Introduction

Interest in the use of various renewable energy-based applications has given attention at the international level. The increase in renewable energy technology, sustainable development, and energy security, due to the depletion of the use of fossil fuels, the application of renewable energy has attracted interest on a global scale. Renewable energy in the 21st century has a very important role because non-renewable energy sources have been excessive and often exploited as emissions continue to increase and the depletion of fossil energy occurs (Deviram et al. 2020; Erdiwansyah et al. 2021; Bodzek 2022). Meanwhile, the current increase in non-renewable energy is at an alarming point as reported in (Erdiwansyah et al. 2019b; Mathimani et al. 2021). The system of climate change, ecology, and environmental stability are strongly influenced by the use of energy sourced from non-renewable sources. Fossil fuels that continue to be used will provide increased prices and climate change through greenhouse gases (Yin et al. 2020; Sheng et al. 2022). More effective use and production of energy, especially from renewable sources, is a very urgent challenge to be carried out in the 21st century (Al-Ghussain et al. 2021; Malik et al. 2022). Researchers around the world report that the use of fossil fuels can affect greenhouse gas emissions, especially from transportation which causes global warming. The higher levels of CO₂, SOx, NOx, CO, and HC can affect ecosystems and their services (Erdiwansyah et al. 2019a, 2022). Production and development of energy from renewable sources is the best way that can be done at this time. Renewable energy can be obtained and produced from various sources because it can be used and recharged on a time scale. Renewable energy sources such as biomass, geothermal, wind, solar, and hydroelectric power have been widely used, especially in several countries in the world (Jurasz and Mikulik 2017; Chmielniak 2019). The status of the availability of renewable energy sources around the world to date is presented in full in Fig. 1. Wind energy sources, biofuels, and hybrid systems are renewable

Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review

Erdiwansyah1,6, Asri Gani2,6*, Rizalman Mamat3, Mahidin2, K. Sudhakar4, S.M. Rosdi5, Husni Husin2

1Faculty of Engineering, Universitas Serambi Mekkah, Banda Aceh 23245, Indonesia
2Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
3College of Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
4Energy Centre, Maulana Azad National Institute of Technology, Bhopal, India
5Politeknik Sultan Mizan Zainal Abidin, Terengganu
6Research Center of Palm Oil and Coconut, Universitas Syiah Kuala, Indonesia

*Corresponding author’s e-mail: asri_gani@unsyiah.ac.id

Keywords: Biomass; wind energy; hybrid; RE; biofuels

Abstract: Pollution continues to experience a rapid increase so cities in the world have required the use of renewable energy. One of the keys that can prevent climate change with a sustainable system is renewable energy. Renewable energy production, especially for hybrid systems from biomass and wind, is the objective of the analysis in this work. The potential of feedstock for different biofuels such as bio-diesel, bio-ethanol, bio-methane, bio-hydrogen, and biomass is also discussed in this paper. The sustainability of the energy system for the long term is the main focus of work in this investigation. The configuration of the hybrid system between biomass energy and wind energy as well as some problems from various design factors are also presented. Based on the findings, this alternative energy utilization through biomass-based hybrids can save costs and improve environmental conditions, especially for the electrification of off-grid rural areas. This paper will provide important information to policymakers, academics, and investors, especially in carrying out the development and factors related to the utilization of wind-biomass-based hybrid energy systems.
energy sources that have been widely discussed by researchers around the world. Therefore, the investigation of biomass energy sources as fuel for hybrid production with wind energy will provide new insights as a renewable energy source in the future.

