A new 4-D hyperchaotic four-wing system, its bifurcation analysis, complete synchronization and circuit simulation

Sundarapandian VAIDYANATHAN, Khaled BENKOUIDER, Aceng SAMBAS and Samy Abdelwahab SAFAAN

In this work, we modify the dynamics of 3-D four-wing Li chaotic system (Li et al. 2015) by introducing a feedback controller and obtain a new 4-D hyperchaotic four-wing system with complex properties. We show that the new hyperchaotic four-wing system have three saddle-foci balance points, which are unstable. We carry out a detailed bifurcation analysis for the new hyperchaotic four-wing system and show that the hyperchaotic four-wing system has multistability and coexisting attractors. Using integral sliding mode control, we derive new results for the master-slave synchronization of hyperchaotic four-wing systems. Finally, we design an electronic circuit using MultiSim for real implementation of the new hyperchaotic four-wing system.

Keywords: multistability, Hyperchaos, four-wing systems, hyperchaotic systems, synchronization, sliding mode control and circuit design

1. Introduction

Hyperchaotic systems have a wide range of engineering applications due to their high complexity [1]. Djimasra et al. [2] reported a digital image cryptosystem using a hyperchaotic Lorenz oscillator and discussed the various security...

Li et al. (2015) proposed a new 3-D four-wing chaotic system with three quadratic nonlinear terms. In this work, we propose a new 4-D hyperchaotic four-wing system by adding a feedback control to the Li chaotic system [10]. Bifurcation analysis helps to understand the novel features of new chaotic and hyperchaotic systems [11–13]. We carry out a detailed bifurcation analysis of the new 4-D hyperchaotic four-wing system and describe the changes in the qualitative properties of the new hyperchaotic four-wing system by varying the parameter values. Recently, there is significant interest in reporting chaotic and hyperchaotic systems having multistability property [14–16]. In this work, we exhibit that the new hyperchaotic four-wing system has multistability with coexisting hyperchaotic attractors.

Synchronization of hyperchaotic systems has applications in areas such as cryptosystems [17, 18] and secure communication systems [19, 20]. In this work, we use integral sliding mode control for the master-slave synchronization of the new hyperchaotic four-wing systems. Sliding mode control is useful due to its attractive features such as robustness and insensitivity to small parameter variations, etc [21–28].

For real-world applications, we have designed an electronic circuit of the new hyperchaotic four-wing system using MultiSim. Circuit design of hyperchaotic systems is useful in practical applications [29, 30].

2. A new 4-D hyperchaotic four-wing system

In 2015, Li et al. [10] proposed a new 3-D four-wing system which is modelled by the dynamics

\[
\begin{align*}
\dot{y}_1 &= ay_1 + y_2 + y_2y_3, \\
\dot{y}_2 &= (y_2 - y_1)y_3, \\
\dot{y}_3 &= -y_3 - my_1y_2 + b.
\end{align*}
\]

(1)
It was shown in [10] that the Li system (1) exhibits a chaotic four-wing attractor when we take the parameter values as

\[a = 1, \quad b = 1, \quad m = 1. \]

(2)

For \((a, b, m) = (1, 1, 1)\) and \(Y(0) = (0.4, 0.2, 0.4)\) and \(T = 1E5\) sec, we found the Lyapunov exponents of the Li system (1) numerically as follows:

\[\mu_1 = 0.4093, \quad \mu_2 = 0, \quad \mu_3 = -1.7772. \]

(3)

Thus, the Li system (1) has a chaotic attractor with maximal Lyapunov exponent (MLE) as \(\mu_1 = 0.4093\).

For MATLAB simulations, we take \((a, b, m) = (1, 1, 1)\) and \(Y(0) = (0.4, 0.2, 0.4)\).

The phase portraits of the Li system (1) are shown in Figure 1.

![MATLAB signal plots of the four-wing Li chaotic system (1) for \(Y(0) = (0.4, 0.2, 0.4)\) and \((a, b, m) = (1, 1, 1)\): (a) \((y_1, y_2)\)-plane, (b) \((y_2, y_3)\)-plane, (c) \((y_1, y_3)\)-plane, (d) the 3-D space](image-url)
It is clear that the Li system (1) has a four-wing chaotic attractor.

