set of tools for acquiring information on housing
markets (Masias and Valle, 2016). It can be found in papers of Lin et al. (2021),
Yacim and Boshoff (2020) or Selim (2009).
According to the universal approximation theorem, a feedforward network with a
linear output layer and at least one hidden layer can approximate any continuous
function (Cybenko, 1989), however the theorem does not precise how large this
network has to be (Goodfellow et al., 2016). Thus, even though the function
approximation is possible, sufficient volume of data and neural network complex
enough have to be used. That is why artificial neural networks’ both explanatory
and prediction capabilities can be greater than those of linear models. However,
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spatial regression offers the concept of a weight matrix W , which reflects the pattern
of dependences between multiple objects in the studied space. The matrix W is the
spatial weight matrix that contains non-zero elements wij if observations j and i
are neighbors and zero otherwise. The neighborhood definition is arbitrary and may
range from the one based on mere adjacency between two territorial units, to those
based on a maximum distance (that is j ∈ N(i) if dij < dmax), to those based on the
nearest neighbor criterion (Arbia, 2014). It is a powerful means of encoding which in
fact is a derivative of the spatial location of individual objects. The purpose of this
paper is to verify whether a machine learning approach in its standard design, without
additional feature engineering, can reproduce the information kept in W matrix from
latitude and longitude data, given limited volume of data at hand.
Nikparvar and Thill in their paper persuade there is extensive literature that applies
ML to spatial data but research that explicitly features the spatial properties of data
in ML remains rather limited (Nikparvar and Thill, 2021). As the way of incorporating
spatial information into ML models is to include the spatial components of data in
the observation matrix.
One way of spatial information inclusion is adding coordinates alongside remaining
attributes. Martin et al. in their work on solar energy forecasting enrich input data
with longitude and latitude of each meteorological station (Martin et al., 2016). In
their research are employed: support vector machines and gradient boosting. Zanella
et al. use latitude and longitude data as an input to random forest model on
deforestation and forest fragmentation in the Brazilian Atlantic forest (Zanella et
al., 2017). The other way of spatial information inclusion is feature engineering.
Reproducing the information kept inW matrix from latitude and longitude data seem
to be an attractive direction for the research due to the at least two reasons. The
first one is computational time and complexity of W matrix. The another reason is
sensitivity of the results to the different choices for W matrix specification (LeSage
and Pace, 2014).
The structure of the paper is as follows: Section 2 is devoted to the literature review;
both in the field of spatial modeling and research that focuses on identifying factors
that are influencing house prices. In Section 3, the data set that has been analyzed
is presented. Section 4 describes the tools that are used in this paper. Section 5
is devoted to the results of the research. Finally, Section 6 concludes and provides
directions for further work.

2 Literature review
The problem of property valuation is broadly discussed in the scientific literature.
Much attention is paid to the determinants of housing prices, while other researchers
focus on the methods that are used.
Wang et al. attempt to identify factors that influence housing prices in Taitung
(Taiwan). Based on 3,533 transactions, they verify the influence of several elements;
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these include apartment size, floor, building age, distance to major road, distance to
train station, and distance to school or park (Wang et al., 2019). The influence of
environmental factors like noise, air quality, or window view is verified in the paper of
Hui et al. (Hui et al., 2007). In their article, Ceccato and Wilhelmsson prove that in
Stockholm, the close proximity of crime hot spots affects housing prices. According
to their research, every additional kilometer of distance from such hot spots raises
the price of apartments by 3,000 euro (Ceccato and Wilhelmsson, 2019). Many works
focus on the influence that public transport infrastructure has on property prices;
among them are either the study of Yang et al. (Yang et al., 2019) or of Henneberry
(Henneberry, 1998). Urban infrastructure is another factor that is considered by
researchers. Zhang et al., in their paper, present the positive impact that the presence
of shopping centers has on flat prices. Close proximity to public utility facilities is
not only practical, but it also contributes to the reduction of exhaust fumes being
generated and – as a result – influences housing decisions (Zhang et al., 2019). Yang
et al. point out that the presence of sports and cultural centers or schools positively
impact housing prices in the neighborhood. Hospitals, on the other hand, have a
negative impact on the price (Yang et al., 2018). Additionally, school input quality
affects nearby property prices in the Taipei metropolis (Peng, 2019). A valuable
literature review of factors that influence Malaysian housing prices (including building
properties, location, neighborhood, and quality of life) can be found in the studies of
Hilmi et al. (Hilmi et al., 2016).
The linear hedonic regression model is often used as a starting point in research
on property valuation (Copiello, 2020; Annamoradnejad et al., 2019). The main
assumption that underlies hedonic models, is that the value of a particular good is
treated as a sum of individual utility-bearing attributes (Rosen, 1974). A classic
approach is based on OLS estimation and the final model can be written as follows:

Y = Xβ + ε, (1)

where Y is property price and X is a vector of utility-bearing attributes.
The turn of both the 1970’s and 1980’s of the XX century brought incorporation of
spatial effects into econometric modeling; Goodman (Goodman, 1978), as well as Li
and Brown (Li and Brown, 1980), all measured the influence of the neighborhood on
housing prices. The intense development of spatial econometrics took place a decade
later (Anselin, 1988). Pace and Gilley prove that spatial modeling improves both the
effectiveness and precision of the estimation (Pace and Gilley, 1997). In the research
of Osland, a useful overview of spatial models that is applied to Norwegian property
valuation problems can be found (Osland, 2010). The author proves that a spatial lag
model (SLM; alternatively known as SAR – spatial autoregressive model) and a spatial
error model (SEM) offer a better fit and precision of the estimation than an OLS
approach. Similar conclusions are drawn by Bourassa et al. (Bourassa et al., 2010)
and Palma et al. (Palma et al., 2018). The aim of spatial modeling is not only to find
the determinants of property prices, but to also precisely fix their actual contribution.
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Cohen and Coughlin compare spatial autocorrelation and autoregressive models with
the OLS solution for measuring the impact of airport noise on Atlanta housing prices.
Although the differences in estimations are quite small, it turns out that OLS strongly
underestimates the impact of the noise on the prices, due to omitting the spatial
multiplier factor. Similar conclusions in the field, regarding the impact of schooling
quality on property prices, can be found in the paper of Brasington and Haurin (2006).
The last decade has witnessed the domination of machine learning approaches when it
comes to modeling most scientific problems – including property valuation. Mimis et
al., in their paper, apply artificial neural networks to the problem of property valuation
in Athens (Mimis et al., 2013). The application of the gene expression programming
approach for house pricing in Iran can be found in the article of Shekarian and
Fallahpour (2013). A real estate price estimation, which considers the environmental
quality of property location, can be found in paper of Chiarazzo et al. (2014).
Because the machine learning approach has entered the already well-established
field of property valuation, some researchers focus on comparing different modeling
techniques. Selim compares linear hedonic regression against artificial neural network;
proceeding to then prove the superiority of the latter in terms of price prediction
power (Selim, 2009). Geographically weighted regression is squared up against
gradient boosting approach for house price appreciation evaluation, as seen in the
research of Kang et al. (2020). The application of several different approaches for
mass appraisal of properties can be found within the article by Yacim and Boshoff
(2020). Predictive accuracy is measured for: OLS, geographically weighted regression,
spatial error model, spatial lag model, support vector machine, and artificial neural
network. The conclusion is that spatial models proved to be a better option in price
estimation than ANNs due to their abilities to tackle the problems of both spatial
dependence and spatial heterogeneity. However, the research lacks information on
various ANNs architectures, the total number of neurons in the hidden layers, and
activation functions that distort the conclusions covered in the presented paper as
these hyperparameters affect the performance of estimated ANNs. Other research
that has focused on method comparison in property valuation include the works of
Abidoye and Chan (2018), as well as Embaye et al. (2021).
In some papers, ANNs applications to spatially autocorrelated data incorporate
spatial information via including crude coordinate data or some form of feature
engineering. Cui et al. in their research on optimal scheduling of interfering links
in a dense wireless network base neural network solution solely on the geographic
locations of transmitters and receivers (Cui et al., 2019). On the other hand, Lin et
al. in their paper on property appraisal in real estate industry enrich Support Vector
Machine or Multi-Layer Perceptron approaches with additional features derived from
satellite images (Lin et al., 2021). Both ways of feature enrichment aim to reproduce
spatial dependencies between entities that in case of spatial regression is handled by
W matrix.
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3 Data
The dataset consists of 18,166 flat sale transactions made in Warsaw between July
2018 and April 2019. The time shift in the analyzed dataset is adopted in order to
exclude influence of both: COVID-19 pandemic and serious growth of estate prices in
Poland beginning from 2nd half of 2019. The data is of limited access as it is granted
for a fee by a Warsaw Real Estate Unit. Descriptive statistics of the dataset are
presented in Table 1. The last column of Table 1 presents papers in which particular
variables were used in the hedonic modelling.
The average cost of a typical flat sold in Warsaw, at that time, was about 500,000
PLN. The cost of the most expensive flat was over 15,000,000 PLN. The number
of rooms in flats that are kept in the database vary from 1 to 12. Buildings that
are related to transactions are dated from 1860 to 2019. The average flat size is 57
m2 (median: 51 m2). The price of the flat’s square meter varies from 1,244 PLN
to 47,618 PLN, with the average being 8,840 PLN. The mean distance of property
to metro station is 3.2 kilometers and to Central Business District (CBD; calculated
as distance to the Palace of Culture and Science) is 7.1 kilometers. Most of the
transactions were made in the Mokotow and Bialoleka districts.
Figure 1 presents a map of Warsaw; the lines represent the borders of districts and
the bold black triangles represent metro stations (intersection of both lines marks
the center of the CBD). Gray dots reflect transactions that are stored in the dataset;
darker dots refer to transactions on more expensive properties, whereas lighter dots
represent the cheapest ones. Observation of the graphic alone suggests that spatial
factor may play an important role in explaining the transaction price of property.
Some districts are “darker” than others; furthermore, a closer proximity to a metro
station seems to raise the flat’s pricing. Additionally, properties that are situated on
the left side of the Vistula river (the curved dotted line that is drawn from the bottom
right of the map to its top left) seem to be more expensive than those on the right
side.