The contribution of renewable energy in Indonesia until 2020 is presented in Fig. 2. The requirement for energy and related services to meet the demands of human, social, and economic development, as well as health, has recently come under scrutiny due to evaluations of renewable energy sources, sustainability issues, and climate change mitigation. To maintain the sustainability of renewable energy sources in the long term, it must be able to combat climate change caused by greenhouse gas emissions in particular. Energy sources from biomass, wind power, solar power, hydropower, marine power, and geothermal power that are currently available can be used as alternative energy in the long term. The availability and application of renewable energy systems in more detail are shown in Table 1 (Sharma et al. 2019; Sameeroddin et al. 2021). This is done to ensure and call for a balance, especially for goods and services while protecting future generations. In the future, fossil fuels will still be used due to population growth and global energy demand around the world. Due to rising global energy consumption and a growing global population, the usage of fossil fuels will likely continue for some time. As a result, a number of issues have emerged (coal, oil, gas). These problems will only make the current situation worse, endangering human civilization. On the other side, the only genuine solution to the world’s growing problems is renewable energy (Sudhakar et al. 2019; Thanigaivel et al. 2022). Only ten years ago, it seemed unimaginable that renewable energy sources would account for 22% of the world’s energy production in 2012. The demand for a consistent energy supply in economies is not limited to that of transportation and industrial machinery (International Energy Agency and Bank 2014; Sellevold et al. 2020). The utilization of renewable energy can reduce greenhouse gas emissions. Since they are formed from ongoing energy flows in our environment, they are anticipated to survive for as long as possible. The supply of renewable energy for environmental services does not have to be limited because it is ecologically acceptable if it is truly sustainable. Renewable energy sources will be largely climate-dependent which requires complex planning and design before it can be put into practice. This is because there are still some challenges to be implemented properly. The cause of the discontinuous seasonal oscillation of renewable energy generation is one of its drawbacks.

The current trend of installed energy in Indonesia is presented in Fig. 3. Renewable energy production capacity in 2022 is expected to grow at a rate that exceeds the long-term trend. The growth of renewable energy that bears a big responsibility is China and the United States. The majority of countries increased their renewable energy capacity at a similar rate to previous years. The increase in global renewable energy capacity will increase in 2022 by 2799 GW (Council 2021; Farina and Anctil 2022). In 2020, renewable energy generating capacity will grow by around 7,465 MW. In this case, the installed new energy capacity will be sourced from geothermal 2,132 MW, hydro 4,621 MW, mini-hydro 411 MW, solar 105 MW, wind energy 154 MW, and bioenergy 42 MW (Outlook 2021). The utilization of energy with a biomass-based hybrid system can save costs and improve environmental conditions, especially for the electrification of rural areas. The specific purpose of this paper is to provide important information,
especially for policymakers, academics, and investors, in carrying out the development, design, and factors related to the utilization of wind-biomass energy.

Capacity and Target Renewable Energy in Indonesia

The use of renewable energy as a source of final energy consumption in Indonesia has increased since 2015. The Central Statistics Agency noted that Indonesia’s renewable energy mix increased from 4.4% in 2015 to 11.5% in 2020. In 2016, the renewable energy mix increased to 6.61% from the previous year. But in the following year, the percentage of the renewable energy mix was recorded to have decreased to 6.34%.

It was only in 2018 that the trend for the number of renewable energy mixes continued to increase until 2020. The mix of renewable energy to total final energy consumption was recorded at 8.55% in 2018, 9.15% in 2019, and 11.51% in 2020 as shown in Fig. 4. The Ministry of Energy and Mineral Resources (ESDM) targets the renewable energy mix to reach 15% by 2021. In 2025, Indonesia targets the renewable energy mix to reach 23%. The Ministry itself estimates that Indonesia’s renewable energy potential reaches 417.8 GW. This potential of 17.9 GW comes from ocean currents, geothermal 23.9 GW, bioenergy 32.6 GW, wind power 60.6 GW, hydropower 75 GW, and solar 207.8 GW. The Indonesian government has targeted the use of renewable energy by 2025 to reach 23% (Erdiwansyah et al. 2020). However, with the COVID-19 pandemic in the last two years, it will be a very big challenge to achieve this target. But if you look at the achievement in 2021, 23% may be realized in 2025.

