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The article describes optimization of the process of acceleration of the tower crane
trolley movement mechanism during the steady mode of the slewing mechanism.
A mathematical model of the boom system of the tower crane was used for the
optimization of the trolley movement. The model was reduced to a sixth-order linear
differential equation with constant coefficients, which represents the relationships
between the drive torque and the coordinate of the load and its time derivatives.
Non-dimensional complex criterion (objective function), which takes into account
the drive torque and its rate of change in time during the transient process, was
developed to optimize the mode of the trolley movement mechanism. Based on that,
a variational problem was formulated and solved in an analytical form in which root-
mean-square (RMS) values of the quantiles were applied. A complex optimal mode
of acceleration of the trolley movement mechanism was obtained and compared with
the modes optimized based on different criteria. Advantages and disadvantages of
the solutions were discussed based on the analysis of the obtained optimal modes of
motion. The analysis revealed low- and high-frequency elements oscillations of the
trolley movement mechanism during the transient processes. The conditions for their
elimination were formulated.
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1. Introduction

In order to increase the capacity of a tower crane, several of its mechanisms
often operate jointly. An example of such a joint operation is the movement of the
load trolley combined with the movement of slewing mechanisms of the crane. In
this case, there appear additional dynamical loads in elements of mechanisms and
in the structure of the crane. These loads can be especially dangerous when one
of the mechanisms is in the transient process (starting or braking). The loads may
cause low- and high-frequency oscillations in the elements of a crane mechanism,
which, in turn, lead to a decrease in the crane reliability and increase the energy
losses in the crane mechanisms.

A significant number of scientific works have been dedicated to the dynamic
processes during the operation of crane mechanisms. The dynamics of the hoist-
ing and the trolley movement mechanisms for different types of cranes was studied
in [1]. In this work, the load pendulum oscillations were described and investigated.
In order to eliminate them, one developed controllers based on the Lyapunov tech-
niques and LaSalle’s invariance theorem [2, 3]. Other Lyapunov-based approach
allowed for creating a closed-loop control system, which takes into account actuator
constraints [4]. Experimental studies presented in this work support the theoretical
basis of the research.

In addition to the pendulum oscillations, a twisting of a load exists in practice.
Investigations on this problem and means for reduction were presented as well [5].

The above-mentioned investigations exploit the idea of double-pendulum os-
cillations (hook and load). Elimination of the load pendulum oscillations can
be achieved with the application of soft computing approaches (artificial neural
network and fuzzy-logic) [6, 7]. A similar goal was set in the work [8], where
PID-controllers (in different forms) were used to solve the problem.

All of these approaches are effective. However, they do not comply with the
idea of optimal control. There are many scientific investigations [9–13], where
optimal control problems were formulated and solved in different ways.

In the work [9], a crane-trolley-load dynamical system ismodeledwith coupled
ordinary-partial differential equations. They were exploited in an optimal control
problem, and the authors provided a solution to the problem in a numerical form.
In order to reduce the load pendulum (low-frequency) oscillations, the problem
of slewing mechanism optimization was solved [10]. All the obtained results have
been numerical and the changes in parameters of the system lead to the need for
recalculation of the optimal control law according to the new values of parameters
(previously calculated lawmay be used as a first iteration to the new optimal control
law). In the scientific work [11], a model of a tower crane is presented as a system
of four nonlinear differential equations. In the formulation of optimal control prob-
lem, the authors imposed constraints on velocities and accelerations of the trolley
movement and the tower slewing. The obtained quasi-optimal trajectory planning
of the jib/trolley movement was validated via lab experiments. Similar results (in
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terms of minimization criterion) were achieved in the article [12]. However, ac-
celeration constrains were imposed on the load movement, as well. Experimental
and theoretical data from these two investigations are close to each other. An ad-
vanced closed-loop control of three mechanisms of a tower crane was developed in
the article [13]. The authors of this work applied the sequential distributed model
predictive control (MPC) to jib, trolley, and hoist movements, and verified it via
simulation and experimentally.

Almost all of the analyzed works involve lab installations and/or their param-
eters in calculations. This may lead to difficulties in practical implementation. On
the other hand, in spite of the great variety of the closed-loop controls for different
tower crane mechanisms, in many cases, the open-loop strategy may lead to desired
results (as far as pendulum oscillations elimination and minimization criteria are
concerned).