4 Experiment
The purpose of this research is to compare two approaches to property valuation:
artificial neural networks and spatial regression. The two spatial models presented
here are the spatial Durbin error model (SDEM), and a general nesting spatial model
(GNS). For artificial neural networks, 18 different architectures are tested. The aim of
the comparison is to verify whether artificial neural networks in its standard design,
without additional feature engineering, can reproduce the information kept in W
matrix from latitude and longitude data, given the volume of the data at hand. The
dataset, that consists of 18,166 transactions, should be perceived as large not only
in the context of property valuation but in general – for applications in the field
of economics. Thus the actual research question is whether such volume of data
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Figure 1: Property sale prices in Warsaw

 

Districts: 1 – Bialoleka, 2 – Bielany, 3 – Praga Polnoc, 4 – Zoliborz, 5 – Targowek, 6 – Bemowo, 7 – Wola,
8 – Srodmiescie, 9 – Praga Poludnie, 10 – Rembertow, 11 – Ursus, 12 – Ochota, 13 – Mokotow, 14 – Wawer,
15 – Wesola, 16 – Wlochy, 17 – Ursynow, 18 – Wilanow.

lets universal approximation theorem work for neural networks fed with spatially
autocorrelated data.
The most crucial concept of spatial econometrics is a weight matrix W , which reflects
the pattern of dependences between multiple objects in the studied space. It is a
square matrix with number of rows and columns that are equal to a number of
observations. Its i-th row can be interpreted as a vector of weights that reflect the
influence of particular observations on i-th object. More on information on the W
matrix can be found in the works of Arbia (2014).
In this paper, W matrix is based on the concept of k nearest neighbors as database
refers to points in space where k is set to 11 due to property valuation practice
in Poland fixing that more than 10 properties have to be taken into account when
estimating property price.
The spatial autoregressive model (SAR) allows for incorporating the effect of nearby
flat prices’ influence on the price of the evaluated property. The SAR model assumes
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an endogenous interaction effect on dependent variable:

Y = ρWY +Xβ + ε, (2)

where Y is the price of square meter and X is a vector of predictors that consists
of the remaining variables (except for longitude and latitude) that are presented in
Table 1, W is a spatial weight matrix, WY is a spatially lagged dependent variable,
and ρ is a spatial dependence parameter. When ρ = 0, SLM reduces to linear hedonic
model (1).
SAR model allows for the testing of the hypothesis that property price depends, not
only on the vector of flat characteristics, but also on the prices of nearby properties.
In the scientific literature, such a phenomenon is known as an adjacency effect (Can,
1990); this is perceived as a way of benchmarking to similar transactions when fixing
the price of a particular property (Osland, 2010).
The purpose of the spatial error model (SEM) is to address the issue of spatial
autocorrelation of residuals that violate one of the assumptions of the OLS method.
By including the spatial autocorrelation factor, the SEM model reduces bias caused
by not including unobserveables. The formula of the SEM model is as follows:

Y = Xβ + ε, (3)
ε = λWε+ u, (4)

where W is a spatial weight matrix, u is a random term that is independent and
identically distributed u ∼ N(0, σ2I).
Spatial autoregressive model with autoregressive disturbances (Kelijan-Prucha or SAC
model) cover both above-mentioned sources of variability; it can be written as follows:

Y = ρWY +Xβ + ε, (5)
ε = λWε+ u, (6)

where symbols are consistent with both SEM and SAR model notation. The SAC
model is used when models that assume only one source of spatial variability turn
out to be insufficient.
Spatial Durbin model (SDM) is formulated as follows:

Y = ρWY +Xβ +WXθ + ε (7)

and it includes the WXθ term that represents spatial spillovers. Its incorporation in
the model reflects the impact of determinants of prices of nearby properties on the
price of other ones.
Spatial Durbin error model (SDEM) is formulated as follows:

Y = Xβ +WXθ + ε, (8)
ε = λWε+ u. (9)
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The general nesting spatial model (GNS) is formulated as follows:

Y = ρWY +Xβ +WXθ + ε, (10)
ε = λWε+ u, (11)

and it nests SAC, SDM and SDEM models.
All the aforementioned approaches to property price modeling require the adoption of
explicit functions between both input and output data. Artificial neural networks on
the other hand, do not require any assumptions as to the underlying functional form of
the model. ANNs are models that are inspired by the biological neural networks that
constitute animal brains. According to Hornik et al., what makes ANNs so powerful
is the concept of “universal approximation” (Hornik et al., 1989). These are able to
imitate different functional forms that reflect a real variability of the data.
In this research a multilayer perceptron (MLP) class of feedforward artificial neural
network is employed. This solution has three main components: the input data layer
(corresponding to X as is mentioned above – plus longitude and latitude), the hidden
layers, and the output layer (corresponding to Y as is mentioned above). Each of
these layers consist of nodes; these nodes are connected to nodes at adjacent layers.
The hidden layers contain two processes: the weighted summation functions and the
transformation function. Both functions relate the values from the input data to
the output measures. Multilayer perceptron is perceived as most popular and widely
used neural network type (Zhang, 2000) that is why such a structure is adopted in
the presented research.
According to Amirabadi et al. (2020), one of the main difficulties in working with
ANN is hyperparameter tuning. Hyperparameters are the design parameters, and
could affect the training qualification. The hyperparameters to tune are: the number
of neurons and hidden layers, activation function, optimization algorithm (and for
some of them also: learning rate, batch size, and number of epochs). As the choice
of hyperparameters’ values often depends on the structure of the problem, Aggarwal
(2018) in his book states that he most well-known technique is grid search, in which
a set of values is selected for set of hyperparameters and combinations of their values
are tested in order to determine the optimal ANN choice.
In this study, various architectures of ANNs are examined; these are dependent on
a different number of hidden layers, number of neurons, optimization algorithm, and
activation function. Their role in the modelling part is following:

i) hidden layers – are the layers between input layer and output layer; smaller
number of layers may cause underfitting, larger number – may cause overfitting;

ii) neurons – many hidden units within a layer can increase accuracy;

iii) activation function – defines the output of a particular node given an input or
set of inputs;
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iv) algorithm – optimization algorithms are used to change the weights of artificial
neural networks in order to reduce the losses and provide the most accurate
results.

A total of 18 architectures were tested, which are presented in Table 2.

Table 2: Artificial neural network architectures tested in the research

id hidden layers hidden neurons algorithm activation function

nn1 2 6 RPROP+ softplus
nn2 2 10 RPROP+ softplus
nn3 2 14 RPROP+ softplus
nn4 3 9 RPROP+ softplus
nn5 3 15 RPROP+ softplus
nn6 3 21 RPROP+ softplus
nn7 2 6 RPROP- logistic
nn8 2 10 RPROP- logistic
nn9 2 14 RPROP- logistic
nn10 3 9 RPROP- logistic
nn11 3 15 RPROP- logistic
nn12 3 21 RPROP- logistic
nn13 2 6 RPROP- softplus
nn14 2 10 RPROP- softplus
nn15 2 14 RPROP- softplus
nn16 3 9 RPROP- softplus
nn17 3 15 RPROP- softplus
nn18 3 21 RPROP- softplus