The Indonesian Renewable Energy Society (IRES) proposed to the Indonesian government to launch the 50/50 Indonesia Renewable Energy program. The 50/50 Indonesia Renewable Energy program is the initiative for a meeting with the members of the G20 countries that have the largest economies in 2022. The chairman of IRES, Surya Dharma explained that the RE 50/50 program in 2050 is a carbon emission-free target, with a minimum contribution of renewable energy (RE) of 50%. According to him, this target is even lower when compared to other countries which target the contribution of renewable energy at above 70%. We interpret the RE 50/50 as Indonesia’s effort to meet the 2050 net-zero (emissions) target with a minimum of 50% renewable energy. By 2050 most areas are already above 70% (renewable energy contribution) (Indonesia 2021). Renewable energy can also be obtained through processed fossil energy, such as liquified coal, nuclear, hydrogen, and others. However, according to him, for renewable energy to develop in the country, certainty in the regulatory framework is needed, one of which is through the New Renewable Energy Bill which is currently being discussed by the DPR and the government.

Investigation Energy for Biomass

Climate change at the global level such as air pollution and acid rain caused by fossil fuels has raised concerns so that the use of biomass energy sources is considered as a substitute for fossil fuels. Energy sourced from biomass is an alternative, environmentally friendly, and renewable energy. Renewable energy sources like biomass-biofuels could help to meet the world’s rising energy needs (Mathimani and Mallick 2019; Zhuang et al. 2022). The world’s use of energy from biomass sources has accounted for about 10–14%. The use of fuel from biomass sources in rural areas reaches 90%, while in urban areas biomass energy is used in around 40% (Openshaw 2010; Xu et al. 2019). One-third of the primary energy use is contributed by biomass. Biomass is clean renewable energy that can meet the world’s energy demand (Mathimani and Mallick 2019; Olszyńska 2019; Saravanan et al. 2020). Renewable sources such as biomass are sustainable energy, this is because the production system, growth, and harvest period are quite fast. Oil production from biomass is an alternative energy that can be used as heating, electricity, transportation fuel, etc. In addition, renewable energy from biomass can be applied to small-scale and small-scale industries, as well as household scales such as lighting and cooking (Chudy et al. 2021; Gururani et al. 2022). Liquid and gaseous fuels that are processed from solid waste biomass sources can be used to generate electricity. The researchers’ attention to biomass has so far been higher than that to liquid fuels. This is because biomass raw materials have enormous potential as alternative energy in the future. Solid biomass is easy to find in trash...
waste, detergents, household waste, microalgae, etc. (Glivin et al. 2020b; Kulyal and Jalal 2022). Sources of biomass can be in the form of straw, paper waste, sawdust, drum fertilizer, forest wood, cyanobacteria, industrial waste, detergents, household waste, microalgae, etc. (Glivin et al. 2021a; Wijayasekera et al. 2022).

The capacity of renewable energy sourced from biomass in Indonesia from 2015–2021 which is used to generate electricity is as presented in Fig. 5. Indonesia’s energy capacity in 2021 has shown a significant increase. Indonesia’s energy capacity is higher than that of India and Germany as shown in Fig. 5 (a) and (b). Biomass power plants in Indonesia have been widely developed in recent years. Biomass-fueled power plants have been built in many countries such as India which are intended for rural areas (Glivin and Sekhar 2020a; Wu et al. 2021). The steam generated from the use of biomass can be used as a turbo-generator (Klaimi et al. 2021; Musharavati et al. 2021). Research through the investigation of trends in biomass as renewable energy has been carried out since 1978–2018 by (Wang et al. 2016; Micallef and Rezaeiha 2021). The research conducted specifically aims to help the research community to understand the trends and situation of biomass resources around the world for the future. According to the volume of scientific output, the results of this bibliometric study specifically demonstrate that the United States is the world leader in biomass research as a renewable energy source. Other developing countries such as China, Germany, India, and Italy are also the largest after the United States. Future energy demand will be utilized from biomass sources because large countries need sufficient energy supply and biomass is an alternative as their energy fulfillment. Research on economic characteristics has been reported mainly on the source of various types of biogas plants, life cycle costs, net costs, energy leveling costs, etc. (Glivin et al. 2018, 2021b).