In the present work, we focus on a particular (however, very common in
practice) case: steady slewing of the tower crane and optimal open-loop control of
the trolley movement by a complex integral minimization criterion. Also, in the
calculations, we use the parameters of a real tower crane.

2. Optimization problem statement

A three-mass dynamic model of the tower crane boom is used in the calcula-
tions (Fig. 1).

 

Fig. 1. Dynamic model of the trolley movement mechanism at the steady crane slewing

In the presented dynamical model, the load is attached to the center of mass
of the trolley with a cable of constant length H . The trolley is connected with a
drive drum by means of an elastic rope whose stiffness coefficient equals C or
C ′ depending on the direction of the trolley motion. In further calculations, we
consider the case of the trolley’s backwards movement with respect to the tower.
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In the case when the trolley moves towards the tower, the value C ′ is applied. The
value of the stiffness coefficient influences the optimal law of the system motion.
The load deviates from the vertical (in the plane of the trolley movement) by an
angle υ. The elements of the drive mechanism, the drive drum, the trolley, and the
load are assumed to be perfectly rigid bodies. The slewing motion of the boom
system occurs at a constant angular velocity ω.

The linear horizontal coordinates of the trolley z and the load x, as well as the
angular coordinate of the drive drum rotation β, are the generalized coordinates of
the dynamic model.

The system of three second-order linear differential equations corresponds to
the dynamic model (Fig. 1):

I β̈ = M − Cr (βr − z),

m1 z̈ − m1ω
2z = C(βr − z) −

mg

H
(z − x) −W,

mẍ − mω2x =
mg

H
(z − x),

(1)

where I and M – the moment of inertia of the rotating elements of the trolley
movement mechanism and the drive torque, respectively (they are reduced to the
axis of the drum rotation); r – the radius of the drive drum; m1, m – masses of the
trolley and the load, respectively; W – the force of static resistance to the trolley
movement, which is accepted as a constant value (the force W is caused by the
Coulomb friction); g – free-fall acceleration.

Let’s express the linear coordinate z and the angular coordinate of the drum β
via the coordinate x and its time derivatives:

z =
(
1 −

H
g
ω2

)
x +

H
g

ẍ, (2)

β =
1

Cr

{ [(
C − m1ω

2
) (

1 −
H
g
ω2

)
− mω2

]
x

+

[(
C − 2m1ω

2
) H
g
+ m1 + m

]
ẍ + m1

H
g

IV
x +W

}
. (3)

Taking into account expressions (2) and (3), the system (1) may be reduced to a
linear differential equation of 6-th order, which describes the relationship between
the drive torque and the load position x and its time derivatives:

M = a0 + a1x + a2 ẍ + a3
IV
x +a4

VI
x , (4)
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where

a0 = Wr , a1 = −

[
m + m1

(
1 −

H
g
ω2

)]
ω2r ,

a2 =
I

Cr

[(
C − m1ω

2
) (

1 −
H
g
ω2

)
− mω2

]
+

[
m + m1

(
1 − 2

H
g
ω2

)]
r ,

a3 =
I

Cr

[(
C − m1ω

2
) H
g
+ m1

(
1 −

H
g
ω2

)
+ m

]
+ m1

H
g

r ,

a4 =
m1IH
Crg

, a0,1,2,3,4 = const.

(5)

In the previously conducted dynamic analysis of the joint motion of the trolley
movement and crane slewing mechanisms, it was found that during the acceleration
process there appear significant force and energy overloads in the elements of the
mechanisms and the metal structure of the crane. They depend on the drive torque.
In addition, there are low- and high-frequency oscillations of the elements of
mechanisms that depend on the drive torque, as well [12]. Therefore, there is a
need to optimize the modes of motion of the trolley movement mechanism during
steady slewing of the crane.

The previously conducted researches involved complex criteria. They showed
that each of the criteria improve some properties of the mechanisms and make
others worse. Thus, there is a problem of a reasonable compromise in different
optimal modes of motion.