In this work, we suggest a new 4-D system by introducing a new feedback controller \(y_4 \) to the Li system (1) and our system dynamics is described below:

\[
\begin{align*}
\dot{y}_1 &= ay_1 + y_2 + y_2y_3 - y_4, \\
\dot{y}_2 &= (y_2 - y_1)y_3, \\
\dot{y}_3 &= -y_3 - my_1y_2 - py_2^2 + b, \\
\dot{y}_4 &= y_1.
\end{align*}
\]

(4)

In the system (4), \(Y = (y_1, y_2, y_3, y_4) \) is the state and \(a, b, c, m, p \) are positive parameters.

In this work, we shall establish that the system (4) has a hyperchaotic four-wing attractor for the constant values

\[
a = 2.5, \quad b = 2.5, \quad c = 0.2, \quad m = 1, \quad p = 0.2.
\]

(5)

For MATLAB simulations, we take the initial state as \(Y(0) = (0.4, 0.2, 0.4, 0.2) \).

The Lyapunov exponents (LE) of the 4-D system (4) were calculated for \((a, b, c, m, p) = (2.5, 2.5, 0.2, 1, 0.2)\), \(Y(0) = (0.4, 0.2, 0.4, 0.2) \) and \(T = 1E5 \) seconds as follows:

\[
\begin{align*}
\mu_1 &= 0.5292, \\
\mu_2 &= 0.0735, \\
\mu_3 &= 0, \\
\mu_4 &= -3.4444.
\end{align*}
\]

(6)

From (6), we deduce that the 4-D system (4) has two positive LE values, \(\mu_1 \) and \(\mu_2 \).

Moreover \(\mu_1 + \mu_2 + \mu_3 + \mu_4 < 0 \).

Thus, the 4-D system (4) has a dissipative hyperchaotic attractor with maximal Lyapunov exponent (MLE) as \(\mu_1 = 0.5292 \). We observe that the MLE of the 4-D hyperchaotic system given by \(\mu_1 = 0.5292 \) is greater than the MLE of the 3-D Li chaotic system given by \(\mu_1 = 0.4093 \).

For the signal plots in MATLAB, we take

\[(a, b, c, m, p) = (2.5, 2.5, 0.2, 1, 0.2) \quad \text{and} \quad Y(0) = (0.4, 0.2, 0.4, 0.2).\]

The phase portraits of the new hyperchaotic system (4) are shown in Figure 2. It is clear that the new hyperchaotic system (4) has a four-wing hyperchaotic attractor.

We remark that the new hyperchaotic four-wing system (4) is invariant under the change of coordinates

\[(y_1, y_2, y_3, y_4) \mapsto (-y_1, -y_2, y_3, -y_4).\]

(7)

This shows that the hyperchaotic four-wing system (4) has rotation symmetry about the \(y_3 \)-coordinate axis.
To find the balance points of the hyperchaotic four-wing system (4), we solve the equations $\dot{y}_1 = 0$, $\dot{y}_2 = 0$, $\dot{y}_3 = 0$ and $\dot{y}_4 = 0$ when the system parameters are positive.

Thus, we solve the following system of equations:

\begin{align*}
ay_1 + y_2 + y_2y_3 - y_4 &= 0, \quad (8a) \\
-cy_1 + (y_2 - y_1)y_3 &= 0, \quad (8b) \\
-y_3 - my_1y_2 - py_2^2 + b &= 0, \quad (8c) \\
y_1 &= 0. \quad (8d)
\end{align*}

From (8d), it is clear that $y_1 = 0$.

Hence, the balance points of the 4-D system (4) lie on the (y_2, y_3, y_4)-space.
Substituting $y_1 = 0$ into (8b), we get $y_2y_3 = 0$. Either $y_2 = 0$ or $y_3 = 0$.

Thus, we have two cases to consider.

Case A: $y_2 = 0$.
- Putting $y_1 = 0$ and $y_2 = 0$ in Eq. (8a), we get $y_4 = 0$.
- Putting $y_1 = 0$ and $y_2 = 0$ in Eq. (8c), we get $y_3 = b$.

Thus, $E_1 = (0, 0, b, 0)$ is a balance point of the system (4).

