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The laminar flowaround two side-by-side circular cylinderswas numerically inves-
tigated using a vortex-in-cell method combined with a continuous-forcing immersed
boundary method. The Reynolds number (Re) of the flow was examined in the range
from 40 to 200, and the distance between the cylinders varies from 1.2D to 6D, where
D is the cylinder diameter. Simulation results show that the vortex wake is classified
into eight patterns, such as single-bluff-body, meandering-motion, steady, deflected-
in-one-direction, flip-flopping, anti-phase-synchronization, in-phase-synchronization,
and phase-difference-synchronization, significantly depending on the Re, the cylinder
distance, and the initial external disturbance effects. The anti-phase-synchronization,
in-phase-synchronization, and phase-difference-synchronization vortex patterns can
be switched at a low Re after a long time evolution of the flow. In particular, the
single-bluff-body and flip-flopping vortex patterns excite the oscillation amplitude of
the drag and lift coefficients exerted on the cylinders.

1. Introduction

The problem of flows around two cylinders in a side-by-side arrangement
is widely observed in various engineering applications, such as heat exchangers,
oil platforms, and chemical plants. Characteristics of this flow type are vortex
sheddings, interaction between the vortex wakes downstream, and the fluid forces
acting on the cylinders. A comprehensive understanding of these flow phenomena
is essential in designing and controlling the related high-efficiency devices. This
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has attracted the attention of many experimental and numerical researchers over
several decades.

Ishigai et al. [1] experimentally investigated the interaction of the Karman
vortex streets of flow generated from two cylinders at the Reynolds numbers (Re)
in the range from 1500 to 15000. The behavior of vortices shed from both cylinders
with their distance of L > 2D is the same as that of the flow around a single
cylinder, where D is the cylinder diameter. When the distance is small, the shear
layers separated from cylinders deflect to the right and the left equally because of
the Coanda effects. The vortex shedding frequencies of two cylinders differ, and
wakes shed from these cylinders combine into a pair of the Karman vortex streets.
Bearman and Wadcock [2] experimentally examined the flow around two side-
by-side cylinders at Re = 2.5 × 104 and showed a mean repulsive force between
the cylinders in proximity. At a small distance, the drags of cylinders in flow
interference are less than their sum in an isolation state. Vortices are shed from both
cylinders and form two vortex streets when the distance is larger than one diameter.
When the cylinders nearly touch, the vortices are alternatively shed from their sides
and only form one vortex street. Zdravkovich [3] classified the flow interference
regimes into a single vortex street with a small cylinder distance, bistable flow
with a critical distance, and synchronization in phase of two parallel streets with
a larger distance. Williamson [4] experimentally examined the mechanism of the
wakes of the flow passing two cylinders at Re = 55, 100 and 200 and found three
flow regimes. When the distance varies from L = 2D to 6D, the wake is composed
of two parallel streets in-phase or anti-phase. The anti-phase pattern is stable, and
the shape of vortices is conserved downstream far from the cylinders. For the
in-phase pattern, vortex streets are only stable in regions near the cylinders. The
vortices far from the cylinders combine to form large-scale ones. Kim and Durbin
[5] experimentally investigated an unsteady wake at the cylinder distance less than
one diameter at Re = 2÷7×103. They found that the wakes behave in flip-flopping
motion between two asymmetric states without a natural period. The time-scale
for the flip-flopping phenomena is several orders of magnitude longer than vortex
shedding from each cylinder.

The investigations of the flow around two side-by-side cylinders have also
been performed using numerical simulations [6–10]. Chang and Song [6] analyzed
the flow at Re = 100 and observed the bistable nature of the asymmetric vortex
shedding and an intermittent change from one status to another between symmetric
and anti-symmetric wake patterns. Kang [7] further found deflected and steady
wake patterns at Re in the range from 40 to 160. Other numerical investigations
[8–10], based on finite-element and finite-volume methods, also reported the above
flow characteristics. These investigations mostly focused on validating numerical
methods to simulate a complex flow around multiple bodies rather than clarifying
the flow wake mechanism. This study will shed some light on this topic and
offers a comprehensive understanding of the mechanism of vortex wake pattern
of flow around two side-by-side cylinders using a Vortex-In-Cell (VIC) method.
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The cylinder distance is varied from 1.2D to 6D, and the Re examined ranges
from 40 to 200. Moreover, the flow under the external disturbance effects in a short
period of its evolution is, for the first time, investigated to explore the potential
vortex patterns.

The VIC method was introduced by Birdsall and Fuss [11] to simulate two-
dimensional plasma problems. It was then adapted to simulate the two-dimensional
incompressible inviscid fluid flow by Christiansen [12]. Cottet and Koumoutsakos
[13] combined it with a viscous model to simulate two- and three-dimensional
incompressible viscous flows. A VIC method was developed to simulate the flow
around two tandem cylinders, the flow around four cylinders of various shapes, and
the vortex−wall interaction by Nguyen et al. [14–16]. It was proven that the method
could capture the vortex shedding, the interaction between the vortex wakes, the
fluid forces exerted on the cylinders, and the vortex formation and deformation due
to the wall effects. In this study, the VIC method [14, 16] is employed to investigate
the characteristics of the laminar flow around two side-by-side cylinders at Re
ranging from 40 to 200. The vortex wakes of the flow are identified using the plots
of the vorticity contours, and the characteristics of these wakes are analyzed by
using plots of the drag and lift coefficients exerted on the cylinders. The rest of
the paper is organized as follows: Section 2 describes the governing equations and
numerical method, Section 3 offers the discussions on the characteristics of the
vortex wake mechanism, and the conclusions are finally given in Section 4.

