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Human motion is required in many simulation models. However, generating such
a motion is quite complex and in industrial simulation cases represents an overhead
that often cannot be accepted. There are several common file formats that are used
nowadays for saving motion data that can be used in gaming engines or 3D editing
software. Using such motion sets still requires considerable effort in creating logic for
motion playing, blending, and associated object manipulation in the scene. Addition-
ally, every action needs to be described with the motion designed for the target scene
environment. This is where the Motion Model Units (MMU) concept was created.
Motion Model Units represent a new way of transferring human motion data together
with logic and scene manipulation capabilities between motion vendors and simu-
lation platforms. The MMU is a compact software bundle packed in a standardized
way, provides machine-readable capabilities and interface description that makes it
interchangeable, and is adaptable to the scene. Moreover, it is designed to represent
common actions in a task-oriented way, which allows simplifying the scenario cre-
ation to a definition of tasks and their timing. The underlying Motion Model Interface
(MMI) has become an open standard and is currently usable in MOSIM framework,
which provides the implementation of the standard for the Unity gaming engine and
works on implementation for the Unreal Engine are under way. This paper presents
two implementation examples for the MMU using direct C# programming, and using
C# for Unity and MOSIM MMU generator as a helping tool. The key points required
to build a working MMU are presented accompanied by an open-source code that is
available for download and experimenting.
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Abbreviations

DHM – Digital Human Modeling
MMI – Motion Model Interface
MMU – Motion Model Unit

1. Introduction

According to Eurostat, the manufacturing sector employed more than 28.5
million people in the EU in 2017 [1]. Product development time in the last decade
has been significantly reduced from 48 to 25 months [2]. Shortening product
development cycle puts pressure on production workers, who need to adapt fast for
the new tasks. The number of people and robots included in the modern production
process requires close cooperation between the two entities in a safe way. Untested
robot codes or badly planned human workstations can result in injuries, production
inefficiencies and quality problems. To give production planning specialist more
time during such an already shortened product introduction cycle, it is important to
start simulating future production lines in the early stages [3]. Currently available
tools allow one to focus on either the automated sections of the production chain
or on a single worker. Moreover, such simulation tools are often incompatible with
each other and therefore, advanced analyses are time-consuming and can only cover
small critical sections of the production process.

Accordingly, it is important to bridge the gap between production planning and
product design covering both industrial machines and human workers in a single
simulation. Inclusion of a human to the assembly process simulation offers several
benefits. First of all, timing of the action can be assessed reliably for new tasks. Sec-
ondly, interaction between human workers and machines can be evaluated. Thirdly,
bottlenecks and accessibility problems can be identified, and finally, workplace
ergonomics can be reviewed and optimized at the production cell design stage. A
virtual training environment for production workers can also be created before the
actual production line is commissioned. This can significantly shorten the ramp-up
time when new products are introduced. Discussions with worker’s unions and
authorities can be based on visual feedback on the production cell ideas. Finally,
instructional assembly videos can be created and distributed to workers and their
supervisors ahead of production start [4].

The new simulation framework is based on standardized interfaces to ease
changing simulation engine, visualization tools, as well as integration of data ex-
change plugins to specialized Product Life cycle Management (PLM) or Computer
Aided Design (CAD) systems utilized by industry. Data exchange and core frame-
work components are built in an open-source spirit to ease the integration of tools
and services with the framework.
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1.1. Human modelling platforms

Digital humanmodeling is awell-known practice in industry and science [5–7].
Digital human modeling was used to investigate the effects of the environment on
the human. For example, the first human model was developed in 1960 to simulate
the effect of zero gravity on the human body in space. In 1967, an anthropomorphic
human model was created to check the ergonomics of aircraft cockpits [8].

In 1985, the model TEMPUS was created, which allowed for analyzing the
movement process of the digital human. The TEMPUS model has been the prede-
cessor to the modern JACK model that is widely used nowadays. The JACK model
was designed for product ergonomics analysis, but it can also be used for other pur-
poses through the interface. The simulation procedure is equipped with modules
allowing the application of the simulated human in factory designing and processes
planning [9]. The JACK inherits robotics methods for simulation of movements and
does not use any motion blending for motion transitions, consequently producing
unnaturally-looking motion sequences [8].

During the 1980’s the SAFEWORK model was developed at the École Poly-
technique [10]. The SAFEWORK consists of three modules covering anthropome-
try, movement, and analysis. The model is focused on workplace design and work
processes planning. The movements of the digital human model are obtained via
inverse kinematics. The analysis tool allows for vision simulation, fixed accessi-
bility areas, joint-comfort analysis, and calculation of maximum forces within the
joints. This technology is currently available as an integration unit in the CATIA
CAD software [8].

Another digital human modeling tool is the Santos [11], which originates
from the Virtual Soldier Program started in 2003 at the University of Iowa. The
technology focuses on human performance in task-specific training. This technol-
ogy considers human characteristics such as strength, fatigue, flexibility, balance,
vision, and posture, as well as clothing and other equipment worn on the body,
external forces, and environmental conditions. The Santos human model has 100
degrees of freedom enabling more realistic behavior.

In 2002, the Biomechanics Research Group, Inc. launched the LifeMOD Hu-
manModeler plugin for theMSCAdams [12] general purpose multibody dynamics
simulation software. The LifeMOD plugin allowed the integration of the human
skeletal system into the simulation and focused on the muscular and joint dynam-
ics. It covered PID-controlled muscle models, including tendons as well as the
Hill muscle model. The software had been developed for several years until 2012,
when the software company was taken over by Smith & Nephew, Inc. At that time,
the software became unavailable to researchers and the public as the new owner
focused on providing services rather than software packages [8].

In 2007, the OpenSim 1.0 was released. Today, the OpenSim is one of the most
popular platforms for simulating human motion, muscle activation, or optimization
of human balance stabilization during physical activity. It is one of the platforms
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that became widely adopted by researchers due to the ease of numerical models
integration and open-source nature of the project allowing for the customization of
the code as needed [13]. Although the capabilities of the software are remarkable
and the user community is large, it is not well suited for commercial use as its
user interface is far from being user friendly, modeling with OpenSim is time-
consuming, and the support is only available through a forum. Nevertheless, it is
one of the projects that enable the creation of research bases for commercial human
simulation platforms. As of January 2022, the Google Scholar indexed over 12 000
articles related to the OpenSim.

Another open-source platform worth mentioning is the HuMAnS Toolbox by
INRIA. It focuses on the simulation of humanoid robots, but is also usable for
human simulation. The analysis of human motion stability and related ground
contact is one of the core focuses of the HuMAnS package [14]. This project was
a response to the need for a simulation platform for humanoid robots that would
be capable of evaluating the stability of such robots during locomotion, offering
ease of integration of additional models as required by the user. The lack of tools
satisfying this need, and its closed source nature makes it difficult to integrate
commercial solutions to drive this project forward.

Among commercially available solutions for human simulation one can find
the Ramsis by Human Solutions [15], the Tecnomatix Jack by Siemens [16], the
AnyBody by AnyBody Technology A/S [17]. Ramsis and Tecnomatix Jack pack-
ages focus mostly on ergonomics, while the AnyBody is more muscle and joint
simulation oriented. Furthermore, the SimcenterMadymo [18] is one of the popular
solvers for automotive occupants and pedestrian safety evaluation. The Madymo
features multibody, finite element, and computational fluid dynamics solvers that
allow for comprehensive studies of crash test dummies in virtual accident simula-
tions as well as active human models that can be used in pre-crash situations where
human reactions must be considered.