Biomass, which has been designated as the 4th renewable energy source among coal, other new energy sources, gas and fuel, and oil, has contributed about a quarter of global energy demand (Zhao et al. 2019; Kandasamy et al. 2021; Velusamy et al. 2021). There are many fuels from biomass processes such as bio-butanol, bio-diesel, bio-hydrogen, bio-ethanol, bio-oil, biogas, etc., all of which are produced from solid and liquid waste biomass (Kalihinchenko and Havrysh 2019; Shanmugam et al. 2021a). Solid fuels such as biochar, as well as bio-gas, bio-hydrogen, syngas, bio-diesel, bio-ethanol, bio-butanol are all derived from biomass (Das et al. 2021a, b; Kandasamy et al. 2022). Extraction of biomass can produce inedible and edible biofuels. Edible sources of biomass are such as peanuts, sugar cane, soybeans, wheat, rapeseed, and corn, while non-edible sources of biomass are such as cooking oil, agricultural waste, microalgae, and industrial waste (Ge et al. 2021, 2022). The biomasses utilized as feedstocks for the first, second, third, and fourth generations of biofuels are known as these (Chen et al. 2021; Wangchait et al. 2021). Crops such as sorghum, cereals, sugar beet, barley, maize, molasses, and wheat are the first generation of fermentable raw materials for biofuel production. Meanwhile, oil palm, soybean, coconut, rapeseed, and sunflower crops can be used to produce biodiesel (Karpagam et al. 2021; Chen et al. 2022). Biodiesel products can also be obtained from cassava, castor oil, Pongamia Pinnata, Calophyllum inophyllum, Miscanthus, Hevea Brasiliensi, as well as sources of lignocellulose such as grass, rice straw, and wood. All types of biomass sources that have been mentioned are biofuels of the second generation (Aguilar-Rivera et al. 2021; Narwane et al. 2021). Sunflower, soybean oil, and castor oil can produce biodiesel through transesterification catalysts at 96%, 96%, and 84.5%, respectively (Kim et al. 2019; Ferreira Mota et al. 2022). Biomass raw materials of the first and second generations have disadvantages including lower productivity, risk of resilience, and having a large area of land (Arias et al. 2021; Moshood et al. 2021). Food versus fuel dispute, high capital costs, uncompetitive retail prices, conflict with the food processing industry for land (Karpagam et al. 2021; Chen et al. 2022). First generation feedstocks in particular have economic, environmental, and political problems because they require significant agricultural acreage for pilot scale biofuel.

Fig. 5. (a) Capacity Energy of Biomass in Indonesia, (b) Bioenergy Capacity Worldwide in 2021, by Country
production, which in turn reduces the amount of land available for growing food for people (Gambelli et al. 2017; Chowdhury et al. 2019).

Due to third generation biofuels’ numerous benefits and the shortcomings of first and second generation biofuels, third generation biofuels received a lot of attention (Alagumalai et al. 2020; Tuan Hoang and Viet Pham 2021). Third-generation raw materials such as microalgae/cyanobacteria have potential because of the higher cultivation and growth system and high lipid production (Sutherland et al. 2021; Wicker et al. 2021). Microalgae produce products that can be gathered all year round and accumulate 20–50% neutral fats. Microalgae use less water than crops and are very CO2 absorbing (1.83 kg of CO2 absorbed by 1 kg of dry biomass). Certain minerals can be removed from wastewater using microalgae. They don’t face competition from edible crops for the cultivation of arable soils (Srivastava et al. 2021; Chen et al. 2022). Biofuels converted from biomass can be carried out by three pathways such as biochemistry, chemical processes, and thermochemistry (Das et al. 2021a). Chemical conversion can be carried out by biochemical methods of anaerobic fermentation, anaerobic digestion, and transesterification. Thermochemical methods of torrefaction, hydrothermal treatment, gasification, and pyrolysis are used for solid, gas, and liquid fuel products made from biomass.