2. Governing equations and numerical method

2.1. Governing equations

The conservative mass and momentum Navier−Stokes equations for incom-
pressible viscous fluid flow are respectively expressed as follows:

∇ · u = 0 , (1)

∂u
∂t
+

(u · ∇)u = − 1
ρ
∇p + ν∇2u + g , (2)

whereu is fluid velocity, p is pressure, ν is kinematic viscosity, and g is gravitational
acceleration. Taking the curl operation on both sides of Eq. (2), the flowmomentum
equation is written in the velocity−vorticity form as

∂ω

∂t
+

(u · ∇)ω = ν∇2ω +
(
ω · ∇

)u , (3)

where the vorticity is expressed as ω = ∇ × u. The second term on the left of
Eq. (3) is the vortex convection, expressing the movement of vortices with the
conservation of their strength and shape, while the first and second terms on the
right are the vortex diffusion and stretching, respectively. The vortex diffusion
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describes the diffusion of the vortices owing to the fluid viscosity effects. For two-
dimensional problems, the vortex stretching term in Eq. (3) is omitted. Therefore,
the momentum equation is rewritten as follows:

∂ω

∂t
+

(u · ∇)ω = ν∇2ω . (4)

Based on the Helmholtz theorem, the flow velocity can be decomposed into irrota-
tional (∇φ) and solenoidal (∇ × ψ) vector fields as

u = ∇φ + ∇ × ψ , (5)

whereψ and φ are the vector and scalar potentials of the flow velocity field obtained
by solving the Poisson and Laplace equations as

∇2ψ = −ω , (6)

∇2φ = 0 . (7)

Equations (6) and (7) are derived by taking the curl and divergence operations
on both sides of Eq. (5) respectively and using the properties of irrotational and
solenoidal vector fields as ∇ × (∇φ) = 0 and ∇ · ψ = 0.

2.2. Vortex-in-cell method

The VIC method discretizes the fluid into vortex particles p at positions xp

that move at the speed of u(xp) by the vortex convection and carry the vorticity
field ω(xp). The momentum equation, Eq. (4), can be written in the Lagrangian
reference frame of vortex particles p transporting the vorticity as

dω(xp)
dt

= ν∇2ω(xp) , (8)

dxp

dt
= u(xp) . (9)

The vortex particles are initially distributed on the regular grid nodes, and their
vorticity is updated on this grid using Eq. (8) computed using the mesh-based
schemes. The particle velocity in Eq. (8) and Eq. (9) is given by the flow velocity at
their location. The vortex particles convect to the Lagrangian location by Eq. (9).
Subsequently, these particles are redistributed onto the mesh with their vorticity
interpolated from the Lagrangian location as

ω(xq) =
Np∑
p

ω(xp)W
( xq − xp

∆x

)
W

( yq − yp

∆y

)
, (10)
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where xq = (xq, yq) is the coordinate of grid nodes, xp = (xp, yp) is the Lagrangian
location, ∆x and ∆y are grid cell sizes, and Np is the particle number. W (x) is
the third-order accurate interpolation function introduced by Monaghan [17] for
smoothed-particle hydrodynamics methods and widely employed by Cottet and
Koumoutsakos for vortex methods [13], and it is expressed as

W (x) =




1 −
5
2
|x |2 +

3
2
|x |3 if |x | ≤ 1 ,

1
2

(2 − |x |)2(1 − |x |) if 1 < |x | ≤ 2 ,

0 if |x | > 2 .

(11)

By using Eq. (11), three first flow momentum
[
M0 =

∫
V

ωdx, M1 =

∫
V

x×ωdx,

and M2 =

∫
V

x × (x × ω)dx
]
are conserved when interpolating the vorticity field

from the Lagrangian locations to the Eulerian grid points and vice versa [18].

2.3. A continuous-forcing immersed boundary method

When the fluid flow passes a solid body, it does not slip on the solid surface.
To treat this no-slip condition, Peskin [19] introduced an immersed boundary (IB)
method to simulate the complex flow around the solid bodies. This methodwas then
developed over several decades and gained many achievements. Two development
branches of the method have been formed as continuous- and discrete-forcing
IB methods. When applying the penalization technique (a type of continuous-
forcing IB methods) to enforce the no-slip condition of the fluid flow on the solid
body surface [16, 20–23], the momentum equation, Eq. (4), is rewritten in the
penalization term as

∂ω

∂t
+

(u · ∇)ω = ν∇2ω + ∇ ×
(
λ χs (us − u)

)
, (12)

where λ is penalization parameter, us is solid velocity, and χs identifies the solid
and fluid regions, χs (x) = 0 and 1 if x belongs to the fluid and solid domains,
respectively, as shown in Fig. 1. For problem of the flow around multiple solid

bodies, χs is determined as χs =
Nb∑
i=1

χis, where index i indicates ith body and

Nb is the number of solid bodies. In the continuous-forcing IB method, the solid
domain is also calculated in the simulation procedure. The fluid is mathematically
treated as a continuous phase over the solid domain. Therefore, χis is smoothed near
the surface of the ith solid body by using the following Heaviside function [13]:
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χis (di) =




0 if di < −ε ,

1
2

[
1 +

di

ε
+

1
π

sin
(
π

di

ε

)]
if |di | 6 ε ,

1 if di > ε ,

(13)

where di is signed distance from the grid node to the ith solid body surface (di > 0
and di < 0 if the grid node belongs to solid and fluid domains, respectively, as
shown in Fig. 1), ε = 2

√
2∆x, and ∆x is the grid cell size. Note that the vorticity

and its flux on the solid surfaces are not produced exactly using this penalization
technique. However, it can completely capture the flow surrounding the solid body.
Based on the splitting method for a partial differential equation, the penalization
term from the momentum equation, Eq. (12), can be expressed as