More on RPROP+ and RPROP- algorithms can be found in Riedmiller and Braun
(1993), as well as in Riedmiller (1994). An exact models’ specification in R code is
presented in Appendix A. Full code is available upon request.
The prediction power of spatial models vs neural networks is measured with the mean
absolute percentage error (MAPE), as well as the root-mean-square error (RMSE).
MAPE is a measure of the prediction accuracy of a forecasting approach. It expresses
the accuracy as a ratio, which is defined by the formula:

MAPE =

∑n
i=1

∣∣∣Ai−Pi

Ai

∣∣∣
n

∗ 100%, (12)

where A is the actual value and P is the predicted value.
The RMSE represents the square root of the second sample moment of the differences
between predicted values and observed values. RMSE is a measure of accuracy and
is used to compare forecasting errors of different models for a particular dataset; its
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formula is as follows:

RMSE =

√∑n
i=1 (Pi −Ai)2

n
. (13)

The prediction power of estimated models is verified via spatial 8-fold cross-validation.
Each iteration of the cross-validation procedure trains models on 7 geo-clusters of
transactions and performs tests on the remaining one. Clusters consist of comparable
volume of transactions performed in adjacent districts. Clusters and their descriptions
are listed in Table 3.

Table 3: Geo-clustering used in cross-validation procedure

Iteration / cluster districts number of transactions

1 Praga Poludnie, Rembertow, Wawer, Wesola 2435
2 Bialoleka 2250
3 Bemowo, Bielany, Zoliborz 2236
4 Mokotow 2912
5 Ochota, Ursus, Wlochy 2068
6 Ursynow, Wilanow 1704
7 Srodmiescie, Wola 2766
8 Praga Polnoc, Targowek 1795

In the case of spatial models, each iteration of cross-validation procedure assumes
model (and thus W matrix) training on 7 geo-clusters of data and predictions are
calculated for the remaining cluster with W matrix computed on the entire (covering
all 8 geo-clusters) dataset. Such an approach to W matrix computation in the test
phase is supposed to reflect the fact that ANNs utilize latitude and longitude data.
All computations have been performed in R version 4.0.2. The maximum time of
convergence of each model was set to 72 hours. Part of the neural networks did not
converge during that time: nn1, nn2, nn3, nn4, nn5, nn6, nn13, nn14, nn15, nn17,
and nn18. As a result, these models are not presented in the following sections of this
paper.

5 Results
The application of artificial neural networks does not require any particular
assumptions; this is neither on data nor on the formula linking input and output of the
model. Using spatial regression models should be preceded by spatial autocorrelation
testing. This can be done with the Moran I test (Arbia, 2014). A null hypothesis
states that there is no spatial autocorrelation in the residuals. These test results are
presented in Table 4.
According to Moran I test results, in case of the OLS model, the null hypothesis
should be rejected. For spatial models, the test provides evidence that these models
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Table 4: Moran I test statistics

Moran I statistic p-value

OLS 0.422 <0.001
SAC -0.000 0.986
SDM 0.002 0.199
SDEM 0.000 0.522
GNS 0.000 0.479

address the issue of spatial autocorrelation in the residuals. In conclusion, due to the
fact that there is spatial dependence in the data, spatial models should be applied, as
the OLS solution loses its efficiency and – thus – estimates of coefficients are biased.
A series of likelihood ratio tests applied to spatial models are presented in Table 5.