In this regard, it was suggested to optimize the mode of the trolley movement
mechanism by a complex non-dimensional dynamic criterion, which takes into
account the drive torque and its rate of change. It may be presented as follows:

K1 =
*..
,
t−1
1

t1∫
0

δk
(

M
MRMS.min

)2
+ (1 − δ)

(
Ṁ

ṀRMS.min

)2

dt
+//
-

1/2

→ min , (6)

where t – time; t1 – duration of the trolley mechanism movement acceleration;
MRMS.min – minimum RMS value of the function M during acceleration; Ṁ – time
derivative of the function M; ṀRMS.min – minimum RMS value of the function Ṁ
during acceleration; k – coefficient which reduces numerical values of components
of the complex criterion (6) to the same degree; δ – non-dimensional weight
coefficient, which varies from 0 to 1 and reflects the importance of the drive torque
minimization.

In the frame of this investigation, there aren’t any constraints in the problem
statement.
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3. Optimization problem solving

In order to determine the value MRMS.min in the complex criterion it is nec-
essary to solve the following variational problem: to determine the motion law
x = x(t), 0 6 t 6 t1, which minimizes the functional:

MRMS.min = M (0)
RMS =

*..
,
t−1
1

t1∫
0

M2 dt
+//
-

1/2

→ min , (7)

if the boundary conditions are met:

t = 0: x = x0 , ẋ = 0, ẍ = x0ω
2 ,

...
x = 0,

IV
x = x0ω

4,
V
x = 0 ,

t = t1 : x = x0 +
Vt1
2
, ẋ = V, ẍ =

(
x0 +

Vt1
2

)
ω2,

...
x = 0 ,

IV
x =

(
x0 +

Vt1
2

)
ω4,

V
x = Vω4,

(8)

where x0 – the initial value of the load coordinate; V – steady velocity of the load.
These boundary conditions reflect the necessary conditions for load oscillation
elimination: the initial values of x and its derivatives correspond to the rest state of
the load and the trolley; the final conditions mean that the positions and velocities
of the load and the trolley are the same. That provides the elimination of the load
oscillation at the end of the controlled start. The coordinate z and its derivatives
are not represented in (8). They correspond to the 3-rd and higher derivatives of x,
which are expressed via formula (2).

Note that the variational problem (7), (8) might be rewritten in the following
equivalent form:

t1∫
0

M2 dt → min . (9)

In order to simplify solution to the problem, we introduce the following des-
ignation:

y(t) = x(t) +
a0
a1
, 0 6 t 6 t1 ,⇔ x(t) = y(t) −

a0
a1
, 0 6 t 6 t1 , (10)

where y(t) – the new unknown function. Taking into account the designation (10)
we can write the following:

M = a0 + a1x + a2 ẍ + a3
IV
x +a4

VI
x = a1

(
a0
a1
+ x

)
+ a2 ẍ + a3

IV
x +a4

VI
x

= a1y + a2 ÿ + a3
IV
y +a4

VI
y =

[
a1 + a2

d2

dt2 + a3
d4

dt4 + a4
d6

dt6

]
y . (11)
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The condition for the minimum of the functional (9) is the Euler-Poisson
equation [14], which in this case may be presented in the following form:

∂M2

∂y
+

d2

dt2
∂M2

∂ ÿ
+

d4

dt4
∂M2

∂
VI
y
+

d6

dt6
∂M2

∂
VI
y
= 0 .

By substituting the image (11) into the written equation and using the rule of
differentiation of a complex function, we obtain the following:

2Ma1 +
d2

dt2 (2Ma2) +
d4

dt4 (2Ma3) +
d6

dt6 (2Ma4) = 0 ⇔

Ma1 + a2
d2M
dt2 + a3

d4M
dt4 + a4

d6M
dt6 = 0 ⇔

[
a1 + a2

d2

dt2 + a3
d4

dt4 + a4
d6

dt6

]2

y = 0 . (12)

The obtained equation (12) is a linear, homogeneous differential equation of
12-th order. In order to solve it, we should determine the roots of the characteristic
polynomial:

Q(λ) =
[
a1 + a2λ

2 + a3λ
4 + a4λ

6
]2
.

Since the polynomial Q(λ) is a square of a polynomial of 6-th order, it has 6
roots of 2-nd order. In order to determine them, we write the following equation:

a1 + a2λ
2 + a3λ

4 + a4λ
6 = 0 ,

in which we introduce the designation: λ2 = µ. As a result, we obtain an algebraic
equation of 3-rd order

a1 + a2µ + a3µ
2 + a4µ

3 = 0 . (13)

Its roots may be determined analytically by using the Cardano’s method, or
approximately by one of the numerical methods. The solution of the equation (13)
depends on the numerical values of the coefficients (5).