∂u
∂t
= λ χs (us − u) . (14)

Fig. 1. Schematics of solid, fluid and computational domains, where
χs = 0, 1 and 0.5 if the grid node belongs to fluid and solid domains
and on the fluid−solid interface, respectively. The interface thickness
is set as 2ε. di is the distance from a grid node to the interface. The
value of di is positive or negative if a grid node is in the solid or solid

domains, respectively

Using the forward finite-difference scheme and setting λ = 1/∆t, the penalization
velocity (uλ) is calculated as

uλ = (1 − χs)u + χsus , (15)

while the penalization vorticity (ωλ) is computed by updating its values imple-
mented using the change in the velocity field as

ωλ = ω + ∇ × (uλ − u) . (16)
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2.4. Fluid force exerted on the solid body

Given a fluid flow around a circular cylinder at a Re, where Re = ρU0D/µ, ρ
is the fluid density, D is the cylinder diameter, and µ is fluid viscosity, the drag Cd
and lift Cl coefficients of the fluid flow exerted on this cylinder are computed as
Cd = (2Fx )/(ρU2

0 D0) andCl = (2Fy)/(ρU2
0 D0). The fluid forces can be estimated

as [24]

F = − d
dt

∫
V

udx +
∫
Ω

n · γdx , (17)

where N = 2 or 3 correspond to two- or three-dimensional flow problems, respec-
tively, V indicates the control volume of the solid body S, Ω is the boundary of
this domain, n is the normal vector of boundary surface Ω, and the flow tensor γ is
expressed as

γ =
1
2
|u|2I − 1

N − 1
u · (x × ω) +

1
N − 1

ω · (x × u)

−
1

N − 1

[(
x · ∂u

∂t

)
I − x · ∂u

∂t

]
+

1
N − 1

[x · (∇ · τ)I − x(∇ · τ)] + τ , (18)

where I is unit matrix, and τ is fluid stress tensor defined as τ = µ(∇u + ∇uT ).
Considering a rectangular control volume of C1C2C3C4 surrounding a cylinder, as
sketched in Fig. 2(a), the fluid force components acting on this cylinder are derived
as follows [25]:

Fx = −
d
dt

∫
V

u(1 − χS)dx dy

+

C2∫
C1

[
uv + vωy − y

∂u
∂t
+ ν

(
2
∂2u
∂x2 +

∂2u
∂y2 +

∂2v

∂x∂y

)
y − ν

( ∂u
∂y
+
∂v

∂x

)]
dx

+

C3∫
C2

[ 1
2

(v2 − u2) − uωy − y
∂v

∂t
+ ν

(
2
∂2v

∂y2 +
∂2v

∂x2 +
∂2u
∂x∂y

)
y + 2ν

( ∂u
∂x

)]
dy

+

C4∫
C3

[
− uv − vωy + y

∂u
∂t
− ν

(
2
∂2u
∂x2 +

∂2u
∂y2 +

∂2v

∂x∂y

)
y + ν

( ∂u
∂y
+
∂v

∂x

)]
dx

+

C1∫
C4

[
−

1
2

(v2−u2)+ uωy +y
∂v

∂t
−ν

(
2
∂2v

∂y2 +
∂2v

∂x2 +
∂2u
∂x∂y

)
y−2ν

( ∂u
∂x

)]
dy

(19)
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Fy = −
d
dt

∫
V

v(1 − χS)dx dy

+

C2∫
C1

[ 1
2

(v2 − u2) − vωx + x
∂u
∂t
− ν

(
2
∂2u
∂x2 +

∂2u
∂y2 +

∂2v

∂x∂y

)
x − 2ν

( ∂v
∂y

)]
dx

+

C3∫
C2

[
− uv + uωx + x

∂v

∂t
− ν

(
2
∂2v

∂y2 +
∂2v

∂x2 +
∂2u
∂x∂y

)
x + ν

( ∂v
∂x
+
∂u
∂y

)]
dy

+

C4∫
C3

[
−

1
2

(v2−u2)+vωx−x
∂u
∂t
+ν

(
2
∂2u
∂x2 +

∂2u
∂y2 +

∂2v

∂x∂y

)
x + 2ν

( ∂v
∂y

)]
dx

+

C1∫
C4

[
uv − uωx − x

∂v

∂t
+ ν

(
2
∂2v

∂y2 +
∂2v

∂x2 +
∂2u
∂x∂y

)
x − ν

( ∂v
∂x
+
∂u
∂y

)]
dy

(20)

Fig. 2. Schematics of (a) the control volume (C1C2C3C4) employed to calculate
the drag (Fx) and lift (Fy) exerted on a cylinder and (b) position of two

side-by-side cylinders with their distance L

3. Results and discussions

The present numerical method is verified using simulations of the flow around
a single circular cylinder at Re = 200. The computational domain is set as
(−7D, 68D) × (−7.5D, 7.5D) that is divided into square grid cells, and the time
step (U0∆t/(D/2)) is 0.00125. Nguyen et al. [16] investigated the effects of the
domain size and the time step on the simulated results of the flow around two
side-by-side cylinders. They pointed out that this domain size and the time step
are fine enough to capture the laminar flow characteristics around solid bodies
thoroughly. Fig. 3 shows the instantaneous vorticity distribution of the flow around
a circular cylinder at Re = 200. The shear layers alternately separated from the
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sides of the cylinder roll up to form vortices in opposite rotation directions. These
vortices downstream create a vortex wake known as the Karman vortex street. Ta-
ble 1 shows the time-averaged drag (Cd) and lift (Cl) coefficients and the Strouhal
number (St) of the flow around the cylinder at Re = 200 obtained by the current
numerical method with various grid resolutions. The Strouhal number is defined
as St = f D/U0, where f is the vortex shedding frequency. It is observed that
the simulation results are convergent with an increase in the grid resolution. The
present results of Cd and Cl have a slight difference from those given by Choi et
al. [26] and Harichandan and Roy [27]. However, they agree with those provided
by Braza et al. [28] and Supradeepan and Roy [29], and Mimeau et al. [25] well.
The Sts obtained by the current numerical method are favorably compared to those
from the research works [25–29]. This indicates that the current numerical method
can well capture characteristics of laminar flow around bluff bodies.