Table 5: LR test results

Likelihood ratio p-value

GNS vs SAC 361.9 <0.001
GNS vs SDM 41.1 <0.001
GNS vs SDEM 0.07 0.793

According to LR test results from Table 5, GNS provides better fit to data than SAC
and SDM models. There is also no evidence to reject the null hypothesis that SDEM
model provides as good fit as more general model. Estimation results of spatial models
are presented in Table 6.
According to estimation results from Table 6, in both models most variables are
significant at α = 0.05 except for: building – floors overground, location – distance
from metro station, lagged: flat – has cellar, lagged: location – distance from metro
station, lagged: location – distance from CBD. In both models WX component is
significant (theta) and WY is not significant (rho) in GNS model. Both models are
significant in terms of Wald statistic at α = 0.05.
Comparison measures for estimated models are presented in Table 7.
The results of the RMSE and MAPE calculation from Table 7 show that, in terms
of RMSE and MAPE criterions calculated within cross-validation procedure spatial
models are superior to artificial neural networks. Comparison of the cross-validation
results to RMSE and MAPE calculated for models trained on the entire dataset
also reveal the robustness of spatial models to overfitting. Artificial neural networks
prediction accuracy drops significantly on test sets.
Figure 2 presents scatterplots of actual and predicted prices of the competing models.
The straight line represents y = x identity function.
Based on the information seen in Figure 2, a few conclusions can be drawn. First,
data on neural network predictions are more dispersed than in the case of spatial
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Table 6: Estimation results of spatial models

SDEM GNS
Estimate Pr(>|z|) Estimate Pr(>|z|)

Intercept 26 373 <0.000 26 677 <0.000
building
- year of construction 17 <0.000 17 <0.000
- floors overground -14 0.067 -13 0.069
- floors underground 623 <0.000 623 <0.000
transaction - primary market (binary) -1 120 <0.000 -1 119 <0.000
flat
- floor 99 <0.000 99 <0.000
- number of rooms -527 <0.000 -527 <0.000
- size (square meters) 14 <0.000 14 <0.000
- has cellar (binary) 133 <0.000 133 <0.000
- has parking (binary) 725 <0.000 725 <0.000
- is on attic (binary) -639 0.005 -640 0.005
location
- distance from metro station (in kms) 54 0.666 54 0.666
- distance from CBD (in kms) -36 370 0.033 -36 301 0.034
district
- Bialoleka -10 062 <0.000 -10 063 <0.000
- Bemowo -5 303 <0.000 -5 304 <0.000
- Bielany -3 449 <0.000 -3 445 <0.000
- Mokotow -1 253 <0.000 -1 253 <0.000
- Ochota -2 351 <0.000 -2 347 <0.000
- Praga Polnoc -3 953 <0.000 -3 952 <0.000
- Praga Poludnie -3 788 <0.000 -3 787 <0.000
- Rembertow -8 990 <0.000 -8 977 <0.000
- Targowek -4 895 <0.000 -4 896 <0.000
- Ursus -5 062 <0.000 -5 057 <0.000
- Ursynow -2 368 0.001 -2 366 0.001
- Wola -1 541 <0.000 -1 540 <0.000
- Wawer -4 527 <0.000 -4 517 <0.000
- Wesola -5 497 <0.000 -5 496 <0.000
- Wilanow -2 030 <0.000 -2 031 <0.000
- Wlochy -3 424 0.001 -3 424 0.001
- Zoliborz 34 0.946 32 0.949
lagged: building
- year of construction -24 <0.000 -24 <0.000
- floors overground 45 0.034 46 0.033
- floors underground -550 <0.000 -548 <0.000
lagged: transaction - primary market (binary) 666 <0.000 662 <0.000
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Table 6: Estimation results of spatial models cont.

SDEM GNS
Estimate Pr(>|z|) Estimate Pr(>|z|)

lagged: flat
- floor 93 0.006 94 0.006
- number of rooms -578 <0.000 -591 <0.000
- size (square meters) 34 <0.000 34 <0.000
- has cellar (binary) 1 0.996 1 0.997
- has parking (binary) 527 <0.000 546 <0.000
- is on attic (binary) -2 359 0.023 -2 373 0.023
lagged: location
- distance from metro station (in kms) -124 0.365 -124 0.364
- distance from CBD (in kms) 21 519 0.222 21 284 0.228

- Bialoleka 6 308 <0.000 625 <0.000
- Bemowo 2 979 <0.000 2 946 <0.000
- Bielany 1 183 0.043 1 148 0.059
- Mokotow -915 0.033 -940 0.036
- Ochota -2 0.997 -40 0.945
- Praga Polnoc 797 0.189 750 0.235
- Rembertow 6 565 <0.000 6 520 <0.000
- Targowek 1 282 0.024 1 234 0.043
- Ursus 2 132 0.044 2 083 0.053
- Ursynow -532 0.508 -574 0.486
- Wola -501 0.221 -530 0.218
- Wawer 1 725 0.052 1 671 0.066
- Wesola 3 727 <0.000 3 676 <0.000
- Wilanow -424 0.509 -453 0.493
- Wlochy 517 0.634 475 0.666
- Zoliborz -1 989 0.001 -2 009 0.001
theta 0.731 <0.000 0.736 0.017
rho -0.014 0.794

regressions. Second, the spatial regressions predictions are more aligned to the red
line of identity function – neural networks tend to overestimate square meter prices
of cheaper properties and underestimate prices of more expensive ones.

