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CONTROL AND INFORMATICS

Eigenvalues assignment in uncontrollable
linear systems

Tadeusz KACZOREK ∗∗∗

Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland

Abstract. It is shown that in an uncontrollable linear system ẋ = Ax+Bu it is possible to assign arbitrarily the eigenvalues of the closed-
loop system with state feedbacks u = Kx, K ∈ ℜn×n if rank [A B] = n. The design procedure consists of two steps. In step 1, a nonsingular
matrix M ∈ℜn×n is chosen so that the pair (MA, MB) is controllable. In step 2, the feedback matrix K is chosen so that the closed-loop matrix
Ac = A−BK has the desired eigenvalues. The procedure is illustrated by a simple example.
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1. INTRODUCTION
The concepts of controllability and observability introduced by
Kalman [1,2] have been the basic notions of the modern control
theory. It is well-known that if the linear system is controllable
then, by the use of state feedback, it is possible to modify the
dynamical properties of the closed-loop systems [1–12]. If the
linear system is observable, then it is possible to design an ob-
server which reconstructs the state vector of the system [1–12].
Descriptor systems of integer and fractional order have been
analyzed in [6,11]. The stabilization of positive descriptor frac-
tional linear systems with two different fractional orders by de-
centralized controller has been investigated in [11].

In this paper, it will be shown that it is possible to assign
arbitrarily the eigenvalues of the closed-loop system with state
feedback if rank [A B] = n. In Section 2 it will be shown that if
rank [A B] = n, then there exists a nonsingular matrix M ∈ℜn×n

such that the pair (MA, MB) is controllable. Two procedures for
the computation of the matrix M ∈ℜn×n will be proposed and
illustrated by simple numerical examples in Section 3. Con-
cluding remarks will be given in Section 4.

The following notation will be used: ℜ – the set of real num-
bers, ℜn×m – the set of n×m real matrices, In – the n×n identity
matrix.

2. CONTROLLABILITY OF LINEAR SYSTEMS
Consider the linear continuous-time system

ẋ = Ax+Bu, (1a)
y =Cx, (1b)

where x= x(t)∈ℜn, u= u(t)∈ℜm, y= y(t)∈ℜp are the state,
input, and output vectors and A ∈ℜn×n, B ∈ℜn×m, C ∈ℜp×n.
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Definition 1. [4, 5, 7, 9, 10, 13] The system (1) (the pair (A, B)
is called controllable if there exists an input u(t)∈ℜm, t ∈ [0 t f ]
which steers the state of the system from the initial state x(0) ∈
ℜn to the given final state x f = x(t f ).

Theorem 1. The system (1a) (the pair (A, B) is controllable if
and only if one of the following conditions is satisfied:
1. (Kalman condition)

rank
[

B AB ... An−1B
]
= n, (2a)

2. (Hautus condition)

rank
[

Ins−A B
]
= n, (2b)

for s ∈ C (the field of complex numbers). In the proof of the
main result of this section, the following theorem will be used.

Theorem 2. (Kronecker–Capelly theorem, [13]) The equation

Px = Q, P ∈ℜ
n×p, Q ∈ℜ

n×q, n, p,q≥ 1 (3)

has a solution x ∈ℜp×q if and only if

rank
[

P Q
]
= rank [P]. (4)

Theorem 3. If the pair (A, B) is uncontrollable but satisfies the
condition

rank
[

A B
]
= n, A ∈ℜ

n×n, B ∈ℜ
n×m, (5)

then there exists a nonsingular matrix M ∈ ℜn×n such that the
pair (

A, B
)
, A = MA, B = MB (6)

is controllable.

Proof. From (6) we have

M
[

A B
]
=
[

A B
]
, (7)

where the pair (A, B) is controllable.
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From Theorem 2 applied to equation (7), it follows that there
exists a nonsingular matrix M satisfying (7) if the condition (5)
holds.

To compute the desired matrix M the following procedures
can be recommended.

Procedure 1. By choosing the controllable pair (A, B) and
post-multiplying equation (7) by the transposed matrix [A B]T ,
we obtain

M
[

AAT BBT ]= AAT +BBT . (8)

The matrix

[
A B

][AT

BT

]
= AAT +BBT (9)

is nonsingular since rank [A B] = n. From (8) we have the de-
sired matrix

M =
(
AAT +BBT )(AAT +BBT )−1

. (10)

To find the desired matrix M the following procedure can be
also applied.

Procedure 2. Choose a nonsingular matrix M ∈ ℜn×n and
compute the matrix [A B

]
. Check if the pair [A B ]T is con-

trollable if it is not the case then repeat the procedure for a new
matrix M.