One of the liquid fuels is bioethanol which can be produced through anaerobic fermentation obtained from biomass such as wheat straw, corn, wood chips, microalgae, and lignocellulose. This bio ethanol fuel can reduce emissions because it has about 35% oxygen (Mielcarek-Bocheńska and Rzeźnik 2019; Tarique et al. 2021). Bioethanol can also be mixed with gasoline which can increase thermal efficiency and higher brake power because the octane rating is higher than that of gasoline which reaches 30% (Ghosh et al. 2020; Goh et al. 2020). The first country to produce bioethanol was Brazil (Ge et al. 2022). The status of global ethanol production is shown in Fig. 6. Ethanol production with alcohol has a long history. The liquor is fermented in batches for a number of hours using substances like corn, grape juice, molasses, and other things (minimum 40 h). This is done to avoid unwanted chemicals and water so that the obtained purity is up to 99% more. Given the demand for more ecologically friendly energy sources, scientists are working against the clock to develop the most efficient source of energy. The production of bioethanol is carried out in four main steps, namely, pretreatment for the separation of hemicellulose and lignin has sugar for carbohydrate fermentation by hydrolysis, the distillation of ethanol into bioethanol, and microbial fermentation into bioethanol.

The use of alternative fuels for biodiesel is believed to be able to reduce dependence on the use of fossil fuels (Oliveira et al. 2021; Whangchrai et al. 2021). Liquid fuel from biodiesel produced from animal vegetable fats, mycobacterial lipids, and microalgae can be an alternative energy source that can be applied and used alone or by blending with diesel, especially for compression engines (Chilakamarry et al. 2021; Lin and Lu 2021; Thanigaivel et al. 2022). The process of converting biomass into biodiesel can be done by transesterification. Transesterification is a chemical process that turns biomass (lipids) into biodiesel. In this process, an ester (lipids from biomass) is changed into a mixture of esters of the fatty acids that make up the oil. Biodiesel consumption and production systems have been widely developed as a substitute for mineral diesel for the short term. This is due to the increasing demand for diesel fuel worldwide. The demand for diesel fuel is increasing due to the level of human concern for health and the environment as a result of direct combustion. However, the synthesis of biodiesel used from vegetable and non-vegetable raw materials has sparked various debates, especially concerning its availability and related techno-economic issues. Bioethanol is the most commonly used biofuel in the world, accounting for 62 percent of all global production of biofuels in 2022, followed by biodiesel at 26 percent.

Biogas fuel (biomethane) is a type of fuel obtained from organic waste (biomass) which contains an energy density of about 50–55 MJ/kg. Biomass waste from different sources such as industrial waste, municipal waste, and agricultural waste can be converted into biogas by the anaerobic digestion process (metalorganic bacteria). The amount of CH4 and CO2
in biogas produced by anaerobic digestion of different wastes ranges from 50% to 75% and 50% to 25%, respectively (Sangeetha et al. 2020; Thanarasu et al. 2022). More emphasis is being laid on the enhancement of microbial electrolysis (ME). Anaerobic digestion by involving bio-methanation of decomposed organic waste can produce biogas and most of it is methane and carbon dioxide. Waste reduction and management have considerable advantages because energy costs are lower and the supply is more secure, resulting in new job creation opportunities and better waste management system practices. Biomethane produced from biomass in recent years has become increasingly popular because greenhouse gas emissions can be reduced and the energy supply for the long term is increased.