D. Przekop
CEJEME 14: 199-223 (2022)

214



Artificial Neural Networks . . .

Table 7: Comparison measures

RMSE
crossvalid

MAPE
crossvalid

RMSE
entire set

MAPE
entire set

computation
time

nn7 6 702 54% 1 621 12% 3h
nn8 5 021 37% 1 477 11% 6h
nn9 12 841 71% 1 393 11% 26h
nn10 6 591 53% 1 583 12% 4h
nn11 9 174 53% 1 460 11% 8h
nn12 17 117 42% 1 429 11% 13h
nn16 6 307 44% 1 606 12% 30h
SDEM 1 762 15% 1 507 11% 13h
GNS 1 757 15% 1 499 11% 25h

Figure 2: Scatterplots of prices
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6 Discussion
The purpose of this article was to compare two approaches applied in property
valuation: artificial neural networks and spatial regression. This research was based
on the database of property sale transactions in Warsaw.
According to the Moran I test, the data that was examined is spatially autocorrelated.
That is why spatial regression was taken into consideration and was confronted with
artificial neural networks. The aim of this task was to verify whether a machine
learning approach in its standard design, without additional feature engineering, can
reproduce the information kept in W matrix from latitude and longitude data, given
the volume of the data at hand (18,166 transactions).
Prediction abilities of both approaches were examined. In terms of the MAPE
and RMSE criterions, spatial models’ performance is better than in case of neural
networks. Both metrics are similar when calculated for models estimated on the entire
dataset. Cross-validation procedure reveals superiority of spatial models. It turns out
that for such volume of data (18,166 transactions), artificial neural networks are not
able to reproduce the information kept in W matrix from latitude and longitude data
and spatial models outperform neural networks.
Another significant advantage of spatial regression approach over neural networks
is the interpretability of the results. In case of the former, the exact influence
of particular variables on the target can be defined. Artificial neural networks,
however, are black boxes that offer little insight into their recommendation criteria.
Based on the Warsaw transaction database, it is recommended to apply the spatial
regression approach – if possible. Better performance, as well as the possibility of
result interpretation, makes spatial regression superior to artificial neural networks in
modeling spatially autocorrelated data.
As for the direction of future works, research can be replicated on another dataset.
Furthermore, analysis can be extended on different neural network architectures;
stability analysis of both approaches may also be verified. The most attractive
direction for future research would be the application of feature engineering on
coordinate data for artificial neural networks. Such an activity would reveal what
effort should be done to make artificial neural networks comparable with spatial
models.
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Appendix A
nn_01 <- neuralnet(f,data=scaled_train,hidden=c(3,3), stepmax= 1e+06, act.fct =
softplus, algorithm = "rprop+", rep=3, linear.output=T)

nn_02 <- neuralnet(f,data=scaled_train,hidden=c(5,5), stepmax= 1e+06, act.fct =
softplus, algorithm = "rprop+", rep=3, linear.output=T)

nn_03 <- neuralnet(f,data=scaled_train,hidden=c(7,7), stepmax= 1e+06, act.fct =
softplus, algorithm = "rprop+", rep=3, linear.output=T)

nn_04 <- neuralnet(f,data=scaled_train,hidden=c(3,3,3), stepmax= 1e+06, act.fct
= softplus, algorithm = "rprop+", rep=3, linear.output=T)

nn_05 <- neuralnet(f,data=scaled_train,hidden=c(5,5,5), stepmax= 1e+06, act.fct
= softplus, algorithm = "rprop+", rep=3, linear.output=T)

nn_06 <- neuralnet(f,data=scaled_train,hidden=c(7,7,7), stepmax= 1e+06, act.fct
= softplus, algorithm = "rprop+", rep=3, linear.output=T)

nn_07 <- neuralnet(f,data=scaled_train,hidden=c(3,3), stepmax= 1e+06, act.fct =
logistic, algorithm = "rprop-", rep=3, linear.output=T)

nn_08 <- neuralnet(f,data=scaled_train,hidden=c(5,5), stepmax= 1e+06, act.fct =
logistic, algorithm = "rprop-", rep=3, linear.output=T)