If the input parameters of the problem have the following values m = 5000 kg,
m1 = 150 kg, I = 30 kgm2, H = 10 m, ω = 0.075 rad/s, r = 0.15 m, C =
1.65·105 N/m, V = 0.85 m/s, x0 = 7 m, t1 = 5 s, W = 5500 N, the approximate
solutions of equation (13) are µ1 ≈ −687.17, µ2 ≈ −3.9041, µ3 ≈ −0.0044954.
The numerical value of W is calculated in the following way: W = (m + m1)gq =
(5000 + 150) · 9.81 · 0.11 ≈ 5500 N (where q – friction coefficient).

Taking into account the designation λ2 = µ for the roots of the characteristic
polynomial Q(λ), we may write:

λ1,2 = ±
√
µ1 ≈ ±i · 26.214 = ±i · α1 , λ3,4 = ±

√
µ2 ≈ ±i · 1.91759 = ±i · α2 ,

λ5,6 = ±
√
µ3 ≈ ±0.067048 = ±α3 ,

where i – imaginary unit.
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All the roots λ1,2,3,4,5,6 of the characteristic polynomial Q(λ) are roots of
second order. The general solution of the linear homogeneous differential equation
(12) is written as follows:
y(t) = (C1 + C2t) cos (α1t) + (C3 + C4t) sin (α1t) + (C5 + C6t) cos (α2t)

+ (C7 + C8t) sin (α2t) + (C9 + C10t) eα3t + (C11 + C12t) e−α3t, 0 6 t 6 t1 ,

where C1,...,12 = const.
Substituting the obtained explicit form of the function y(t) in (10), we obtain

the function x(t):

x(t) = y(t) −
a0
a1
= (C1 + C2t) cos (α1t) + (C3 + C4t) sin (α1t)

+ (C5 + C6t) cos (α2t) + (C7 + C8t) sin (α2t) + (C9 + C10t) eα3t

+ (C11 + C12t) e−α3t −
a0
a1
, 0 6 t 6 t1. (14)

In order to find the coefficients C1,...,12, the expression (14) should be substi-
tuted into the boundary conditions (8) of the original problem.As a result, we obtain
a system of linear algebraic equations. Its approximate solution may be presented
as follows: C1 ≈ −1.3540 · 10−6, C2 ≈ 1.0536 · 10−7, C3 ≈ 2.09208 · 10−8, C4 ≈
1.8714 · 10−7, C5 ≈ 0.036064, C6 ≈ −0.014894, C7 ≈ 0.020835, C8 ≈ −0.003177,
C9 ≈ −78.196, C10 ≈ 2.9682, C11 ≈ −99.386, C12 ≈ −4.41522.

Substituting coefficients C1,...,12 in (14), we obtain the final solution of the
variational problem (9).

Then, we should determine the value of MRMS.min. Caring out a proper calcu-
lation, we obtain the following value: MRMS.min ≈ 960.7 Nm.

In order to solve the initial problem (6) we should determine the value
ṀRMS.min. It, in turn, requires the determination of the motion law x = x(t),
0 6 t 6 t1, which minimizes the functional:

ṀRMS.min = M (1)
RMS =

*..
,
t−1
1

t1∫
0

Ṁ2 dt
+//
-

1/2

→ min, (15)

where

Ṁ = a1 ẋ + a2
...
x + a3

V
x +a4

VII
x =

[
a1

d
dt
+ a2

d3

dt3 + a3
d5

dt5 + a4
d7

dt7

]
x. (16)

if the boundary conditions are met:

t = 0: x = x0 , ẋ = 0, ẍ = x0ω
2,

...
x = 0,

IV
x = x0ω

4,
V
x = 0,

VI
x = x0ω

6,

t = t1 : x = x0 +
Vt1
2
, ẋ = V, ẍ =

(
x0 +

Vt1
2

)
ω2,

...
x = 0, (17)

IV
x =

(
x0 +

Vt1
2

)
ω4,

V
x = Vω4,

VI
x = Vω6.
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As in the case of (8), the boundary conditions (17) ensure elimination of
load oscillations. The variational problem (15) may be rewritten in the following
equivalent form:

t1∫
0

Ṁ2 dt → min . (18)

The Euler-Poisson equation – the condition for the minimum of the functional
(18) – we have presented in the following form:

d
dt
∂Ṁ2

∂ ẋ
+

d3

dt3
∂Ṁ2

∂
...
x
+

d5

dt5
∂Ṁ2

∂
V
x
+

d7

dt7
∂Ṁ2

∂
VII
x
= 0 .