Example 1. Consider the uncontrollable system (1) with the
matrices

A =

[
1 0
1 −1

]
, B =

[
0
1

]
. (11)

From (11) it follows that it is impossible to stabilize the sys-
tem by state feedback u = Kx, K =

[
k1 k2

]
. The system with

(11) satisfies condition (5) since

rank
[
A B

]
= rank

[
1 0 0
1 −1 1

]
= 2 = n. (12)

According to Procedure 1, we choose the controllable pair in
the form

A =

[
2 −1
3 −1

]
, B =

[
1
1

]
. (13)

Using (10) and (13) we obtain

M =
(
AAT +BBT )(AAT +BBT )−1

=

[[
2 −1
3 −1

][
1 1
0 −1

]
+

[
1
1

][
0 1

]]

×

[[
1 0
1 −1

][
1 1
0 −1

]
+

[
0
1

][
0 1

]]−1

=

[
1 1
2 1

]
. (14)

According to Procedure 2, we choose the matrix M for ex-
ample in the form

M =

[
1 1
2 1

]
. (15)

In this case

A = MA =

[
1 1
2 1

][
1 0
1 −1

]
=

[
2 −1
3 −1

]
,

B = MB =

[
1 1
2 1

][
0
1

]
=

[
1
1

]
.

(16)

The pair (16) is controllable since

rank
[
B AB

]
= rank

[
1 1
1 2

]
= 2 = n. (17)

Note that if we choose

M = A =

[
1 0
1 −1

]
, (18)

then

A = MA = A2 =

[
1 0
0 1

]
, B = MB =

[
0
−1

]
. (19)

and the pair (A, B) is uncontrollable.
The above considerations for the pair (A, B) can be extended

to the pair (A,C) of the system (1).

Definition 2. [4, 5, 7, 9, 10, 13] The linear system (1) is called
observable if knowing its input u(t) ∈ℜm and its output y(t) ∈
ℜp for t ∈

[
0 t f

]
it is possible find its unique initial condition

x(0) ∈ℜn.

Theorem 4. If the pair (A,C) is unobservable but satisfies the
condition

rank

[
A
C

]
= n, A ∈ℜ

n×n, C ∈ℜ
p×n, (20)

then there exists a nonsingular matrix M ∈ ℜn×n such that the
pair (

A,C
)
, A = AM, C =CM (21)

is observable.

The proof is similar (dual) to the proof of Theorem 3.

3. STABILIZATION OF THE UNCONTROLLABLE LINEAR
SYSTEMS BY STATE FEEDBACKS

Consider the linear system (1) with an uncontrollable pair
(A, B). We are looking for the state feedback matrix K such
that the closed-loop matrix

Âc = A−BK (22)

has the desired eigenvalues (Fig. 1).
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Fig. 1. Linear system with state feedback

First, we choose the matrix M such that the pair

A = MA, B = MB (23)

is controllable and next using one of the well-known ap-
proaches [3, 5, 6, 9, 10, 12] of the eigenvalues assignment we
choose the matrix K such that the matrix Âc has the desired
eigenvalues.

To solve the problem the following procedure can be applied.

Procedure 3.
Step 1. Using the approach of Section 2 find the matrix M such

that the pair (23) is controllable.
Step 2. Using one of the well-known approaches of the eigen-

values assignment find the matrix K such that the closed-
loop matrix (22) has the desired eigenvalues.

Example 2. (Continuance of Example 1) For the uncontrol-
lable system with the matrices (11) find the state feedback ma-
trix K =

[
k1 k2

]
such that the close–loop matrix (22) has the

eigenvalues s1 =−2, s2 =−3.
Using the procedure we obtain the following:

Step 1. For the matrix M of the form (15), we have obtained
the controllable pair

A =

[
2 −1

3 −1

]
, B =

[
1

1

]
. (24)

Step 2. In this case, the close-loop matrix has the form

Âc = A−BK =

[
2 −1

3 −1

]
−

[
1

1

][
k1 k2

]

=

[
2− k1 −1− k2

3− k1 −1− k2

]
(25)

and

det
[
I2s− Âc

]
=

[
s−2+ k1 1+ k2

−3+ k1 s+1+ k2

]
= s2 +(k1 + k2−1)s+ k2 +1

= (s− s1)(s− s2) = s2− (s1 + s2)s+ s1s2 . (26)

From (26) for the desired eigenvalues s1 = −2, s2 = −3 we
have k1 = 1, k2 = 5 and the desired state feedback matrix has
the form K =

[
k1 k2

]
=
[
1 5
]
.

4. CONCLUDING REMARKS
It has been shown that it is possible to assign arbitrarily the
eigenvalues of the closed-loop system with state feedback if
condition (5) is satisfied. It is also shown that if condition (5) is
satisfied, then there exists a nonsingular matrix M ∈ℜn×n such
that the pair (MA, MB) is controllable (Theorem 3). Two proce-
dures for the computation of the matrix M ∈ ℜn×n have been
proposed and illustrated by a simple numerical example. This
approach can be extended to linear discrete-time linear systems
and fractional orders linear systems.
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