Fig. 3. Instantaneous vorticity distribution of the flow around a single circular cylinders
at Re = 200 at U0∆t/(D/2) = 400. The vorticity is plotted in the range from −1 to 1,
and its positive and negative values are represented in red and blue, respectively

Table 1. Time-averaged drag (Cd) and lift (Cl) coefficients
and the Strouhal number (St) of a single circular cylinder

immersed in the flow at Re = 200
Cd Cl St

Present (∆x = 0.025) 1.458±0.05 0±0.73 0.185
Present (∆x = 0.02) 1.436±0.05 0±0.73 0.19
Present (∆x = 0.01) 1.42±0.05 0±0.73 0.195
Braza et al. [28] 1.40±0.05 0±0.75 0.19
Choi et al. [26] 1.36±0.048 0±0.64 0.191
Harichandan and Roy [27] 1.32±0.05 0±0.602 0.192
Supradeepan and Roy [29] 1.42±0.05 0±0.652 0.198
Mimeau et al. [25] 1.44±0.05 0±0.75 0.2

In this study, the present numericalmethod has theoretical order of convergence
ptheory = 2 in space. However, the boundary condition of the flow on the solid
surface reduces this order, and the observed order of convergence will be lower than
the theoretical value. To clarify the actual convergence properties, we employ the
Richardson extrapolation method to compute the convergence order, as formulated
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in detail in appendix A. Three simulations of the flow around two circular cylinders
in the side-by-side arrangement, where the grid spacing increases with their ratio
of r = 1.5, are implemented. The flow conditions for these simulation cases are
illustrated in Table 2. From values of the drag coefficient of the upper cylinder
(Cd1), as also listed in Table 2, the convergence order is estimated to be p = 1.86.
This value demonstrates the consistency of the numerical model developed for
solving the problem of the laminar flow around multiple solid bodies. Based on
three values of Cd1, the expected value of Cd1 at the zero grid spacing (∆x = 0)
in the Richardson extrapolation term (as formulated in appendix A) is obtained as
Cd1−expected = 1.4. The values of Cd1 at four grid resolutions are further described
in Fig. 4. It is observed that the Cd1 at ∆x1 = 0.01D is very close to that at ∆x = 0,
and the relative error is estimated as 2.7%. Thus, the simulation using the grid
spacing of ∆x1 = 0.01D can produce reliable results.

Table 2. Simulation conditions of the flow around two side-by-side circular cylinders at the distance
of their centers L = 3D at Re = 200 and the drag coefficient of upper cylinder (Cd1) at

U0t/(D/2) = 400. The time step is set up as U0∆t/(D/2) = 0.00125 for three simulation
cases. Three grid spacings have their ratio of r = 1.5 (∆x2 = r∆x1 and ∆x3 = r∆x2)

Case Computational domain Grid cell number ∆x = ∆y Cd1

I (−7.5D, 22.5D) × (−7.5D, 7.5D) 3000 × 1500 ∆x1 = 0.01D 1.45185
II (−7.5D, 22.5D) × (−7.5D, 7.5D) 2000 × 1000 ∆x2 = 0.015D 1.53164
III (−7.5D, 22.56D) × (−7.515D, 7.515D) 1336 × 668 ∆x3 = 0.0225D 1.70125

Fig. 4. Drag coefficient of the upper cylinder (Cd1) at U0t/(D/2) = 400
in the simulation case of the flow around two side-by-side circular cylin-
ders with their center distance of L = 3D at Re = 200. The VIC
method produces three values Cd1s, and its value at the zero grid

spacing is gained using the Richardson extrapolation method

The vortex wake pattern of flow around two side-by-side circular cylinders at
Re in the range from 40 to 200 is investigated. Two cylinders are arranged in a
vertical line normal to the upstream velocity, as shown in Fig. 2(b), their distance
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(L) varies from 1.2D to 6D, and the distance center is at the origin of the coordinate
system. The reason for choosing this distance range is that whole flow patterns can
occur, and the wake interference effects are negligible for a distance larger than
6D. Moreover, we will discuss simulation results at several specific distances to
represent others with the same flow wake characteristics. The drag and lift of the
flow acting these cylinders are computed using two control volumes surrounding
them. The computational domain, the grid spacing, and time step set up for these
simulation cases are referred from the previous work [14].

3.1. Flow at Re = 40

The flow around two cylinders in the side-by-side arrangement at Re = 40
is first simulated. The computational domain of (−7D, 68D) × (−7.5D, 7.5D) is
divided into 3750×750 grid nodes, and the computational time stepU0∆t/(D/2) is
set as 0.00125. Fig. 5 shows the instantaneous vorticity distribution of flow around
two cylinders in the side-by-side arrangement at Re = 40 at U0t/(D/2) = 400. At
the distance of L = 1.5D, the boundary layer separates from the cylinder surfaces,
and the separation occurs at a certain point. The separation of flow forms shear
layers on both sides of the cylinders. These shear layers at the distance side of both
cylinders, called inner shear layers, are too weak to interact with the shear layers
at the free-stream side, called outer shear layers, leading to complete suppression
of the inner shear layers. In addition, the outer shear layers are not strong enough
to roll up to form the vortices but elongate uninterrupted by the inner shear layers.