By using the rule of differentiation of a complex function and substituting the
explicit expression (16), we obtain the following:

d
dt

(2Ma2) +
d3

dt3 (2Ma2) +
d5

dt5 (2Ma3) +
d7

dt7 (2Ma4) = 0 ⇔

dM
dt

a1 + a2
d3M
dt3 + a3

d5M
dt5 + a4

d7M
dt7 = 0 ⇔

[
a1

d
dt
+ a2

d3

dt3 + a3
d5

dt5 + a4
d7

dt7

]2

x = 0 . (19)

The obtained equation (19) is a linear, homogeneous differential equation of
14-th order. In order to solve it, we should determine the roots of the characteristic
polynomial:

R(λ) =
[
a1λ + a2λ

3 + a3λ
5 + a4λ

7
]2
= λ2

[
a1 + a2λ

2 + a3λ
4 + a4λ

6
]2
.

The polynomial R(λ) is a square of a polynomial of the 7-th order. Thus, it
has 7 roots of the 2-nd order. One of them is λ0 = 0. In order to determine other
roots, the following equation must be solved:

a1 + a2λ
2 + a3λ

4 + a4λ
6 = 0 .

All the roots λ0,1,2,3,4,5,6 of the characteristic polynomial R(λ) are roots of
the second order. They lead to the general solution of the linear, homogeneous
differential equation (18), which may be written in the following form:

x(t) = (C1 + C2t) cos (α1t) + (C3 + C4t) sin (α1t)
+ (C5 + C6t) cos (α2t) + (C7 + C8t) sin (α2t) + (C9 + C10t) eα3t

+ (C11 + C12t) e−α3t + C13 + C14t, 0 6 t 6 t1 , (20)

where C1,...,14 = const.
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In order to find the coefficients C1,...,14, the expression (19) should be substi-
tuted into the boundary conditions (17) of the original problem. As a result, we will
obtain a system of linear algebraic equations. Its approximate solution: C1 ≈ 0,
C2 ≈ 0, C3 ≈ 0, C4 ≈ 0, C5 ≈ 0.002602, C6 ≈ −0.0031223, C7 ≈ 0.027422,
C8 ≈ −0.0014111, C9 ≈ −2279.6, C10 ≈ 34.549, C11 ≈ 6406.3, C12 ≈ 172.48,
C13 ≈ −4119.7, C14 ≈ −375.28. Substituting the determined C1,...,14 into expres-
sion (19) brings the solution of the variational problem (17). Then, we determine
the value (15): ṀRMS.min ≈ 89.4 Nm/s.

The next step is determination of the motion law x = x(t), 0 6 t 6 t1,
which minimizes the functional (6) and meets the boundary conditions (17). The
coefficient k > 0 is included in the first term of the integrand (6) as an adjustment
factor. It appears due to the fact that numerical values of MRMS.min and ṀRMS.min
may significantly differ. Therefore, this additional coefficient has been introduced in
order to equalize the influence of the first and the second terms of the integrand (6).
The value of k depends on numerical values of MRMS.min and ṀRMS.min. Solving
the corresponding problems, we obtain the following: MRMS.min ≈ 960.7 Nm and
ṀRMS.min ≈ 89.4 Nm/s.

In this case, the factor k may be set in the range from 100 to 150. In the frame
of the current investigation, it was set to k = 150.

The coefficient δ (0 < δ < 1) allows us to control the influence of the torque
M and its time derivative Ṁ on the result of optimization problem (6) solution.
Thus, the coefficient δ makes a basis for a compromise between two components
of the criterion (6).