It can be concluded from the state of the art analysis that human simulation is
mostly considered as being in a domain separate from factory simulation andworker
simulation, in general. Ergonomics is one of the driving forces of implementing hu-
man simulations in modern industry, but is also affected by safety concerns and the
need for manual work feasibility analysis before commissioning of the plant. These
targets are difficult to merge in a single simulation environment due to a lack of
widely adopted standards for the human model exchange and limitations in general
purpose simulation codes. On the other hand, highly specialized software packages
can solve ergonomic problems or evaluate the safety of human operations, but tend
to overlook details of machine implementations. This situation exists mostly due
to closed source software distribution models dominating the commercial market.
A single company may not be capable of offering solutions that would be both
very general and simple to use at the same time, allowing for quick simulation
model creation and validation. Experts in the human musculoskeletal simulations
utilize platforms such as OpenSim, AnyBody, and LifeMOD. Ergonomic experts
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prefer Tempus, Jack, Safework, or Ramsis, while plant designers utilize different
software families. Combining results of multiple software packages to obtain a
coherent vision of the problem is difficult, and combining different file formats
utilized in closed-source software packages can be a real showstopper [19].

1.2. Motion Model Units

The Motion Model Units (MMU) concept as an extension to the Functional
Mock-Up (FMU) [20] standard aims at solving the compatibility problem and allow
experts from motion and human simulation to provide simple building blocks for
various software packages using one plug and play software implementation [19].
Currently, MMU development is focused on providing basic human motion gen-
eration blocks that can be used in most common industrial applications covering
production, maintenance, but also crowd or pedestrian behavior for the use in
autonomous vehicle studies.

The concept of dividing motion into blocks that can be repeated and merged
into different configurations is one of the common techniques utilized in games,
where motion blending combined with a state machine is used to smoothly transi-
tion from one motion to another. For example, the default state is idling, where the
avatar performs pseudo-random body movement, occasionally performing some
operation like weight balance shift from one leg to another or head motions. When
an input is received or another trigger action is initiated, the state machine tran-
sitions from the idle motion to, for example, walking and loops over the walking
pattern until a stop command is issued or transition to, for example running, hap-
pens. Such a state machine combined with motion blending is one of the popular
components in many game development tools like the Unity [21] or the Unreal
Engine [22]. It is a game developer’s job to provide state machine diagrams, define
transition triggers, and prepare animations that can blend for realizing a constrained
set of actions. It is important to note that this concept handles only motion and
does not directly include interactions with the environment. Such interactions need
to be programmed individually in every case.

MMUs represent individual motions combined with logic blocks that deal with
the current scene state and determine how theMMU is going to perform its function,
and if it is able to fulfil its function at all [23]. Thismeans containerization ofmotion
and logic in a single plug-and-play package. In the MOSIM framework [24], the
logic can be placed on two levels. On the first level, the behavior modeling, target
actions are derived based on high-level tasks (goals) and scene states are considered
[23]. On this level, selection of the MMU happens, and a strategy of low-level
actions instantiating is implemented. The second level is the MMU level, where
the fine-grain logic is coded. The logic contained in the MMU deals with adjusting
motion output based on target avatar anthropometry, evaluating motion constraints
provided by the behavior and environment, and adapting the motion within the
motion type that the MMU implements.
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This adaptation, where a human skeleton is modeled to resolve joint constraint
dependencies, is a typical biomechanical problem. In most cases, the multibody
model is limited to the inverse kinematics of the specific body segment to achieve
real-time efficiencies. Examples would include a hand reaching action or both legs
moving for locomotion.

To develop an MMU targeted at optimizing movement ergonomics, a detailed
musculoskeletal model could be employed to provide motion information about
joint loading andmuscle forces at the expense of simulation speed.When simulating
the assembly of tight fit connections, for example, a muscle-driven model could be
used to determine how feasible it is to make the connections using bare hands or if
specific tools are required.

Carrying large objects, interacting with push carts, or stacking objects could
result in a loss of balance, and therefore for such scenarios, a multibody model
should be integrated with the MMU to properly reflect interactions between the
human and the manipulated objects instead of relying entirely on kinematic ma-
nipulation of the scene objects. In a simulation, the objects subject to interaction
are considered rigid bodies with at least basic inertial properties and contact sur-
faces defined. An avatar walking into an obstacle or moving one object such that it
collides with another must impact the simulation result. This behavior is control-
lable through the user interface, and if desired, certain objects can be simplified to
just geometrical representations without physical representation in the multibody
simulation engine.

While theMMU is a separate part of the code, it is a target visualization engine
independent and can be reused in different target engines. This allows for preparing
not only motion but also the logic behind it to be bundled and made available for
a large group of developers in a single package.

Blending of motion output by subsequent MMUs can be performed by a co-
simulator – which can use behavior to plan ahead of the output to perform blending
between start and end frames provided by the MMUs. However, this is challenging
as the initial MMU pose might not be well defined. The second option is blend-
ing performed by the MMU, which uses the output of the previous MMU as the
input and if this avatar state is not optimal, it can blend it towards the desired start
state [23].

Finally, a separate specialized MMU can be created to serve purely as blend-
ing entity, combining the initial state of the next MMU with the final state of the
previous MMU. Initial and final states of the MMU avatar poses could also be
standardized within a group of MMUs, alleviating the need for motion blending
between consecutive MMUs. This strategy works if MMUs are only run sequen-
tially, but fails when multiple MMUs are run in parallel modifying the avatar’s
pose. This paper focuses on addressing issues of human motion utilized in factory
planning, which might affect the overall results of the simulation process. The
objective of this paper is to introduce the application of an example code procedure
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to control a digital human model using motion model unit implementation. The in-
troduced control procedure is based on motion capture and linear motion blending
techniques commonly used in the gaming industry.

2. Human model implementation

2.1. Challenges

Human avatars as three-dimensional (3D) models can be introduced to practi-
cally any simulation environment that provides 3D visualization. Bringing avatars
to life is, however, the bottleneck of many simulation workflows. General sim-
ulation tools usually allow imports of 3D geometry in one of the standard data
exchange formats, but representation of human joints and thus mechanical connec-
tions is already the first challenge. The second challenge is the actuation of the
human joints and relative movement of the avatar in the simulation environment.
While simple stationary motion can be prescribed using digitally generated data, to
achieve naturally-looking articulation, motion capture data is often employed. This
implies that for every distinct action, a separate motion capture is needed. Such an
approach works well for repetitive motions, like walking, posture change, making
gestures, replicating face expressions and other similar motions.

Actions that diverge considerably in kinematics depending on the environment
are not well suited for a motion capture-based approach. These are, for example,
reaching a point or moving an object. Those actions are dependent on the relative
position of the human, and the manipulated object and the number of these com-
binations of parameters is infinite. In such tasks, a better-suited approach relies on
the direct control of the avatar motion, for instance using a virtual reality environ-
ment, where a user wearing a motion suit is able to directly move the avatar in the
simulation and interact with the objects being simulated.