Fig. 5. Instantaneous vorticity distribution of the flow around two side-by-side cylinders at
Re = 40 with their various distances (a) L = 1.5D, (b) L = 2D, (c) L = 3D, and (d) L = 4D
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Subsequently, the outer shear layers deflect and behave in the meandering motion.
This wake pattern is called the meandering-motion. This flow phenomenon is also
observed in the evolution of the bubble plume rising freely from an annular cylinder
placed in water, owing to the buoyancy effects [30]. The interaction of these shear
layers detached from the cylinders decreases along with their distance, as illustrated
in Fig. 5(b), Fig. 5(c), and Fig. 5(d). For the distances of L = 2D, 3D and 4D, the
wake patterns are steady and symmetric regarding the horizontal axis. This flow
wake pattern is named as steady.

Fig. 6 describes the time variation of drag and lift coefficients exerted on two
side-by-side cylinders at Re = 40. The drag coefficients of the cylinders overlap.
This is explained as the flow field behavior in regions near cylinders is steady; even
two wake patterns exist at this Re. Values of the time-averaged lift coefficients of
upper and lower cylinders are negative and positive. The mean repulsive force phe-
nomenon is observed between two cylinders. This repulsiveness almost collapses
at the distance of L = 4D, as displayed in Fig. 6(d). The interaction between two
vortex wakes generated from the cylinders is negligible at this distance.

Fig. 6. Time variation of drag (Cd) and lift (Cl) coefficients exerted on two side-by-side cylinders
at Re = 40, where subscripts 1 and 2 indicate the upper and lower cylinders, respectively. Cylinder

distances are (a) L = 1.5D, (b) L = 2D, (c) L = 3D, and (d) L = 4D

3.2. Flow at Re = 100

Characteristics of the flow around two side-by-side cylinders at Re = 100 are
investigated. The distance L between the cylinders is varied in the range from
1.5D to 4D. A computation domain of (−7D, 68D) × (−7.5D, 7.5D) is divided
into 5000 × 1000 grid nodes, and the computational time step U0∆t/(D/2) is set
as 0.00125. Fig. 7 describes the instantaneous vorticity distribution around two
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Fig. 7. Instantaneous vorticity distribution of the flow around two side-by-side cylinders at
Re = 100 with their various distances (a) L = 1.5D, (b) L = 2D, (c) L = 3D, and (d) L = 4D

cylinders in the side-by-side arrangement at Re = 100 at U0t/(D/2) = 400. At the
small distance of L = 1.5D, the interaction of shear layers separated from cylinders
prioritizes the inner ones. The inner shear layer of the upper cylinder deflects
toward the lower cylinder and does not deflect back. This shear layer presses the
inner shear layers of the lower cylinders. Consequently, this wake pattern comprises
two wake structures with a wide near-wake behind the upper cylinder and a narrow
near-wake behind the lower one. Note that the wide and narrow near-wakes express
a part of the wake behind near the cylinder with large and narrow sizes in the
vertical direction, respectively. Each near-wake is composed of two shear layers
separated from a cylinder. The inner shear layer separated from the upper cylinder
seems to make an effort in order to escape the confines of the outer shear layers
detached from both cylinders. However, it is pulled back and weakened by the
inner shear layer separated by the lower cylinder. The outer shear layers interact
and generate vortices alternately to form a vortex wake similar to the Karman
vortex street induced by the flow around a single bluff body. Moreover, the position
of the wide near-wake and the narrow near-wake remains unchanged in the whole
time evolution of the flow, as further explained using plots of Cd and Cl exerted
on the cylinders later. This wake pattern is called deflected-in-one-direction.

At a larger distance of L = 2D, the inner shear layer from the upper cylinder
deflects toward the lower cylinder, generating a wide near-wake and a narrow near-
wake kept in a time interval. After several vortex sheddings, the wide near-wake
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and the narrow near-wake positions are switched. The generation of vortices from
the narrow near-wake is more rapid than from the wide near-wake. These vortices
are randomly intermixed to form a vortex wake not similar to the Karman vortex
street. This flow wake pattern is called flip-flopping. This phenomenon has features
as the shear layers separated from cylinders deflect to the right and the left equally
due to the Coanda effects [1]. In this flow phenomenon, one inner shear layer is
considered a fluid jet, while another plays a role as a convex solid surface, and the
fluid jet tends to attach to this surface. Bearman and Wadcock [2] verified that this
apparent unsteadiness flow wake pattern is an intrinsic property of flow and not
affected by experimental conditions. Zdravkovich [3] described this flow pattern as
the gap flow forms a jet biased towards the narrow wake. The biased jet flow can
switch in the opposite direction at irregular time intervals. The flow is bistable, and
the switch of the asymmetric flow pattern causes exciting amplitude oscillations.
Kim and Durbin [5] explained that the flip-flopping could be a loss of stability of
the symmetric mean flow as the cylinders are brought into proximity.

At large distances of L = 3D and 4D, the interaction of the inner shear layers
is weak, and the shear layers from each cylinder generate vortices periodically.
These vortices form two parallel anti-phase vortex streets. These two vortex streets
are symmetric to the horizontal centerline and combine to construct a vortex
wake named as anti-phase-synchronization. The vortex shape remains unchanged
in this wake type without any distortion downstream far from the cylinders. The
synchronization in this wake pattern will be further explained using plots of Cd
and Cl acting on the cylinders below.