In order to simplify further calculations, we introduce the following designa-
tion:

δ1 =
δk

M2
RMS.min

, δ2 =
1 − δ

Ṁ2
RMS.min

, δ1, 2 > 0. (21)

Taking into account these expressions, the criterion (6) may be rewritten as
follows:

K1 =
*..
,
t−1
1

t1∫
0

δ1k M2 + δ2Ṁ2 dt
+//
-

1/2

→ min . (22)

Now, the variational problem (22) may be rewritten in the following equiva-
lent form:

t1K2
1 =

t1∫
0

δ1M2 + δ2Ṁ2 dt → min . (23)

The obtained variational problem (23) is equivalent to the problem (22), which, in
turn, is equivalent to the problem (6).
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In order to carry out further transformations, we will take into consideration
the function:

y(t) = x(t) +
a0
a1
, 0 6 t 6 t1 , ⇔ x(t) = y(t) −

a0
a1
, 0 6 t 6 t1 . (24)

Note, that ẋ = ẏ, ẍ = ÿ etc.
Taking into account the substitution (24), we may write M and Ṁ , which are

included in the integrand of the criterion (22):

M = a1y + a2 ÿ + a3
IV
y +a4

VI
y =

[
a1 + a2

d2

dt2 + a3
d4

dt4 + a4
d6

dt6

]
y,

Ṁ = a1 ẏ + a2
...
y + a3

V
y +a4

VII
y =

[
a1 + a2

d3

dt3 + a3
d5

dt5 + a4
d7

dt7

]
d
dt

y .

(25)

In order to solve the problem (23) we write the Euler-Poisson equation:

δ1
*.
,

∂M2

∂y
+

d2

dt2
∂M2

∂ ÿ
+

d4

dt4
∂M2

∂
IV
y
+

d6

dt6
∂M2

∂
VI
y

+/
-

− δ2
*.
,

d
dt
∂M2

∂ ẏ
+

d3

dt3
∂M2

∂
...
y
+

d5

dt5
∂M2

∂
V
y
+

d7

dt7
∂M2

∂
VII
y

+/
-
= 0 .

Which, after calculating all its derivatives, may be rewritten as follows:

δ1

[
a1 + a2

d2

dt2 + a3
d4

dt4 + a4
d6

dt6

]
M

− δ2

[
a1 + a2

d2

dt2 + a3
d4

dt4 + a4
d6

dt6

]
d
dt

Ṁ = 0 .

Substituting the equation (24) into the obtained equation leads to the differential
equation:

δ1

[
a1 + a2

d2

dt2 + a3
d4

dt4 + a4
d6

dt6

]
y

− δ2

[
a1 + a2

d2

dt2 + a3
d4

dt4 + a4
d6

dt6

]
d2

dt2 y = 0 ,

or finally

[
a1 + a2

d2

dt2 + a3
d4

dt4 + a4
d6

dt6

]2 (
δ1 − δ2

d2

dt2

)
y = 0, 0 < t < t1 . (26)
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Equation (26) is a linear, homogeneous ordinary differential equation. In order
to find its solution, it is necessary to determine the roots of a characteristic equation,
which has the following form:

P(λ) =
(
a1 + a2λ

2 + a3λ
4 + a4λ

6
)2 (

δ1 − δ2λ
2
)
= 0 .

It may be divided into two equations:

a1 + a2λ
2 + a3λ

4 + a4λ
6 = 0 , δ1 − δ2λ

2 = 0 . (27)

The coefficients of the first equation (27) depend on the numerical parameters
of the problem and do not depend on the factor k and the weight coefficient δ. The
equation is solved in the first variational problem while determining the minimum
of the RMS value of the drive torque. The results may be presented as follows:

λ1,2 = ±
√
µ1 ≈ ±i26.214 = ±iα1 ,

λ3,4 = ±
√
µ2 ≈ ±i1.9759 = ±iα2 ,

λ5,6 = ±
√
µ3 ≈ ±i0.067048 = ±iα3 .

(28)

Since δ1,2 > 0, the second equation of the system (27) has two obvious real
solutions:

λ = λ7,8 = ±

√
δ1
δ2
. (29)

The numerical values of λ depend on the parameters of the problem, the values
of the factor k and coefficient δ. The solutions (29) define two more roots of the
characteristic polynomial P(λ).