Another option is the usage of inverse kinematics for motion planning. Such
an approach allows for the elimination of the need for preparation of motion data
for every single use case, as the motion data is generated on a need basis. Reach-
ing, grasping, and object manipulation are good examples where this method can
be a robust solution. The main drawback of the inverse kinematic approach is
the ergonomics and the often unnatural motions. As inverse kinematics looks for
any possible solution not necessarily optimal from an ergonomics perspective,
in many cases it has to be supported by an optimization routine that is capable
of weighing possible solutions to select one that is both anatomically feasible
and natural-looking, where the latter is more cumbersome to define mathemati-
cally [25].

That implies that significant effort is required for the implementation of such
systems in general-purpose simulation software. In many cases, it can be an inef-
ficient solution, as physical testing could be accomplished in the same amount of
time. Therefore, for practical reasons, motion generation for the human avatar is
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often a blend of the above-mentioned approaches. Balancing between algorithms
allows for a compromise between robustness and natural-looking motion. As a
generation of human motion can be considered to be a separate field of science
requiring broad expertise, it is desirable to modularize the human motion genera-
tion process, so that specialized companies could provide ready building blocks for
the simulation end-users. The building blocks can be interchanged and sequenced
in any desired motion scenario. This is where the Motion Model Units (MMU)
concept has been introduced. Encapsulation of the MMU in a standard package
enables research institutes and companies that produce MMUs and the simulation
framework end-users who utilize the MMUs to connect with each other in their
virtual testing environments.

Once motion has been generated for simple tasks using MMUs, the complex
motion can be created by running several MMUs sequentially and in parallel. For
example, pick and place actions can be created from a series of walking, reaching,
grasping, and positioning focused MMUs. The sequence could be: walking to
the object, reaching for the object while running simultaneously, idle motion of
the body, then additionally parallel execution of grasping followed by carrying
(attachment of the object to the hand), continued with another walk action keeping
only carry motion active during the walk, finally, performing positioning action,
followed by release and idle motion. Even this simple example requires a mix of
parallel and sequential operations that need to be synchronized with each other.
In parallel blocks, the hierarchy of execution is important in terms of the MMU
motion overriding by hierarchically higher placed MMUs. This presents another
challenge in human simulation – namely,motion synthesis andmotion planning that
also appears in simple animation-driven models without theMMU implementation
concept.

2.2. Behavior modeling

Having an avatar in the simulation capable of performing basic actions is still
far from an optimal solution, as it requires information on when and which MMU
to use and what parameters should be provided to the MMU so that it would
execute desired motion taking into account the start and stop constraints. This
part is covered by the behavior modeling of the MOSIM framework. In behavior
modeling, complex tasks like pick and place actions are broken down into basic
actions that can be directly mapped onto the MMUs. Definition of high-level tasks
and the associated task breakdowns is something that needs to be done only once
and can be reused in multiple simulations. The reasoning process that links the
high- and low-level tasks together requires information about the available MMUs,
and the simulation environment state before and after eachMMU is executed. From
the end user’s perspective, behavior modeling allows for a simplification of human
modeling to simple task sequence definition that is automatically converted to fully
parametrized MMU sequences, that in turn produce desired motions and scene
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manipulation set of actions. It is a big step forward in user experience as behavior
modeling, and the MMU concept eliminates the need for programming and motion
capture overhead.

3. Motion model interface

The motion model interface is a modular system consisting of motion model
units. A Motion Model Unit is a block containing the motion provider of the
digital human model. The way in which the motion is generated within the MMU
is irrelevant for the MMI standard. The standard covers interface and a set of
requirements towards software code to be usable as theMMU.Themotion generator
of the MMU creates motions needed for the desired application and should be
constrained to well defined actions. The motion can be represented as a skeleton
configuration provided for every time step. Alternatively, MMI standard allows
MMUs to provide only a limited number of joint angles that the MMU modifies
during the runtime. This allows simplification of the MMU code for actions that
do not involve the whole body motions. Motion generation can be as simple as
replaying animation sequences defined as body poses change over time. It can also
be based on inverse kinematics, forward dynamics simulation of the human or
artificial intelligence. The limit is just imagination of the MMU developer.

MMUs are run hierarchically, which means that an MMU of a higher level is
run after a lower level one, receiving the output pose of the lower level MMU as the
input, and providing amodified pose as the output. It is expected that as the standard
reaches a wider adoption, the most common implementation would utilize motion
blending ofmotion capture data. This is mostly due to simplicity and good real-time
performance; statistical approaches reinforced with the AI for covering complex
scenarios where animation smoothness should be maintained and versatility of the
model is more important than the computational cost. Finally, specialized MMUs
will be aiming at ergonomics optimization as this is in high demand from industry,
based on the number of companies offering human simulation packages focused
on ergonomics.

In the MOSIM framework, the commonly used code can be excluded from the
MMU and repackaged as a service, allowing reuse in multiple MMUs and other
framework components.

3.1. MMU background

MMUs utilize adapters to run them. This way almost any programming lan-
guage can be used to create MMUs, provided that an adapter is available for such a
language. Adapters can be seen as the middleman between the framework and the
MMU; they are responsible for loading MMUs and providing buffered scene data
access and a communication layer between the MMU and the framework (mostly
the target engine), which could be running on a remote machine. In this context,



354 Adam KŁODOWSKI, Ilya KURINOV, Grzegorz ORZECHOWSKI, Aki MIKKOLA

MMUs are dynamic link libraries. In special cases, an MMU can be a standalone
software in an executable format, then adapter functionality can be built into the
MMU. This is a less resource efficient solution as multiple MMUs will hold a
complete copy of the scene, which has to be synchronized frequently while using
the adapter only. The adapter holds a copy of the scene, and the adapter only needs
to synchronize it with the scene.

MMUs communicate with the framework using the Apache Thrift [26], which
simplifies the integration of multiple programming languages into a cooperating
system and provides a skeletal code in selected programming languages based on
a simple protocol definition. The Thrift protocol implements remote procedure
calls, which simplifies the programming of the communication protocol included
in the Thrift library as a generic application agnostic code. The MMU runs the
server socket module listening for incoming connections. Once the connection is
established (most commonly from target engine components), anMMU can receive
commands and provide a response for every time step on request. The response
for every time step is requested from the MMU by the client, providing scene
information and simulation time as parameters. An MMU can also establish client
connections to other MMUs to use them as submodules or call services to utilize
their routines. On startup, the MMU connects to the MMI register host to register
its state and communicate its availability and capabilities to the framework compo-
nents. All framework components can receive information about available MMUs
and services from the register server. MMUs and services, therefore, must register
themselves at the MMI register to be discoverable by the clients. Communica-
tion protocol supports basic functions that the MMU requires, including sending
instructions for the MMU to restart or shutdown itself.

On initialization call, the MMU receives avatar information, including its
dimensions and pose. The MMU also receives constraints applied to the action
objects orwork spacewhere theMMU is responsible for interpretation and obeying.
The MMU can raise one of the standard events in response to situation change in
the scene or to signalize its completion, or it reached an unsolvable situation that
resulted in an error. The events are used for MMU synchronization.