The characteristics of the flow patterns are clarified using the plots of the time
variation of drag and lift coefficients exerted on cylinders, as shown in Fig. 8.
At the distance of L = 1.5D, the deflected-in-one-direction phenomenon occurs;

Fig. 8. Time variation of drag and lift coefficients exerted on two side-by-side cylinders at
Re = 100 with their various distances (a) L = 1.5D, (b) L = 2D, (c) L = 3D, and (d) L = 4D
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the drag coefficient of the lower cylinder is always higher than that of the upper
one. This aspect explains the deflection in one direction of the inner shear layers
generated from the upper cylinder toward the lower cylinder. The drag coefficient
of the cylinder with the narrow near-wake is always higher than that with the
wide near-wake. At the distance of L = 2D, the flip-flopping pattern is observed;
the drag coefficient of the lower cylinder fluctuates around those of the upper
cylinder. It is observed that the vortex structure with the wide near-wake behind
the upper cylinder and the narrow near-wake behind the lower cylinder changes its
direction after several vortex shedding. The lift coefficient of the cylinder with a
higher drag coefficient fluctuates more rapidly than that of another cylinder with
a lower one. In other words, the vortex shedding from the narrow near-wake is
faster than that from the wide near-wake. At distances of L = 3D and 4D, the anti-
phase-synchronization wake pattern takes place; the drag coefficients fluctuate in
phase while the oscillation of lift coefficients is anti-phase. Moreover, the mean lift
coefficients of cylinders for whole simulation cases are repulsive.

The vortex wake patterns of the flow around two side-by-side cylinders with
their distances of L = 2D, 3D, and 4D at Re = 100 under the disturbance effects
on the initial flow condition during 3 6 tU0/(D/2) 6 4 are further investigated.
The free-stream velocity during this period is set up as u∞ = (U0, sin(2πt)). Fig. 9
describes the instantaneous vorticity distribution of flow around two cylinders in
the side-by-side arrangement at Re = 100 under the disturbance effects. At the
distance of L = 2D, the flip-flopping wake pattern takes place, as observed in the
simulation case without the disturbance effects shown in Fig. 7(b). This reconfirms
the existence of the intrinsic instability of flow at a medium distance between
cylinders. This flow pattern is not influenced by the external disturbance effects on
the initial flow condition.

At the distance of L = 3D, the shear layers generated from cylinders roll
up to form vortices alternately and establish two parallel in-phase vortex streets.
These vortex streets are anti-symmetric regarding the horizontal axis, and they
combine to form the in-phase-synchronization wake pattern. Vortex structures of
this flow are only conserved in regions near the cylinders. The cancellation and
coalescence of vortices to form large-scale vortices occur downstream at 20D from
the cylinders. Williamson [4] described the pairing process of vortices that leads
to the development of binary vortices. A binary vortex is a pair of like-signed
vortices that rotate around one another. At the distance of L = 4D, there is a
phase change of the vortex sheddings from two cylinders. A slight phase difference
between vortex sheddings is observed at tU0/(D/2) = 200, as shown by plots of
Cl in Fig. 10(c). This difference causes an unequal collapse of two vortex streets
behind the cylinders. The decay of the lower vortex street, generated from the lower
cylinder, is more rapid than that of the upper vortex street from the upper one, as
seen in Fig. 9(c). This vortex wake pattern of the flow is called phase-difference-
synchronization. It gradually attains the anti-phase-synchronization one as time
progresses, as shown in Fig. 9(d).
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Fig. 9. Instantaneous vorticity distribution of the flow around two side-by-side cylinders at
Re = 100 with their various distances (a) L = 2D, (b) L = 3D, (c) and (d) L = 4D, where
the disturbance effects on the initial flow condition occur during 3 6 tU0/(D/2) 6 4

Fig. 10. Time variation of drag and lift coefficients exerted on two side-by-side cylinders at Re = 100
with their various distances (a) L = 2D, (b) L = 3D, and (c) L = 4D, where the disturbance effects

on the initial flow condition take place during 3 6 tU0/(D/2) 6 4
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The time variation of drag and lift coefficients exerted on the cylinders, as
illustrated in Fig. 10, further clarifies the characteristics of the flow pattern under
the disturbance effects on the initial flow condition. At the distance of L = 2D, force
coefficients of cylinders behave the same as those in the case of the flow around two
cylinders without the disturbance effects, as seen in Fig. 8(b). At the distance of L
= 3D, the fluctuations of lift coefficients of cylinders are in-phase-synchronization.
Meanwhile, at the distance of L = 4D, the phase-difference-synchronization be-
havior of lift coefficients of cylinders develops from tU0/(D/2) = 10 to 410. The
flow pattern at the distance of L = 4D is predicted to approach the anti-phase-
synchronization pattern as time advances.

3.3. Flow at Re = 200

At Re = 200, the computational domain of (−7D, 68D) × (−7.5D, 7.5D) is
divided into 7500 × 1500 grid nodes, and the time step (U0∆t/(D/2)) is set as
0.00125. Fig. 11 describes the instantaneous vorticity distribution of flow around
two cylinders at Re = 200. At the distance of L = 1.2D, the shear layers are shed on
both sides of the cylinders. The inner shear layers seem to be confined to a closed
dynamic region constructed by the outer shear layers, leading to the formation of
vortices only from the outer shears. These shear layers roll up to create vortices and
form the single-bluff-bodywake pattern similar to a distorted Karman vortex street.