The right biomass production process can produce bio-hydrogen fuel. Clean fuels such as bio-hydrogen can release water during combustion so they have a high energy density of around 141.9 MJ/kg. In addition, bio-hydrogen can be mixed with gaseous fuel as a catalyst which can improve combustion properties (Shanmugam et al. 2021a). The production of biomass such as wastewater and organic waste through photobiological fermentation can produce bio-hydrogen (Wójcik and Stachowicz 2019; Saha et al. 2022). Three methods can be used for the bio-hydrogen process, i.e., photolysis (cyanobacteria and algae using water), dark fermentation (heterotrophs), and photo-fermentation (photosynthetic bacteria) using organic compounds (Kumar et al. 2020; Kumar Sharma et al. 2021). Biohydrogen production uses biomass such as jatropha, beverage wastewater, rice waste, sugar beet molasses, glycerol, glucose, and various other plants (Ergal et al. 2018; Kumar et al. 2018). However, the most suitable raw material for biohydrogen production is biomass which has a lot of carbohydrates (Sitarz-Palczak et al. 2019; Ong et al. 2021; Zheng et al. 2021). A recently discovered renewable fuel is bio-hythane which has a methane number of about 30% and hydrogen of 10% and which is produced from biomass sources such as food, municipal waste, and agricultural waste processed through anaerobic digestion (Shanmugam et al. 2021b, a). Biomass-based bio-hythane fuels are highly available because they have a high energy density and fewer primary and secondary pollutants (Ta et al. 2020).

Energy from Wind

The demand for energy from renewable sources that have continued to increase significantly in the last few decades will have an impact on environmental protection in the long term. Of all the renewable energy sources being currently developed around the world, the most prominent is wind power (Arumugam et al. 2021; Pichika et al. 2022). The utilization of very strong wind sources can produce electrical energy through the application of wind turbine technology. In 2000, global wind energy capacity was 17 GW and increased to 59 GW in 2005. The increase in wind energy capacity continued to increase to 198 GW in 2010 and to 433 GW in 2015. Wind energy continued to increase by around 540 GW in 2017, and in 2018, it reached 591 GW. Meanwhile, in 2019 the increase in wind energy reached 651 GW, and in 2020 it reached 743 GW (Update 2017). Meanwhile, global wind energy capacity in 2021 reached 817 GW and is predicted to continue to increase in the following years (GWEC 2021). The global state of wind energy was provided in Fig. 7. The use of energy from renewable sources of wind power is increasingly popular in many developing countries. The design, production, and manufacturing of bladed wind turbines, which are separated into two groups, are all done to maximize power output and efficiency. The achievement of efficiency and power generated is likely to be higher if the manufacturing system, design, and fabrication of wind turbines can be divided into two categories, namely, Vertical Axis Wind Turbine and Horizontal Axis Wind Turbine. This is based on an in-depth inspection of each unit including hub height and rotor diameter. In addition, the material composition and mass of the blade, as well as the shape of the tip angle and nacelle unit must also be considered (Pourrajabian et al. 2021; Gaonkar and Hegde 2022). Analysis by using a computer at the proposed horizontal HAWT turbine angle will increase turbine efficiency because it can create large amounts of energy. This illustrates that the analysis system with the use of Blade Element Momentum (BEM) can extract more turbine rotor power so that the turbine rotor calculation is more ideal (Arteaga-López and Angeles-Camacho 2021; Guo et al. 2021).
The installed wind energy capacity shown globally in 2021 worldwide will reach 817 GW. Wind turbines that are utilized through wind kinetic energy can be converted into mechanical energy and can be used as energy. Wind energy sources have provided researchers with a very attractive business for generating energy (Liu et al. 2020; Zhang et al. 2021). Blade aerodynamic design is the first step that can be taken to deliver powerful performance. Performance study for wind turbine blade design must take into account the air foil shape, attack angle, tip speed ratio, and rated wind speed. The use of computational fluid dynamics (CFD) and temperature element momentum theory can solve the Navier-Stokes equation to analyze numerical aerodynamics. Determination of the highest power coefficient can use the work system in BEM theory. The best turbine rotor rotation speed using the BEM theory has been carried out by (Ortolani et al. 2020). The development of the BEM theory with the mathematical model used for forecasting the HAWT design has been carried out. CFD is the best way to analyze aerodynamics because the results of the analysis can save costs. Indonesia has a very good source of wind energy among other Asian countries. However, until now, the installed capacity of wind energy in Indonesia is still very small compared to developing countries and even far from India. A huge influence on wind turbine efficiency is mechanical failure, electrical failure, and grid failure. Wind turbine efficiency levels may decrease with low wind speed (Amjith and Bavanish 2021a; Solomin et al. 2022). Increasing the efficiency of wind turbines can be affected by large wind losses so it is a very important step to overcome them. In this case, we assert that the decrease in performance in wind turbines is caused by very low wind speeds so that the problem in wind power plants can be reduced (Amjith and Bavanish 2021b; Pitchia Krishnan et al. 2021). Low wind speed has become a concern in all wind power plants around the world. However, the level of global wind energy capacity continues to increase as shown in Fig. 7. The shortage of wind speed, especially in India, has given a level of concern and problem. This implies that the implementation of the engineering concept developed on the wind farm does not provide a good solution (Neupane et al. 2022).