3.2. Event types

Event types are described by the string parameter, they are, however, constraint
to predefined values that represent semantically understandable events that the
MMU can raise or receive. Currently supported events can be checked at api.
mosim.eu. This is a permanent place where up-to-date living MOSIM standards
will be kept and made available. The result is provided in the JSON format, that
allows automatic parsing by software tools. Events are used to signal specific states
of theMMUor events in the scene that can be considered byMMUs.Currently, there
are eight supported events: start, ready, stroke_start, stroke, stroke_end,
end, abort, warning and exception.

api.mosim.eu
api.mosim.eu
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3.3. Constraint types

Eight constraint types are supported by the framework: Geometry, Velocity,
Acceleration, Path, Joint Path, Posture, Joint. Additionally, a dictionary of prop-
erties can be used to describe semantic parameters that should be associated with
scene objects. It is important to note that such parameters have to be understandable
to a behavior reasoning engine if it is supposed to use them, and by MMUs that
should utilize such parameters. Therefore, the web page at api.mosim.eu offers a
data list of available parameters and their meaning.

Geometry constraint has only one required parameter – the parent Object
ID, which specifies the base coordinate system reference point for the constraint.
The remaining parameters are optional: the transform parameter covers rotation
and translation of the local coordinate system with respect to the parent object
coordinate system; the translational constraint represents limits along all three
axes that can be used to define either extremes of a box or ellipsoid space. Sim-
ilarly, rotational parameters define limits for x, y, z rotations in degrees. Finally,
the weighting factor that takes values from 0 to 1 defines the importance of the
constraint. The weighting factor can be used to describe sets of constraints that
might be mutually exclusive. Then the weighting factors should be used to find
an optimal solution that best fulfills the constraints with the higher weighting
factor values. The weighting factor of 1 should always be interpreted as the con-
straint that must be fully satisfied, and if it is impossible, the simulation should
fail. The translation and rotation parameters are expressed in [m/s] and [rad/s],
respectively.

Velocity constraints allow one to define, for example, the initial velocity (both
linear and rotational), the maximum or minimum velocity value, or simply the
target velocity value. In the same manner as the geometrical constraint, velocity
constraints require specification of the parent object ID and allow for specifying
transformation of the parent to local coordinate transform.

The acceleration constraint is defined analogically to the velocity constraint,
and its values are expressed in [m/s2] and [rad/s2] for translation and rotation
values, respectively. The path constraint is a list of geometrical constraints forming
a series of values that can be interpreted, for example, as the walk path, the motion
path, or transition states. The weighting factor can also be defined there.

The joint path constraint is a list of sequential values of geometrical constraints
applied for the selected avatar’s joint. This type of constraint can be mostly used
to store motion data for a single avatar’s joint. The posture constraint is a set of
joint angles uniquely defining a single avatar’s posture. In addition, an optional
parameter list of joint constraints can be supplied. The joint constraint is defined by
4 parameters: joint type, geometry constraint, velocity constraint, and acceleration
constraint. The joint type is simply an indication of a specific human joint, while
the remaining constraints follow the definitions shown at the beginning of this
section.

api.mosim.eu


356 Adam KŁODOWSKI, Ilya KURINOV, Grzegorz ORZECHOWSKI, Aki MIKKOLA

3.4. Constraint interpretation

Constraints IDs are used not only to refer to the constraints but also to give
them semantic meaning. This is why standard definitions and a list of MMUs and
their parameters are available from mosim.eu. Then, each developer who wants to
build a new MMU performing action that has already been defined, could reuse
those definitions to create fully compatible MMUs with the existing scene objects.
The aim of preparing a set of standardized definitions is that they will be suggested
as constraint default semantics that the developers should use. This will simplify
the expansion of the framework and increase the compatibility of the new MMUs
with the existing ones. It has to be noted that this is still an open topic under research
and final solutions will only be available once the number of MMUs and use cases
covered are large enough to cover the most distinct scenarios.

3.5. MMU description file (manifest)

One of the key aspects of MMUmanagement is the MMU description file that
is provided in the JSON format [27]. This file contains both general information
about the MMU provided for the end-user, as well as implementation information
that allows the computer code to recognize the MMU programming language, the
motion type that the MMU performs, or an ID that is used to uniquely identify
MMUs in library synchronization events.

Currently, a tool for MMU description editing is under preparation and will
be a part of the framework released as an open-source on the MOSIM GitHub
pages [28] and therefore, the manual description file preparation will be addressed
in this section. It has to be noted that the JSON format is sensitive to string delimiter
presence around numeric values. When delimiters are added, the number is treated
as a string and can raise JSON parsing errors on MMU startup or management
in library. The decimal separator for floating-point numbers in the JSON format
is a dot. The thousands separator or spaces in numeric values are not allowed. In
strings, the backslash character has to be escaped with another backslash character.
Similarly, any quotation mark that is the same as the opening and closing quotation
symbol within a string needs to be escaped with a backslash. The JSON allows
the use of either double quotes or single quotes as quotation marks to delimit
strings. If a double quotation is used to identify a string, then single quotations
contained within such a string do not have to be escaped. Analogically, when
single quotations are used to delimit the string, double quotation inside can be used
without escaping. Fields Name, ID, AssemblyName, Language and MotionType
are the most important parameters and are required for valid MMU description.
The Name indicates human readable name of the MMU; it is not used directly in
the framework, so it is not sensitive to the execution of the MMU, but has a value
for the MMU library management. The ID is a string that should be unique at least
within the MMU library where the MMU is used.

mosim.eu
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To maintain uniqueness of IDs, it is suggested to construct an ID using the
author’s e-mail or the vendor’s internet domain as the first part, separated by
a colon with the MMU name and a slash with the MMU version. This way,
while Internet domains are globally unique, only MMU names have to be unique
within the organizations owning a domain. In case an organization has multiple
independent MMU developers and does not keep track of the MMU IDs used
within its structures, the author’s e-mail is a safe choice for the ID prefix. The same
applies to e-mail accounts of individual developers that are hosted on one of the
popular e-mail provider’s domains that contain millions of users, then, instead of
the domain, the author’s e-mail is a safe choice. The ID cannot contain trailing
and preceding spaces, but can contain spaces inside. The reason is that, while
processing, preceding and trailing spaces and other white characters are stripped.
The AssemblyName field has to contain an MMU executable file name, including
the extension or dynamic link library name of the MMU that contains the entry
point.

3.6. Running MMUs with the Launcher

Once the MMU is compiled, it can be placed within a local MMU library,
becoming a part of the Launcher software. If only the MMU is implemented in
one of the programming languages for which the adapter is available, the MMU
will be loaded and can be used by the framework. Setting up the basic framework
tools and the launcher is presented in the documentation on the GitHub (https:
//github.com/Daimler/MOSIM_Core/wiki/MMI-Framework-Setup-Guide).

3.7. Testing MMUs in example scene

If the MMU implements the motion type that is already available in the task
editor and the breakdown is ready in the reasoning engine, then it is sufficient to
disable other MMUs that implement the same motion type or to set up the new
MMU as the first one on theMMU priority list within its motion type. Then, setting
a new task in the task editor and running the simulation will result in using the new
MMU as long as it does not fail during initialization.

In case MMU implements a new motion type or a motion type for which its
behavior is not available, a user can either define a new breakdown, insert it into
the reasoning engine library and define a new task in the task editor to try out the
MMU. A direct MMU call can also be made from the target engine to run just the
specific MMU with the user script.

3.8. MMU distribution package

The MMU can be distributed to other users using a zip archive. The structure
of the zip archive content has been standardized in the MOSIM project and is
presented in Fig. 1. An important part of the structure is the description.json file

https://github.com/Daimler/MOSIM_Core/wiki/MMI-Framework-Setup-Guide
https://github.com/Daimler/MOSIM_Core/wiki/MMI-Framework-Setup-Guide
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Fig. 1. MMU folder structure, a) simple structure without root folder, b) structure with root folder,
c) structure with root folder, optional files, and user files

that contains the MMUmanifest presented in earlier sections. This manifest is used
by the MMU library and the launcher to instantiate the MMU, classify its function
and connect it to the related behavior. The manifest is also used to track MMU
updates and implement automatic update checking.