Fig. 11. Instantaneous vorticity distribution of the flow around two side-by-side cylinders at
Re = 200 with their various distances (a) L = 1.2D, (b) L = 1.5D, (c) L = 3D, and (d) L = 6D
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At the distance of L = 1.5D, the flip-flopping wake pattern takes place, as observed
in the case of flow with L = 2D at Re = 100. The flow pattern, including the wide
near-wake and the narrow near-wake, deflects from one side to another and vice
versa. At distances of L = 3D and 6D, the anti-phase-synchronizationwake pattern
is produced, and this pattern is symmetric with respect to the horizontal line. The
shape of vortex structures is not conserved for the whole downstream, and these
vortices are deformed and decay downstream at 40D from the cylinders.

The drag and lift coefficients acting on the cylinders are illustrated in Fig. 12. At
the distance of L = 1.2D, the single-bluff-bodywake pattern occurs; the fluctuations
of lift coefficients are in phase, while those of drag coefficients are phase-difference.
This is interpreted by the fact that the shear layers are separated from the free-
stream side in-phase and form vortices periodically. In addition, the outer shear
layers interact with inner shear layers to create closed dynamic regions. The effects
of these regions result in a sharp fluctuation and an increase in the magnitude of
the drag and lift coefficients, as observed in plots of Cd and Cl in Fig. 12(a). At
the distance of L = 1.5D, the flip-flopping phenomena take place, and the drag and
lift coefficients of cylinders behave as the same as that in the case of the flow with
L = 2D at Re = 100, where theCd of the upper cylinder fluctuates around theCd of
the lower cylinder. This flow pattern excites both cylinders’ oscillation amplitude
of Cd and Cl. At distances of L = 3D and 6D, the drag coefficients fluctuate
in phase, while the lift coefficients oscillate in anti-phase. This explains that the
anti-phase-synchronization wake pattern occurs at these distances. Furthermore,
the mean repulsive force between the cylinders collapses at L = 6D, where the
maximum values of the lift coefficients observed are the same as that in the case
of the flow around a single cylinder. This indicates that the interaction of vortex
shedding from the cylinders vanishes away at this cylinder distance.

Fig. 12. Time variation of drag and lift coefficients exerted on two side-by-side cylinders at
Re = 200 at their various distances (a) L = 1.2D, (b) L = 1.5D, (c) L = 3D, and (d) L = 6D
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Fig. 13 describes the instantaneous vorticity distribution around two cylinders
in the side-by-side arrangement at Re = 200 under the disturbance effects on the
initial flow condition. The free-stream velocity during 3 ≤ tU0(D/2) ≤ 4 is set
up as u∞ = (U0, sin(2πt)). At the distance of L = 3D, there is a change from the
phase-difference-synchronization to the anti-phase-synchronization states of flow
observed. This can be further seen in plots of the time variation of the drag and lift
coefficients shown in Fig. 14(a). This phenomenon is explained as the interaction
of two vortex streets in phase-difference during the initial stage deforms the shape
of vortices near the region of the cylinders. These deformed vortices influence the
separation of shear layers behind cylinders. The interaction between the deformed
vortices and these shear layers leads to a delay in the phase-difference process.
This delay results in recovering the symmetrical structure of the flow or the anti-
phase-synchronization pattern. At the distance of L = 4D, the flow phenomenon is
observed similar to L = 3D. However, the intensity of the interaction of two vortex
streets significantly reduces, and the proportion of the vortex wake is recovered
more rapidly than that at L = 3D, as further explained by plots of Cd and Cl later.
At the distance of L = 6D, the flow wake pattern is in-phase-synchronization and
remains unchanged from the beginning to the end of the flow evolution, as seen
at tU0/(D/2) = 310. There is no phase change observed at this cylinder distance.
This can be explained as the vortex street generated from the upper cylinder is
independent of the lower cylinder. The interaction intensity between these two
vortex streets is trivial.

Fig. 13. Instantaneous vorticity distribution of the flow around two side-by-side cylinders at Re =
200 with their various distances (a) L = 3D, (b) L = 4D, and (c) L = 6D. The disturbance effects

in a short period of the flow on the vortex wake patterns are investigated

Fig. 14 shows the time variation of the drag and lift coefficients exerted on
the cylinders, demonstrating the discussions in Fig. 13. At the distance of L = 3D,
the phase-difference-synchronization state of lift coefficients of the cylinders is
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observed during 10 6 tU0/(D/2) 6 110. The lift coefficients gradually ap-
proach the anti-phase-synchronization state as time processes. At the distance
of L = 4D, the change from the phase-difference-synchronization to the anti-
phase-synchronization states of lift coefficients of cylinders occurs rapidly, as seen
in Fig. 14(b), due to a reduction in the interaction intensity of the vortex streets
generated from two cylinders. At the distance of L = 6D, the lift coefficients of
the cylinders are in phase during their whole time evolution, as seen in Fig. 14(c),
because of the effects of the anti-phase-synchronization pattern.

Fig. 14. Time variation of drag and lift coefficients exerted on two side-by-side cylinders at Re = 200
with their various distances (a) L = 3D, (b) L = 4D, and (c) L = 6D, where the disturbance effects

on the initial flow condition occur during 3 6 tU0(D/2) 6 4

Fig. 15 shows the instantaneous vorticity distribution around the cylinders at
Re = 200, where the free-stream velocity during 3 6 tU0(D/2) 6 4 is set up as
u∞ = (cos(2πt), sin(2πt)). The in-phase-synchronization pattern is observed at
both distances of L = 3D and 4D, and this wake pattern does not change with time
evolution. The shape of the same-signed vortices at the cylinder distance of L = 3D
is conserved until 8D downstream, while it is 20D for the distance of L = 4D.
After the spacing from the cylinders (8D and 20D corresponding to the cylinder
distances of L = 3D and L = 4D, respectively), the same-signed vortices merge to
form large-scale vortices downstream. It is clear that the vortices in the in-phase-
synchronization pattern are less stable than that in the anti-phase-synchronization
one, as seen in Fig. 13.