Case B: $y_3 = 0$.
- Putting $y_1 = 0$ and $y_3 = 0$ in Eq. (8a), we get $y_2 = y_4$.
- Putting $y_1 = 0$ and $y_3 = 0$ in Eq. (8c), we get $py_2^2 = b$.

Solving, we get $y_2 = \pm \sqrt{\frac{b}{p}}$.

Thus, $E_2 = \left(0, \sqrt{\frac{b}{p}}, 0, \sqrt{\frac{b}{p}}\right)$ and $E_3 = \left(0, -\sqrt{\frac{b}{p}}, 0, -\sqrt{\frac{b}{p}}\right)$ are two more balance points of the hyperchaotic system (4).

Combining Cases A and B, we conclude that E_1, E_2 and E_3 are three balance points of the hyperchaotic system (4).

For the hyperchaotic case, we take the parameters as in (5).

In this case, the three balance points take the numerical form:

$$E_1 = \begin{bmatrix} 0 \\ 0 \\ 2.5 \\ 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 \\ 3.5355 \\ 0 \\ 3.5355 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 \\ -3.5355 \\ 0 \\ -3.5355 \end{bmatrix}.$$ \hspace{1cm} (9)

It is easy to verify that E_1, E_2 and E_3 are all saddle-foci balance points, which are unstable.

3. Lyapunov exponents and bifurcation analysis

In this section, the influence of the parameters on the behavior of the new 4-D hyperchaotic four-wing system (4) will be investigated using Lyapunov spectrums, bifurcation diagrams and phase plots.

3.1. Bifurcation analysis when a varies

Bifurcation diagram and Lyapunov exponents spectrum of the hyperchaotic four-wing system (4) are plotted in Figure 3 when a varies in the region $[0, 3]$ while the other parameters are fixed as $b = 2.5, c = 0.2, m = 1$ and $p = 0.2$. We can see that the results obtained from the Lyapunov spectrum agree with the results given by the bifurcation diagram.

From Figure 3, we can see that system (4) is hyperchaotic for large region of parameter a values. In addition, the system (4) can evolve into periodic orbits and
A NEW 4-D HYPERCHAOTIC FOUR-WING SYSTEM, ITS BIFURCATION ANALYSIS, COMPLETE SYNCHRONIZATION AND CIRCUIT SIMULATION

Figure 3: Dynamic analysis of the hyperchaotic four-wing system (4) when \(b = 2.5, \ c = 0.2, \ m = 1, \ p = 0.2 \) and \(a \) varies in \([0, 3]\): (a) bifurcation diagram and (b) Lyapunov exponents spectrum.

chaotic orbits or converge to its equilibrium. We can identify the behavior of the four-wing system (4) when parameter \(a \) varies as follows:

When \(a \in [0, 0.4] \), the states of the system (4) converges to the equilibrium point \(E_2 \) and their corresponding Lyapunov exponents when \(a = 0.1 \) are:

\[
\mu_1 = -0.106, \quad \mu_2 = -0.113, \quad \mu_3 = -0.332, \quad \mu_4 = -0.344. \quad (10)
\]

When \(a \in [0.4, 0.75] \), there is one zero Lyapunov exponent and three negative Lyapunov exponents. This implies that system (4) generates periodic behavior with the following values of Lyapunov exponents obtained when \(a = 0.5 \):

\[
\mu_1 = 0, \quad \mu_2 = -0.092, \quad \mu_3 = -0.255, \quad \mu_4 = -0.259. \quad (11)
\]

When \(a \in [0.75, 0.85] \), the maximal Lyapunov exponent is positive, the second Lyapunov exponent is zero while the last two Lyapunov exponents are negative. This implies that the system (4) exhibits chaotic behavior with the following values of Lyapunov exponents obtained when \(a = 0.8 \):

\[
\mu_1 = 0.148, \quad \mu_2 = 0, \quad \mu_3 = -0.069, \quad \mu_4 = -0.875 \quad (12)
\]

Finally, when \(a \in [0.85, 3] \), we can confirm using results from Figure 3 that the system (4) has two positive Lyapunov exponents. This implies the existence of hyperchaos for the system (4). The values of Lyapunov exponents when \(a = 2 \) are:

\[
\mu_1 = 0.533, \quad \mu_2 = 0.099, \quad \mu_3 = 0, \quad \mu_4 = -3.015. \quad (13)
\]

Figure 4 shows different signal plots corresponding to different behavior of the new hyperchaotic four-wing system (4) when \(a \) varies. Table 1 gives the
dynamics, Lyapunov exponents and Lyapunov dimension of the system (4) for different values of a.