The manifest file and the zip archive with MMU can be created using the
MOSIM tool called theMMUDescriptionEditor, which performs a sanity check for
all the parameters and utilizes information about framework-supported parameters
and their values directly from the api.mosim.eu guaranteeing parameters that are
up-to-date with the framework development.

The second most important file in the MMU distribution package is the dll
containing the actual MMU. The description file has to explicitly indicate which
dll file in the archive is the MMU implementation. Additionally, files containing
images for web shop and library management usage can be included, as well as a
gif animation (to be used as an animated thumbnail) and an mp4 video showing
more details about the MMU. The intended use of the media files is presentation
of the MMU in web shops as well as in MMU libraries. The MMU folder structure
can be as simple as a zip archive containing the only two required files, namely
the description.json and the actual MMU dll. However, to ease manual MMU
management, a root folder can be added, as shown in Fig. 1.

There is no limit on the number of files and folders accompanying MMUs or
their types, however, the files described above have to follow naming standards and
their content must obey content restrictions defined by theMMU library standard to
be correctly recognized by the framework and be validated by MOSIM framework
tools. An online MMU validation tool is currently under development.

4. Example MMU implementation

This section presents two MMU implementations that show how a C# project
can be created and compiled with a simple nod and shake MMU, and how pre-
recorded motion data can be used in a purely motion-driven MMU implemented

api.mosim.eu
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in the Unity C#. The second MMU performs a reaching action using the target
object’s location to determine the reach point. Both MMUs show how run-time
and how they can be used in the MMU, how the scene can be accessed from the
MMU, how to access services, and how to implement event creation during MMU
execution. In addition, the second MMU example also shows how motion blending
functionality in the Unity can be used, and presents accessing scene parameters
and their interpretation. Finally, this section presents the testing procedure of the
MMU and shows how it can be used with the task editor and the reasoning engine.
Complete MMU codes are available on LUT’s GitHub repository.

4.1. Simple nod and shake head MMU implementation in C#

Nodding and shaking the head from left to right are common ways of commu-
nicating non-verbally, indicating a yes or no response. While Bulgaria utilizes the
opposite logic for these responses compared to most of the countries, it is assumed
in the implementation that, by default, nodding means a yes and shaking the head
from left to right means a no. To handle the Bulgarian understanding of the gesture,
the inverseLogic persistent parameter is implemented such that it can be passed
onto the MMU during startup or using a special configuration call.

The used MMU will need one runtime parameter called the Response, that
will accept a Boolean data type with binary values of 0 or 1, where 0 is interpreted
as false, and 1 as true. If the inverseLogic parameter is not specified, the default
value will be false, meaning that the Response parameter of value 1 will result in
nodding the head, and the Response parameter with value 0 will result in shaking
the head. The MMU will support only the basic events: start, ready, end, and
abort. The MMU will implement basic procedure calls: CheckPrerequsites,
DoStep, Abort, Setup, and the generic method Consume that will be used to pass
the general persistentMMUconfiguration during the runtime, and those parameters
will be restored on reload.

The MMU will only actuate the neck joint and will not affect the avatar pose
in any other way. This means that the most natural-looking response will happen
for the avatar during standing and sitting positions. It also implies that if the avatar
would be in a bent position, the avatar’s head will not be raised before shaking for
a no response. Nevertheless, for demonstration purposes, this assumption should
be sufficient.

The motion data for nodding and shaking is based on the predefined neck joint
motion data points: 0, 45, -45, 0 for shaking, and 0, 10, -30, 0 for nodding. The data
points are expressed in degrees and represent a single neck rotation angle. On the
DoStepmethod, linear interpolation will be used to provide output neck angles for
any valid time step. If the initial neck joint angle does not represent a straight neck,
the first motion frames will interpolate turning the head from the initial pose to the
default nodding/shaking starting pose, consequently the overall time for the motion
will be longer. This demonstrates that MMUs can simulate more realistically action
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timing, as they take into account transition states between individual motions as
compared to a pure animation approach, where transitions can happen in an abrupt
way and animation time is fixed to the duration of the clip.

It has to be noted that if the time step is larger than the overall duration of
the motion, the pose returned through the DoStep function call will represent the
initial nodding/shaking pose. In most cases, a time step within 0.01 to 0.1 second
will provide a smooth animation. Smaller time steps lead to smoother animations,
but if the number of frames per second that the computer can generate is exceeded,
then the animation might be lagging behind the real-time or intermediate steps
might not be visualized.

4.1.1. Code structure

MMU class is derived from the MMUBase class. The following methods are im-
plemented by overriding base class methods: initialize, AssignInstruction,
and DoStep. In addition, the method for interpolating rotations between two given
poses is provided as the FromToRotation function. The MMU is contained
in its own namespace. The MMU utilizes the functionality of the MMICSharp,
MMIStandard, and System libraries.

1 using MMICSharp.Common;
2 using MMICSharp.Common.Attributes;
3 using MMIStandard;
4 using System;
5 using System.Collections.Generic;
6
7 namespace NodAndShakeMMU {
8 public class NodeAndShakeMMUImpl : MMUBase {
9 public override MBoolResponse Initialize(MAvatarDescription

avatarDescription , Dictionary <string, string> properties) {
10 base.Initialize(avatarDescription , properties);
11 //Setup the skeleton access
12 this.SkeletonAccess = new IntermediateSkeleton();
13 this.SkeletonAccess.InitializeAnthropometry(
14 avatarDescription
15 );
16
17 //Get initial rotations
18 this.initialHeadRotation =

SkeletonAccess.GetLocalJointRotation(
19 AvatarDescription.AvatarID , MJointType.HeadJoint
20 );
21 this.initialNeckRotation =

SkeletonAccess.GetLocalJointRotation(
22 AvatarDescription.AvatarID , MJointType.C4C5Joint
23 );
24 //return success response of the initialization
25 return new MBoolResponse(true);
26 }
27
28 public override MBoolResponse AssignInstruction(MInstruction

instruction , MSimulationState simulationState) {
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29 base.AssignInstruction(instruction , simulationState);
30 //Here instruction processing logic needs to be inserted
31 //return success response
32 return new MBoolResponse(true);
33 }
34
35 public override MSimulationResult DoStep(double time,

MSimulationState simulationState) {
36 //Create a new simulation result
37 MSimulationResult result = new MSimulationResult() {
38 Events = simulationState.Events ?? new

List<MSimulationEvent >(),
39 Constraints = simulationState.Constraints ?? new

List<MConstraint >(),
40 SceneManipulations = simulationState.SceneManipulations??

new List<MSceneManipulation >(),
41 Posture = simulationState.Current
42 };
43 //here logic for performing single animation step needs to be

inserted
44 return result;
45 }
46
47 private static MQuaternion FromToRotation(MVector3 from, MVector3 to)

{
48 //Normalize both input vectors
49 from = from.Normalize();
50 to = to.Normalize();
51
52 //Estimate the rotation axis
53 MVector3 axis = MVector3Extensions.Cross(from,

to).Normalize();
54
55 //Compute the phi rotation angle
56 double phi = Math.Acos(MVector3Extensions.Dot(from, to)) /