Fig. 16 shows the time variation of the drag and lift coefficients exerted on two
cylinders with their distances of L = 3D and 4D at Re = 200. The fluctuation of
drag coefficients of both cylinders is near in-phase, while that of the lift ones are
in phase over the whole time of their evolution. These characteristics reconfirm the
in-phase-synchronization pattern as observed above.
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Fig. 15. Instantaneous vorticity distribution of the flow around two side-by-side cylinders at Re =
200 with their various distances (a) L = 3D and (b) L = 4D, where the disturbance effects on the

initial flow condition occur during 3 6 tU0(D/2) 6 4

Fig. 16. Time variation of drag and lift coefficients exerted on two side-by-side cylinders at Re = 200
with their various distances (a) L = 3D and (b) L = 4D, where the disturbance effects on the initial

flow condition occur during 3 6 tU0(D/2) 6 4

4. Conclusions

The characteristics of flow around two side-by-side circular cylinders with
their various distances varied from 1.2D to 6D at Re in the range from 40 to
200 are numerically investigated using a Vortex-in-cell method combined with a
continuous-forcing immersed boundary method. The highlighted conclusions are
given as follows:
1. The vortex wake of the flow is classified into eight patterns such as single-bluff-

body, steady, meandering-motion, deflected-in-one-direction, flip-flopping,
anti-phase-synchronization, in-phase-synchronization, and phase-difference-
synchronization, significantly depending on the Re, the cylinder distance and
the external disturbance effects on the initial flow conditions.

2. The single-bluff-bodywake pattern develops at a small distance of the cylinders,
and this distance decreases with the increase in Re. The vortex wake is similar
to a distorted Karman vortex street, and the drag and lift coefficients acting on
the cylinders significantly fluctuate.

3. The steady wake pattern is observed only at Re = 40. The vortices are not
shed from the cylinders; instead, the shear layers at both sides elongate far
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downstream. At this Re, when the cylinder distance is small, the meandering-
motion wake pattern occurs. The shear layers also elongate downstream, and
they behave in the meandering motion without vortices formed. Drag and lift
coefficients exerted on the cylinders in two wake patterns do not fluctuate.

4. The deflected-in-one-direction wake pattern is observed at Re = 100 with a
small distance between the cylinders. This vortex wake is composed of a wide
near-wake and a narrow near-wake behind the cylinders, and the position of
these wakes remains unchanged in their whole time evolution. Drag exerted on
the cylinder with the narrow near-wake is always higher than those with the
wide near-wake, and the vortices shed from the narrow near-wake are faster
than that from the wide near-wake. The flip-flopping wake pattern occurs when
the wide near-wake and the narrow near-wake are switched after several vortex
sheddings. The distance between the cylinders for this wake pattern is medium,
decreasing with Re. This flow wake pattern causes a great excitement in drag
and lift coefficients.

5. The anti-phase- and in-phase-synchronization wake patterns are observed at
a large cylinder distance. These flow patterns are composed of two Karman
vortex streets in-phase and anti-phase. They can switch after a long time of
the flow evolution. The flow in the anti-phase-synchronization pattern is more
stable than that in the in-phase-synchronization one. The shapes of vortices
in the anti-phase-synchronization pattern are conserved far downstream, while
they are rapidly distorted with a certain spacing from the cylinders in the
in-phase-synchronization pattern. The phase-difference-synchronization wake
pattern can take place at a medium cylinder distance. This wake pattern tends to
transform into the anti-phase-synchronization one. This transformation occurs
slowly, forming two vortex streets asymmetrically behind the cylinders.

6. The mean repulsive force exists between the cylinder when they are brought
into proximity, and the repulsiveness intensity reduces with the increase in the
cylinder distance. At a significantly large distance between the cylinders, the
near wakes generated are independent.

A. Grid convergence study by Richardson extrapolation method

A simulation produces a flow quantity f (h) using a grid spacing h, the f at the
zero grid spacing is considered to be the expected solution, fexpected. This expected
value can be expressed in general form using the series expansion as follows:

fexpected = f (h) + Chp + C1hp+1 + C2hp+2 + ... (21)

where p is the order of the error (order of convergence), and C, C1 and C2 are
unknown constants. If h is small enough, C1hp+1 + C2hp+2 is trivial compared to
f (h) + Chp. Thus, Eq. (21) can be expressed as

fexpected = f (h) + Chp . (22)



Numerical investigation of vortex wake patterns of laminar flow around two side-by- . . . 563

To investigate the order of convergence p, three values of f at three grid spacing
h1, h2 and h3 with their ratios r (h2 = rh1 and h3 = rh2) are employed as

fexpected = f (h1) + Chp
1 , (23)

fexpected = f (h2) + Chp
2 , (24)

fexpected = f (h3) + Chp
3 . (25)

Subtracting both sides of Eq. (24) from those of Eq. (23) and those of Eq. (25)
from Eq. (24), the resulting equations are taken the ratio, the order of convergence
is derived as

p =
ln

(
f3 − f2
f2 − f1

)
ln(r)

, (26)

where f1 = f (h1), f2 = f (h2) and f3 = f (h3). When subtracting both sides of
Eq. (23) and Eq. (24) from f1 and f2, respectively, the results obtained are taken
the ratio, and the expected value of f is expressed in the Richardson extrapolation
term as

fexpected = f1 +
f1 − f2
rp − 1

. (27)
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