Great energy can be generated using windmills, wind turbines positioned to the tower. In this way, faster winds can be obtained over an altitude of about 100 feet or those with the highest landmasses. The blades such as the blades found in the turbine are used to capture wind energy with a rotor consisting of two to three blades positioned on the shaft. When the wind blows it will form an air pocket with low pressure with the blade position against the wind (Reilly 2020). Furthermore, the low-pressure air pocket will pull the blades so that the rotor will rotate which is called lift. Thus, the drag force is lower due to a stronger lifting force to form a wind force against the front side of the blade. The output power generated from the turbine more than 100 kW is a utility-scale turbine. Utility-scale turbines are often found in multi-turbine areas that have large scale and are connected to the national transmission network. The utility-scale level of a wind turbine based on engine performance is presented in Fig. 8. The turquoise angle of 5 MW which was built through a computer analysis based on performance in a research study has been carried out. The drag, lift, and momentum are used as a function of the blade angle ranging from 0–90. Maximum momentum was recorded from three different wind input speeds of 3 m/s, 12.5 m/s, and 25 m/s at the angle of 82 (Lagdani et al. 2021). The optimal blade angle of attack on the turbine will be around 81, resulting in a rotation angle at maximum speed when the wind speed is moderate. Thus, HAWT power production at low wind speeds is highly dependent on blade orientation (Shakya 2020). The presented model to evaluate comparative economy through different configurations especially for gas engine, steam turbine, the gas turbine is carried out. Based on the results, it can be found that, among others, capital expenditure and factory size are the determinants of economic improvement and the ideal system size in producing energy is obtained at low costs. The most important factors for determining energy costs with any system must be in terms of operating costs, maintenance costs, investment costs, and interest rates.

Wind-biomass hybrid system

Hybrid-based renewable energy technology has given particular interest to power systems in supplying electricity to rural areas. Interest in hybrid energy technology is due to better technological advances and rising oil prices. The hybrid power system is based on the combination of several renewable energy sources so that the efficiency and balance of energy supply are further improved. Implementation through a hybrid energy system has provided enormous benefits in reducing carbon emissions, reliability, guaranteed supply, increasing power quality, and providing new jobs for local communities. Renewable energy sources are inherently disjointed so the use and incorporation of several renewable energy sources will provide more assurance of supply. The hybrid energy technology in this review is limited in the form of gas sourced from biomass energy. Therefore, a process with two methods of anaerobic digestion and gasification is discussed in this work. The hybrid energy technology system designed between PV-Biomass-Wind is the best and is cost-effective. The concurrent charge cycle approach with PSO is a cost-effective option for further consideration. An innovative approach was created and proposed to analyze the feasibility of a system to combine biomass power generation through a gasification storage system, and generators can stabilize
wind energy up to 40 MW (Hien 2019; Mori 2021; Heffron et al. 2022). Renewable energy will play a very important role in the future, this can be seen from primary energy consumption which reaches 30% as predicted by experts. Technology modeling through hybrid power generation systems among biomass, solar, and wind has been studied recently. Simulation through the MATLAB application contains all the realistic components required in hybrid biomass, solar, and wind power generation system. The electricity generated from the modeling of the Biomass-PV-Wind hybrid system can save costs, which is lower than the amount of electricity obtained from fossil fuels and is more environmentally friendly. This system cannot detect hazardous compounds and gases at the time of waste products because the energy that is owned is fully sourced from renewable energy. The use of renewable energy such as biomass, sun, and wind aims to power urban infrastructure. The optimal size of a wind-biomass hybrid system with and without energy storage can be determined by increasing supply and demand. According to, increasing the demand-supply fraction (DSF) and the percentage of renewable energy (FR) while keeping a net present value larger than zero will yield the ideal size for a wind/biomass hybrid system with and without energy storage. Mechanisms for pricing and green energy are being developed. This development is carried out to increase accommodation and energy demand at various scales. The use of software carried out by several researchers is a strategy optimization I developing a hybrid wind-biomass energy system with lower costs and higher efficiency. Renewable energy sources are estimated to be able to guarantee large-scale energy needs which are used for cooling and other electrical equipment. A more complete schematic representation of a hybrid power plant from wind biomass sources is presented in Fig. 9.