nn_09 <- neuralnet(f,data=scaled_train,hidden=c(7,7), stepmax= 1e+06, act.fct =
logistic, algorithm = "rprop-", rep=3, linear.output=T)
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nn_10 <- neuralnet(f,data=scaled_train,hidden=c(3,3,3), stepmax= 1e+06, act.fct
= logistic, algorithm = "rprop-", rep=3, linear.output=T)

nn_11 <- neuralnet(f,data=scaled_train,hidden=c(5,5,5), stepmax= 1e+06, act.fct
= logistic, algorithm = "rprop-", rep=3, linear.output=T)

nn_12 <- neuralnet(f,data=scaled_train,hidden=c(7,7,7), stepmax= 1e+06, act.fct
= logistic, algorithm = "rprop-", rep=3, linear.output=T)

nn_13 <- neuralnet(f,data=scaled_train,hidden=c(3,3), stepmax= 1e+06, act.fct =
softplus, algorithm = "rprop-", rep=3, linear.output=T)

nn_14 <- neuralnet(f,data=scaled_train,hidden=c(5,5), stepmax= 1e+06, act.fct =
softplus, algorithm = "rprop-", rep=3, linear.output=T)

nn_15 <- neuralnet(f,data=scaled_train,hidden=c(7,7), stepmax= 1e+06, act.fct =
softplus, algorithm = "rprop-", rep=3, linear.output=T)

nn_16 <- neuralnet(f,data=scaled_train,hidden=c(3,3,3), stepmax= 1e+06, act.fct
= softplus, algorithm = "rprop-", rep=3, linear.output=T)

nn_17 <- neuralnet(f,data=scaled_train,hidden=c(5,5,5), stepmax= 1e+06, act.fct
= softplus, algorithm = "rprop-", rep=3, linear.output=T)

nn_18 <- neuralnet(f,data=scaled_train,hidden=c(7,7,7), stepmax= 1e+06, act.fct
= softplus, algorithm = "rprop-", rep=3, linear.output=T)

GNS <- sacsarlm(prxm~mar_pri+bld_yr+bld_flrd+loc_flr+dis_m+bld_flru+
loc_att+par+cbd+loc_rms+loc_spa+cel+d_.BA+d_.BO+d_.BY+d_.MW+
d_.OA+d_.PC+d_.PE+d_.RW+d_.TK+d_.US+d_.UW+d_.WA+d_.WR+
d_.WS+d_.WW+d_.WY+d_.ZZ+lag.mar_pri+lag.bld_yr+lag.bld_flrd+
lag.loc_flr+lag.dis_m+lag.bld_flru+lag.loc_att+lag.par+lag.cbd+lag.loc_rms+
lag.loc_spa+lag.cel+lag.d_.BA+lag.d_.BO+lag.d_.BY+lag.d_.MW+lag.d_.OA+
lag.d_.PC+lag.d_.PE+lag.d_.RW+lag.d_.TK+lag.d_.US+lag.d_.UW+
lag.d_.WA+lag.d_.WR+lag.d_.WS+lag.d_.WW+lag.d_.WY+lag.d_.ZZ,
data=wawa_train, listw=W5_list, Durbin=FALSE, type = "sacmixed")

SDEM <- errorsarlm(prxm ~ mar_pri+bld_yr+bld_flrd+loc_flr+dis_m+
bld_flru+loc_att+par+cbd+loc_rms+loc_spa+cel+d_.BA+d_.BO+
d_.BY+d_.MW+d_.OA+d_.PC+d_.PE+ d_.RW+d_.TK+d_.US+d_.UW+
d_.WA+d_.WR+d_.WS+d_.WW+d_.WY+d_.ZZ+lag.mar_pri+lag.bld_yr+
lag.bld_flrd+lag.loc_flr+lag.dis_m+lag.bld_flru+lag.loc_att+lag.par+lag.cbd+
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lag.loc_rms+lag.loc_spa+lag.cel+lag.d_.BA+lag.d_.BO+lag.d_.BY+
lag.d_.MW+lag.d_.OA+lag.d_.PC+lag.d_.PE+lag.d_.RW+lag.d_.TK+
lag.d_.US+lag.d_.UW+lag.d_.WA+lag.d_WR+lag.d_.WS+lag.d_.WW+
lag.d_.WY+lag.d_.ZZ, data=wawa_train, listw = W5_list)
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