Thus, the combination of solutions (27) and (29) brings the roots of P(λ) (28),
(29). Then, the general solution of equation (26) may be written as follows:

y(t) = (C1 + C2t) cos (α1t) + (C3 + C4t) sin (α1t)
+ (C5 + C6t) cos (α2t) + (C7 + C8t) sin (α2t) + (C9 + C10t) eα3t

+ (C11 + C12t) e−α3t + C13e
√

δ1
δ2

t
+ C13e−

√
δ1
δ2

t
, 0 6 t 6 t1 ,

where C1,...,14 = const. If we substitute the determined function y(t) into expres-
sion (24), we obtain an explicit form for the desired solution to the variational
problem (23):

x(t) = y(t) −
a0
a1
= (C1 + C2t) cos (α1t) + (C3 + C4t) sin (α1t)

+ (C5 + C6t) cos (α2t) (C7 + C8t) sin (α2t) + (C9 + C10t) eα3t

+ (C11 + C12t) e−α3t + C13e
√

δ1
δ2

t
+ C13e−

√
δ1
δ2

t
, 0 6 t 6 t1 . (30)
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In order to determine the unknown constants C1,...,14, we substitute (30) into
the boundary conditions (17) and obtain a system of linear algebraic equations
with respect to the constants C1,...,14. The solution of these equations leads to the
final solution of the problem (23). The obtained solution allows us to determine
all the motion characteristics of the trolley movement mechanism. The solution is
valid for different values of the coefficient δ ∈ (0, 1). One may choose what is
more important in the optimal control law (minimization of torque RMS or torque
derivative RMS) by tuning the numerical value of δ: the greater the value, the
greater the impact of the first term (9), and vice versa.

Let δ = 0.9. In this case, the solution (30) will have the following form:

x = x(t) = 184.5 + (C1 + C2t) cos(26.21t) + (C3 + C4t) sin(26.21t)

+ (C5 + C6t) cos(1.976t) + (C7 + C8t) sin(1.976t) + e0.06705 (C9 + C10t)

+ e−0.06705 (C11 + C12t) + C13e3.421t + C14e−3.421t, 0 6 t 6 t1 ,

where C1 ≈ 0, C2 ≈ 0, C3 ≈ 0, C4 ≈ 0, C5 ≈ 0.029660, C6 ≈ −0.01418,
C7 ≈ 0.04086, C8 ≈ −3.339 · 10−3, C9 ≈ −77.58, C10 ≈ 2.988, C11 ≈ −99.99,
C12 ≈ −4.571, C13 ≈ 0, C14 ≈ −4.014 · 10−3.

4. Results and discussion

As a result of the conducted research, we have built graphical dependencies of
the kinematic (Figs. 2–7), power (Figs. 8, 9), and energy (Fig. 10) characteristics
of the trolley movement mechanism during steady slewing of the tower crane. The
mentioned plots have been determined for three optimal modes of motion: (14),
(20), and (30). In Figs. 2–10, the continuous lines refer to criterion (6); the dashed
lines refer to criterion (7); the dotted lines refer to criterion (15).

Fig. 2. Plots of the load velocity
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Fig. 3. Plots of the trolley velocity

Fig. 4. Plots of the load acceleration

Fig. 5. Plots of the trolley acceleration
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Fig. 6. Plots of the drum angular velocity

Fig. 7. Plots of the drum angular acceleration

The analysis of the load movement (Fig. 2) for all of the criteria (6), (7), (15)
shows that the course of its velocity is smooth. In opposite, the trolley (Fig. 3) and
the drum (Fig. 6) exhibit low-frequency oscillations. These are caused by the pen-
dulum oscillations of the load. The oscillations are eliminated during the optimal
start of the system (indeed, velocities and positions (not shown) of the load and
trolley are the same). In addition, during the motion in an optimal mode, signif-
icant high-frequency oscillations of the trolley and the drum might be observed.
This applies to the optimization by the (7) criterion. At the same time, one also
observes the largest amplitudes of low-frequency oscillations of the trolley and the
drum.

Almost the same character of the trolley movement is observed for the modes
of motion optimal according to the criteria (15) and (6). The same may be said
about the drum movement.
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However, there is a variety of amplitudes of the load acceleration: themaximum
(0.34 m/s2) refers to the mode of motion optimal with criterion (15); the value
0.27 m/s2 – is the maximum of load acceleration for mode of motion optimal
according to criterion (6); the lowest (0.24 m/s2) value refers to the mode optimal
with criterion (7).

The courses of acceleration of the trolley and the drum that are optimal accord-
ing to criterion (15) show an almost smooth behavior. We note only a minor low-
frequency oscillation component. The trolley and the drum accelerations, which are
obtained with criterion (7), have significant low- and high-frequency oscillations.
The maximum values of the trolley and the drum acceleration are 1.4 m/s2 and
5.75 rad/s2, respectively. For comparison, the values of these indicators obtained
with optimization criterion (6) are 0.40 m/s2 and 2.5 rad/s2, respectively, and with
criterion (15) they are 0.32 m/s2 and 2.10 rad/s2, respectively.