The process for designing a hybrid system is highly dependent on the reliability of the available power. To meet the costs and costs effectively and efficiently, energy technology can be utilized through a hybrid system. While schematic diagrams for different wind power plants are shown in Fig. 10.

Fig. 9. Schematic diagram of representation energy hybrid biomass-wind

Fig. 10. Schematic diagram for different type of wind energy
The study of cost systems covers several economic characteristics in addition to energy distribution costs, life cycle costs, and current net costs. Determination of Net Present Cost through the sum of the current value of system components and component maintenance costs will apply for the duration of the project. The longevity and robustness of the power generation industry is the most important part. The energy throughout the year must have a cost ratio for its maintenance system so that it can be used for the cost of energy equipment each year. A 50-kW biomass gasifier system requires an initial investment of ±4.3 IDR. While the cost of maintenance from scratch for each year requires about 3%. Fuel supply from biomass energy requires more maintenance than wind energy. Technology with the biomass gasifier system is expected to last more than 20 years. In 20 years can provide a discount of 0.456. Biomass gasifier system maintenance costs are estimated at 28 lakhs and wind energy costs ±5.5 IDR.

Based on Government Regulation No. 79 of 2014 concerning National Energy Policy, the target for a new and renewable energy mix in 2025 are at least 23% and 31% in 2050. The target capacity of Wind Power Plant (WPP) in 2025 is 255 MW. Meanwhile, until 2020, WPP has only installed around 135 MW with details of 75 MW in the Sidrap area and 60 MW in the Janeponato area. Thus, the development of wind energy in Indonesia is still a national challenge. The availability of an accurate wind energy potential map throughout Indonesia is essential as the first step in identifying and selecting wind energy project locations. The map provides information on wind characteristics in various areas such as average wind speed, and maximum and minimum speed which can be converted into power density maps and annual energy maps (in kWh/ or W/m²).

Conclusion

Energy has become a very important need in everyday human life. Availability of sufficient energy can improve infrastructure and human development to increase productivity and the economy. Substitution of fossil energy into renewable energy sources is one of the most appropriate strategies in combating climate change, especially greenhouse gas emissions. However, its application must be carried out sustainably in supplying and providing energy so that future energy needs will continue to be met. Improved wind energy technology is a renewable energy that has experienced a sharp increase globally. Several main parameters can affect the performance of a wind turbine, such as blade angle, pitch angle, and angle of attack. The discussion of parametric conditions optimally is the best working system for wind turbines even with the lowest wind speeds. Biomass fuel will offer several advantages especially at home and at work. The advantages offered are environmentally friendly, sustainable, and an alternative to fossil fuels. The hybrid wind-biomass system has a comprehensive life cycle because it can take into account operating costs, maintenance costs, and initial costs. The biomass-wind hybrid system technology is one of the most cost-effective and competent technologies now and in the future.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

global
cumulative
ing
153.5
GW
https://gwec.net/gwec-forecasts-817-gw-of-wind-power-in-
2021/#:~:text=The
global
cumulative

characteristics. *Arch Environ Prot.* 45, pp. 92–102, DOI: 10.24425/aep.2019.126425