(from.Magnitude() * to.Magnitude());
57
58 //Create a new quaternion representing the rotation
59 MQuaternion result = new MQuaternion() {
60 X = Math.Sin(phi / 2) * axis.X,
61 Y = Math.Sin(phi / 2) * axis.Y,
62 Z = Math.Sin(phi / 2) * axis.Z,
63 W = Math.Cos(phi / 2)
64 };
65
66 //Perform not a number check and return identity quaternion

if quaternion components are invalid
67 if (double.IsNaN(result.W) || double.IsNaN(result.X) ||

double.IsNaN(result.Y) || double.IsNaN(result.Z))
68 result = new MQuaternion(0, 0, 0, 1);
69
70 //Return the estimated rotation
71 return result;
72 }
73 }
74 }
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MOSIM data types used in the code snippet above are defined as follows: the
MBoolResponse is a structure that contains the required Boolean value indicating
success or failure of the instruction as well as an optional list of strings for log data,
that is intended to transmit error and warning messages as addition to the Boolean
response. It can also be used to log successful events if the MMU developer so
desires. A Thrift definition of the MBoolResponse is presented below. The Thrift
interface definition is limited to four fields per entry: id - used to identify parameter,
keyword required or optional indicating whether parameter can be omitted or
not; type filed, and finally parameter name. This is translated by the Apache Thrift
compiler to any supported programming language that the user wants to utilize for
implementation.

1 struct MBoolResponse {
2 1:required bool Successful;
3 2:optional list<string> LogData;
4 }

The MAvatarDescription defines the avatar pose, properties and the avatar
ID, which allows avatar identification in multi-avatar simulation scenarios. The
Thrift definition of MAvatarDescription is as follows:

1 struct MAvatarDescription {
2 1: required string AvatarID;
3 2: required MAvatarPosture ZeroPosture;
4 3: optional map<string,string> Properties;
5 }

Processing of runtime parameters is done in the AssignInstructionmethod.
The first parameter of the AssignInstruction is of MInstruction type, which
is defined in the Thrift as follows:

1 struct MInstruction {
2 1: required string ID;
3 2: required string Name;
4 3: required string MotionType;
5 4: optional map<string,string> Properties;
6 5: optional list<constraints.MConstraint > Constraints;
7 6: optional string StartCondition;
8 7: optional string EndCondition;
9 8: optional string Action;

10 9: optional list<MInstruction > Instructions;
11 }

The ID instruction is assigned to maintain control over start and end conditions
of individual instructions and appears as a part of event descriptions raised by
MMUs. For example, if the walk instruction of the walk MMU has an ID of
"WalkMMU-1", then if walk should be followed by reach, the reach MMU should
be instantiatedwith the MInstructionfield StartCondition set to "WalkMMU-
1:end".

Construction of the condition is the MMU ID followed by a colon and the
event name. Despite the StartCondition or EndConditions being strings, to
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maintain compatibility with the future framework versions, their values should be
set using framework defined constants. For example, the start condition after the
end of the previous MMU should be set this way:

1 StartCondition = walkInstruction.ID + ":" +
mmiConstants.MSimulationEvent_End ,

where mmiConstraints.MSimulationEvent_End defines the string represent-
ing the end event; if it follows an MMU that does not have a fixed end as it cycles
through specific motion (for example idle MMU), then it would be more appro-
priate to use the mmiConstraints.MSimulationEvent_CycleEnd, as this event
should be raised at the end of each animation cycle. So, the second MMU would
follow the idle one after one cycle is executed.

Each instruction must have a unique ID assigned to it. To generate such an
ID, the MInstructionFactory.GenerateID function should be used, which
guarantees uniqueness of the ID within a runtime environment. A Name param-
eter has to be set to the MMU name, and a MotionType to the motion type
represented by the specific MMU. These two parameters are matched by MMU
adapter to the specific MMU and then such instruction is forwarded to the MMU.
Therefore, Name and MotionType parameters do not have to be processed by
the MMU, they are intended for MMU libraries and the co-simulator for MMU
selection and organization. The Properties dictionary is intended for passing run-
time parameters to the MMU in the AssignInstruction method. The MMU
should parse the Properties value of the instruction parameter in search of
understandable parameters. The parameters that are not required should be ig-
nored.

As all parameters and their names are passed as strings, the list of parameters
is easily extendable. The dictionary structure imposes that the order of parameters
is irrelevant. MMU developers are encouraged to reuse parameter names and
predefined values utilized already by other MMUs. To increase cross-compatibility
asmuch as possible, the same parameter lists should be used forMMUs representing
the same motion type. To get a list of already supported parameters and their values
api.mosim.eu endpoint should be used, before defining new parameters. To keep
the parameter space consistent and avoid any character set translation problems,
parameter names and values should be written in English using Latin characters
and numbers only. The api.mosim.eu page will be extended in the near future
to support upload of MMU description files and to maintain up-to-date lists of
parameters and available MMUs on the market. In addition to the dictionary of
parameters, more complex parameters can be given as constraints. As described
earlier, the constraints mostly apply to geometrical values like positions, rotations
or ranges that allow defining areas and volumes as well as the avatar’s joint limits
or poses. Finally, the Instructions List can be provided to the MMU as a set of other
instructions that should be processed in the order they are specified within a single
AssignInstruction call.

api.mosim.eu
api.mosim.eu
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The proposed nod and shake MMU processes just one runtime parameter
"Response" that takes 0 or 1 value. Processing of this parameter boils down just to
two one if condition in the AssignInstruction method:

1 if (instruction.Properties.ContainsKey("Response"))
2 this.Response = (instruction.Properties["Response"]=="1")
3
4 if (this.Response) {
5 //nod motion
6 trajectory.Add(new MTransform("",new MVector3(0,0,0),new

MQuaternion(0,0,1,0)));
7 trajectory.Add(new MTransform("",new MVector3(0,0,0),new

MQuaternion(0,0,1,nodMax)));
8 trajectory.Add(new MTransform("",new MVector3(0,0,0),new

MQuaternion(0,0,1,nodMin)));
9 trajectory.Add(new MTransform("",new MVector3(0,0,0),new

MQuaternion(0,0,1,0)));
10 }
11 else {
12 //shake motion
13 trajectory.Add(new MTransform("",new MVector3(0,0,0),new

MQuaternion(0,1,0,0)));
14 for (byte i=0; i<2; i++) {
15 trajectory.Add(new MTransform("",new MVector3(0,0,0),new

MQuaternion(0,1,0,-shakeLimit)));
16 trajectory.Add(new MTransform("",new MVector3(0,0,0),new

MQuaternion(0,1,0,shakeLimit)));
17 trajectory.Add(new MTransform("",new MVector3(0,0,0),new

MQuaternion(0,1,0,0)));
18 }
19 }

Firstly, it is checking if the parameter has been defined, and secondly, if it is
set to 1 or not. This implies that the Response parameter has a default value if it
is not specified. The default value is defined in this.response field declaration.
The value of "1" will be interpreted as Boolean true, and any other value as false.