The analysis of traction force in the rope in the mode of motion optimal
according to criterion (7) (Fig. 8) indicates that there appear both low- and high-
frequency oscillations. The maximum value of the traction force for this mode is
the smallest one, and equals 6640 N. The course of traction force in the mode of
motion optimal according to criterion (15) is smooth. However, the force reaches
the maximum value of 6900 N. The mode of motion optimal according to the
criterion (6) is characterized by the maximum value of the traction force 6650 N.
The course of the force is almost smooth, with minor high-frequency oscillations.
This example shows that by using optimization criterion (6), one may obtain a
compromise between the maximum value of the rope traction force and a reduction
or complete elimination of high-frequency oscillations in the elements of the trolley
movement mechanism.

Fig. 8. Plots of the traction force in the rope

Themaximum values of the drive torque for all of the optimal modes of motion
(Fig. 9) differ insignificantly in the range from 1025 N to 1040 N. However, for the
mode of motion optimal according to criterion (7), one observes low-frequency
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Fig. 9. Plots of the drive torque

Fig. 10. Plots of the drive power

oscillations. At the very first moment of the start, there is a discontinuity between
the drive torque and the torque, which refers to the force W . This effect may cause
high-frequency oscillations in the drive components and in the metal structure of
the crane. The mentioned effect is absent in the other two optimal modes of motion,
where the drive torque changes smoothly without oscillations.

Fig. 10 indicates that, in all of the optimal modes of motion, the drive power
changes with low-frequency oscillations. However, in the mode of motion optimal
according to criterion (7) the amplitude of these oscillations is the largest, and there
is also a small high-frequency component. The overall maximum value (maximal
value among the three variational problems) of power (5700 W) refers to this opti-
mization criterion, as well. The lowest value of power (4750 W) refers to criterion
(15). The maximum value of power when criterion (6) is applied equals 4850 W.
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5. Conclusions

The article presents the results of research on the trolley movement mechanism
optimization. The trolley accelerates from the rest state to a steady velocity and
the tower slews at a steady angular velocity. Three variational problems, which
refer to the optimization problems, have been formulated and solved. In these
problems, RMS values of the drive torque, its rate, and the combination of these
indicators have been taken as the criteria for minimization. The solutions to all three
variational problems have been reduced to analytical dependencies that describe
optimal modes of the system motion.

The advantages and disadvantages of each of the modes of motion associated
with individual optimization criteria have been described. The force loads in the
traction element of the trolley and the drive mechanism have been reduced. This
result refers to the mode of the system motion optimal according to criterion (7)
(the first variational problem). However, in this case there are significant low- and
high-frequency oscillations of the drive elements and the metal structure of the
boom system, as well as high energy consumption.

The maximum values of force and kinematic indicators, which refer to the so-
lution of the second variational problem (that refers to criterion (15)), are slightly
increased, in comparison with the first one. However, the trolley movement mech-
anism increases the smoothness of the motion and low-frequency (pendulum) load
oscillations are completely eliminated.

In the third variational problem (criterion (6)), a compromise between the two
previously-mentioned modes has been obtained. As a result, a reasonable level
of the force loads in the system elements has been obtained. Additionally, the
compromise approach allowed for decreasing high-frequency oscillations of the
trolley, drum, and other elements of the system. Indeed, the reasonable selection
of the weight coefficient in a complex criterion leads to the almost complete
elimination of high-frequency oscillations of the trolley movement mechanism.
However, some of the maximum values of kinematic and force characteristics
slightly increase in comparison with the results that are obtained for the first and
the second variational problem.

Taking into account all the advantages and disadvantages of the optimal modes
ofmotionwemay recommend application of themode ofmotion optimal according
to the complex criterion (6).

In order to implement the proposed optimal control law in practice, frequency
inverters, microcontrollers and proper sensors should be used. It is desirable to
consider frequency inverters for crane drives. In calculation of the optimal law
of motion, one must rely on the measured values of load mass m, initial trolley
position x0, and length of the cable H . For the measurement of m, a tension sensor
may be used (it measures the tension of the cable), determination of values x0 and
H needs optical encoders. In the software of the optimal control system, all the
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measured values are used to recalculate the optimal control law formulae according
to the current m, H , and x0 values.
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