Knowing which response is requested, motion trajectory planning is per-
formed by specifying key points for the nod motion. The parameters for the
trajectory.Add method are ID, translation, and rotation defining joint pose.
The ID parameter is left blank as it is not needed in this context, the translation
is set to zero in every case as the neck joint is modeled as a spherical joint, and
the rotations define steps from the look ahead position, through reaching max and
min limits to look ahead. For shaking, two shakes are defined within a loop. The
number of head shaking could also be provided as a parameter, then loop limits
have to be adjusted accordingly.

Finally, in the DoStep method, a logic for outputting neck state at the end
of every simulation step needs to be added. Depending on the runtime Response
parameter, either nod or shake action is simulated. In this example, the values
will be interpolated within limits defined as constants: shakeLimit, nodMax and
nodMin. As shaking is symmetrical, only one angular limit is defined as an absolute
angle value. For nodding, Max and Min values are defined, allowing the setting of
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different limits. A value of 0 is used as the middle point, therefore it does not need
to be defined explicitly as a constant.

1 public class NodeAndShakeMMUImpl : MMUBase {
2 const float shakeLimit = 45;
3 const float nodMax = 10;
4 const float nodMin = -30;
5 byte trajectoryIndex = 0 ;
6 List<MTransform > trajectory = new List<MTransform >();
7 ...
8 }

The global constants are defined at the beginning of the class. Additionally,
the trajectoryIndex variable is defined to track the current target point for
the motion. Then, the DoStep method can be completed by the neck movement
code. The first neck rotation has to be extracted from the avatar object using the
SkeletonAccess.

1 MVector3 currentNeckPosition = this.SkeletonAccess.GetGlobalJointRotation(
2 this.AvatarDescription.AvatarID,MJointType.HeadJoint
3 );
4 MQuaternion currentNeckRotation =

this.SkeletonAccess.GetGlobalJointRotation(
5 this.AvatarDescription.AvatarID,MJointType.HeadJoint
6 );

Then, a new joint angle has to be computed based on the time increment since
the last time step. In most cases, the time step can be expected to be fixed, but to
handle uneven time steps, the actual interval must be used.

1 nextPose = this.DoLocalMotionPlanning(currentVelocity ,
this.angularVelocity , TimeSpan.FromSeconds(time),
currentNeckPosition , currentNeckRotation , currentNeckPosition ,
nextNeckRotation);

2 //Check if close to current target -> move to next target -> To do
consider rotation

3 if (
4 (nextPose.Position.Subtract( trajectory[trajectoryIndex].Position

)).Magnitude() < this.translationThreshold &&
MQuaternionExtensions.Angle(nextPose.Rotation,
trajectory[trajectoryIndex].Rotation)< this.rotationThreshold
&& trajectoryIndex < trajectory.Count - 1

5 ) {
6 trajectoryIndex++;
7 //end of animation frames
8 if (trejectoryIndex >=trajectory.Count)
9 result.Events.Add(new MSimulationEvent(this.instruction.Name,

mmiConstants.MSimulationEvent_End , this.instruction.ID));
10 }
11 this.SkeletonAccess.SetGlobalJointRotation(

simulationState.Current.AvatarID, MJointType.C4C5Joint , nextPose);

The function DoLocalMotionPlaning interpolates values between animation
keyframes. Whenever the keyframe is reached within the tolerance limit, the next
keyframe is used for motion planning. In any case, the SkeletonAccess is used
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to set a new joint state using the SetGlobalJointRotation method. If the last
animation keyframe is reached, the End event is raised, indicating that the MMU
can be terminated by the co-simulator.

4.2. Reach MMU in Unity C# based on motion blending

Motion blending is a technique widely used with 3D animations, especially
generated by motion capture or key-framing. Originally, this technique is used
for creating smooth transitions between two homogeneous motions, e.g., running
and walking. Nevertheless, there are no strict limitations for the homogeneity of
blended motions. Therefore, it may be possible to apply a wide variety of motion
types to generate a new set of motions.

During the motion blending, two or more motions are merged with a certain
ratio called the motion weight. The procedure may vary depending on the game
engine chosen. In the example of the Unity game engine, motion blending weights
could be computed with the blend trees [29], which provide five blending types:
1D, 2D simple directional, 2D freeform directional, 2D freeform Cartesian and
direct. Among the listed types for this specific application, a suitable type is the
2D freeform directional motion blending, which allows for choosing the motion
blending weights on a plane. The space of the motion blending can be observed
in Fig. 2. In the figure, dots represent single motion primitives. By combining
specific motions with blending weights, it is possible to reach any place in the
space, including the points behind the avatar.

Fig. 2. Motion blending space

4.2.1. Motion selection

The choice ofmotionsmust be thorough, because it will affect further blending.
It is essential to use only motions related to the motion groups, such as reaching. It
is important to avoid choosing different motion groups, for example, picking up an
object from the ground or making an air squat. Using homogeneous motions will
provide smooth and realistic motion blending. Experiments show that for creation
of the reachmotion at least six reachingmotions should be used describing reaching
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in the following directions: front-down, front-middle, front-up, side-down, side-
middle, and side-up. It is sufficient to describe such motions for just one arm, as
the other arm positions can be obtained from mirroring the single-side motion.

Knowing the position of the arm at the end of themotion and the corresponding
blendingweights configuration, it is possible to reach an object within some volume
around the avatar. Reach positions are directly linked to the blending weights, and
saving a table of blending weights and corresponding reach positions for a large
number of positions allows one to define good reach accuracy. In this example, two
blending weights are defined and a normalized space of blending weights ranging
from zero to one with 0.1 increments is saved. This space is presented in Fig. 2. The
resulting table contains 10000 reach positions and the associated blending weights.
The average space between the points is 30 millimeters, while the maximum does
not exceed 40 millimeters. Those values are sufficient for the avatar animation
to reproduce decent reaching motions in the work space. If higher accuracy is
required, then interpolation of the blending weights between several points closest
to the desired reach point can be used, or a data table with smaller increments
between weights can be generated. Finding the weight for reaching a specific point
is determined through a table search for the closest point coordinates and by using
the associated weights. The resulting lookup table is saved to a CSV file [30]. It is
important to mention that reach coordinates must be relative to the avatar’s position
to allow for reaching no matter where the avatar is located within the scene, but
not to the values in the global frame of reference which would allow only reaching
target points for an avatar placed in a specific position. In this example, the avatar’s
pelvis coordinates are used as a reference for the target reach points positions.

4.2.2. MMU generation in Unity

MMU can be generated in the Unity using the MMU Generation script
provided as a part of the MOSIM open-source framework. The use of the script
requires completing simple setup steps: creating of an empty Unity project, import-
ing the MMUGeneration script package, inserting an avatar and giving it the same
name as the final MMU name should be. The script allows one to specify infor-
mation that will be placed in the description manifest file using the graphical user
interface. Currently, only basic parameters are supported through the script, so ad-
ditional parameters need to be added using the text editor. The script uses the scene
information to prepare the MMU template script attached to the avatar. The avatar
also contains an animator script that can be used to supply motion capture data that
the avatar should use. Finally, the user needs to modify the template MMU script
attached to the avatar to process input parameters and therefore modify the avatar’s
animators behavior. This method is simpler than generating an MMU using the C#
code directly, as it provides visual feedback and more debugging capabilities.

1 using MMICSharp.Common;
2 using MMIStandard;
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3 using MMIUnity;
4 using System.Collections.Generic;
5 using System.Linq;
6 using UnityEngine;
7
8 public class BlendMMU : UnityMMUBase {
9 public Dictionary <string,MJointType > BoneTypeMapping = new

Dictionary <string,MJointType >();
10
11 private Animator animator;
12
13 private MInstruction instruction;
14
15 string goal_object_name;
16
17 Vector3 point_position;
18 Vector3 goal_position;
19 Transform pelvis_transform;
20
21 // Distance to the point
22 float distance;
23
24 // Lowest distance so far
25 float lowest_distance = 10;
26
27 // Number of the lowest point
28 int point_number;
29
30 // Reachable points names array
31 //string[] points = { "Sphere", "Sphere1", "Sphere2", "Sphere3" };
32
33 // Reachable points positions relative to pelvis
34 float[] points_x = { 0.2f, 0.2f, 0.1f, 0.1f };
35 float[] points_y = { 0.1f, -0.1f, -0.1f, 0.1f };
36 float[] points_z = { 0.8f, 0.8f, 0.9f, 0.9f };
37
38 // Arrays of corresponding to names blending ratios
39 float[] blend_x_array = { 0.5f, 0.5f, 0.5f, 0.75f };
40 float[] blend_y_array = { 0.25f, 0.15f, 0.5f, 0.25f };
41
42 protected override void Awake() {
43 //Assign the name of the MMU
44 this.Name = "BlendMMU";
45
46 //Assign the motion type of the MMU
47 this.MotionType = "Pose/Reach";
48
49 //Get the animator
50 this.animator = this.GetComponent <Animator >();
51
52 //Disable the animator at the beginning
53 this.animator.enabled = false;
54
55 //It is important that the bone assignment is done before

the base class awake is called
56 base.Awake();
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57 }
58
59 // Start is called before the first frame update
60 protected override void Start() {
61 base.Start();
62 }
63
64 public override MBoolResponse Initialize(MAvatarDescription

avatarDescription , Dictionary <string, string> properties) {
65 //Execute the instruction on the main thread
66 this.ExecuteOnMainThread(() =>
67 {
68 //Call the base class initialization
69 base.Initialize(avatarDescription , properties);
70
71 //Set culling mode to always animate
72 this.animator.cullingMode = AnimatorCullingMode.AlwaysAnimate;
73
74 //Deactivate the animator we want to trigger it manually in

the dostep
75 this.animator.enabled = false;
76 });
77
78 goal_object_name = properties["GoalObjectName"];
79
80 //Return success
81 return new MBoolResponse(true);
82 }

Before motion blending, the MMU calculates the distance between the goal
and all available points in the dataset. All the positions are converted to positions
that are relative to the avatar transform. If the goal to the point exceeds 0.1 meters,
the MMU reports an error.

1 public override MBoolResponse AssignInstruction(MInstruction
instruction , MSimulationState state) {

2 //Assign the instruction to the class variable
3 this.instruction = instruction;
4
5 //Execute the instruction on the main thread
6 this.ExecuteOnMainThread(() =>
7 {
8 //Assign the posture
9 this.AssignPostureValues(state.Current);

10
11 });
12
13 // Find pelvis transform
14 pelvis_transform = GameObject.Find("pelvis").transform;
15
16 // Find goal obect and get transform
17 goal_position =

GameObject.Find(goal_object_name).transform.position;
18 Vector3 goal_relative_position =

getRelativePosition(pelvis_transform , goal_position);
19
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20 for (int i = 0; i <= points_x.Length - 1; i++) {
21 point_position.Set(points_x[i], points_y[i], points_z[i]);
22 Vector3 point_relative_position =

getRelativePosition(pelvis_transform , point_position);
23
24 distance = Vector3.Distance(point_relative_position ,

goal_relative_position);
25 if (distance < lowest_distance) {
26 lowest_distance = distance;
27 point_number = i;
28 }
29 }
30
31 Debug.Log("Lowest distance: " + lowest_distance + " Corresponding

blending values: " + "X " + blend_x_array[point_number] + " "
+ "Y " + blend_y_array[point_number]);

32
33 if (lowest_distance < 0.1) {
34 this.animator.SetFloat("x", blend_x_array[point_number]);
35 this.animator.SetFloat("y", blend_y_array[point_number]);
36 }
37 else {
38 Debug.Log("Target is not within reach!");
39 }
40 return new MBoolResponse(true);
41 }
42
43 public override MSimulationResult DoStep(double time,

MSimulationState state) {
44 this.animator.enabled = true;
45
46 //Create a new simulation result
47 MSimulationResult result = new MSimulationResult() {
48 Posture = state.Current,
49 Constraints = state.Constraints!=null ? state.Constraints:

new List<MConstraint >(),
50 Events = state.Events !=null? state.Events: new

List<MSimulationEvent >(),
51 SceneManipulations = state.SceneManipulations!=null ?

state.SceneManipulations: new List<MSceneManipulation >(),
52 };
53
54 //Execute the instruction on the main thread (required in order

to access unity functionality)
55 this.ExecuteOnMainThread(() =>
56 {
57 //Update the animator
58 this.animator.Update((float)time);
59
60 //Get the current posture of the after in the intermediate

skeleton representation
61 result.Posture = this.GetRetargetedPosture();
62
63 //To do -> Process the events and return it as result
64 });
65
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66 mmiConstants.MSimulationEvent_End , this.instruction.ID));
67 return result;
68 }
69
70 public override List<MConstraint > GetBoundaryConstraints(MInstruction

motionCommand) {
71 return new List<MConstraint >();
72 }
73
74 public override MBoolResponse CheckPrerequisites(MInstruction

instruction) {
75 return new MBoolResponse(true);
76 }

The method below converts the global position to the relative position based
on the transform of the avatar.

1 public static Vector3 getRelativePosition(Transform origin, Vector3
position) {

2 Vector3 distance = position - origin.position;
3 Vector3 relativePosition = Vector3.zero;
4 relativePosition.x = Vector3.Dot(distance,

origin.right.normalized);
5 relativePosition.y = Vector3.Dot(distance, origin.up.normalized);
6 relativePosition.z = Vector3.Dot(distance,

origin.forward.normalized);
7
8 return relativePosition;
9 }

10 }

5. Conclusion

Simulation of manual assembly work is of core importance for large manufac-
turing companies, where manual labor is still important from the product quality
point of view standpoint and flexibility that human workers offer as compared
to robotic stations. MOSIM framework aims at simplifying the steps required to
perform such simulation and turn complex animation-based modeling into reason-
ing of task lists that are common to the simulation framework and actual factory
workers.

Basic motions utilized for the assembly of complex human motions are in
the MOSIM framework bundled to the MMUs together with the logic for ob-
ject handling and environment interactions. This allows logic encapsulation, scene
modification capabilities, other avatar awareness, and motion planning into self-
contained software pieces that are modular and interchangeable. The motion type
concept that has been introduced into the MMU description linked with an online
service used to track and organize newmotion types and other parametersmakes the
framework open for new applications while at the same time keeping semantic in-
formation about motion data contained in anMMU. The two basic MMU examples
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presented in this paper should help new developers to start using the framework and
building new MMUs based on either motion blending or direct joint manipulation
approaches that can rely on any logic or motion synthesis algorithm.

In the near future,MMUs and behaviormodels will be provided on theMOSIM
project web site. In addition, a shopping platform offering MMUs is under devel-
opment to ease the exchange of MMUs between providers and consumers. The
MMI standard is currently supported by major automotive manufacturers, industry
automation providers, IT, and simulation technology providers.
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