![Figure 4: (y_1, y_2) - signal plots of the hyperchaotic four-wing system (4) when $b = 2.5$, $c = 0.2$, $m = 1$, $p = 0.2$: (a) E_2 attractor when $a = 0.1$, (b) periodic orbit when $a = 0.5$, (c) chaotic attractor when $a = 0.8$, (d) hyperchaotic attractor when $a = 2$](image)

3.2. Bifurcation analysis when b varies

Bifurcation diagram and Lyapunov exponents spectrum of the hyperchaotic four-wing system (4) are plotted in Figure 5 when b varies in the region $[-3, 3]$ while the other parameters are fixed as $a = 2.5$, $c = 0.2$, $m = 1$ and $p = 0.2$. We can see that the results obtained from the Lyapunov spectrum agree with the results given by the bifurcation diagram.

From Figure 5, we can see that system (4) is hyperchaotic for large region of parameter b values. In addition, the system (4) can evolve into periodic orbits,
quasi-periodic orbits or chaotic orbits. We can identify the behavior of the four-wing system (4) when parameter b varies as follows:

Define $A = [-3, -2.3] \cup [-1.4, -1.35] \cup [-1.05, -1] \cup [-0.9 \cup -0.8]$.

When $b \in A$, the states of the system (4) converges to a periodic orbit and their corresponding Lyapunov exponents when $b = -3$ are:

$$\mu_1 = 0, \quad \mu_2 = -0.153, \quad \mu_3 = -0.161, \quad \mu_4 = -2.320. \quad (14)$$

When $b \in [-2.3, -1.8]$, there are two zero Lyapunov exponents and two negative Lyapunov exponents. This implies that system (4) evolves into quasi-periodic behavior with the following values of Lyapunov exponents obtained when $b = -1.8$:

$$\mu_1 = 0, \quad \mu_2 = 0, \quad \mu_3 = -0.038, \quad \mu_4 = -2.423. \quad (15)$$

Define $B = [-1.8, -1.65] \cup [-1.35, -1.25] \cup [-1, -0.9]$.

When $b \in B$, the maximal Lyapunov exponent is positive, the second Lyapunov exponent is zero while the last two Lyapunov exponents are negative. This implies that the system (4) exhibits chaotic behavior with the following values of Lyapunov exponents obtained when $b = -1.68$.

$$\mu_1 = 0.058, \quad \mu_2 = 0, \quad \mu_3 = -0.010, \quad \mu_4 = -2.442. \quad (16)$$

Define $C = [-1.65, -1.4] \cup [-1.25, -1.05] \cup [-0.8, 3]$.

Finally, when $b \in C$, we can confirm using results from Figure 5 that the system (4) has two positive Lyapunov exponents. This implies the existence of
hyperchaos for the system (4). The values of Lyapunov exponents when $b = 3$ are:

$$
\mu_1 = 0.541, \quad \mu_2 = 0.092, \quad \mu_3 = 0, \quad \mu_4 = -3.327. \quad (17)
$$

Figure 6 shows different signal plots corresponding to different behavior of the new hyperchaotic four-wing system (4) when b varies. Table 1 gives the dynamics, Lyapunov exponents and Lyapunov dimension of the system (4) for different values of b.

![Signal plots of the hyperchaotic four-wing system](image)

Figure 6: (y_1, y_3)– signal plots of the hyperchaotic four-wing system (4) when $a = 2.5$, $c = 0.2$, $m = 1$, $p = 0.2$: (a) periodic orbit when $b = -3$, (b) quasi-periodic orbit when $b = -1.8$, (c) Chaotic attractor when $b = -1.68$, (d) hyperchaotic attractor when $b = 3$

3.3. Bifurcation analysis when c varies

Bifurcation diagram and Lyapunov exponents spectrum of the hyperchaotic four-wing system (4) are plotted in Figure 7 when c varies in the region $[0, 1.3]$ while the other parameters are fixed as $a = 2.5$, $b = 2.5$, $m = 1$ and $p = 0.2$.
We can see that the results obtained from the Lyapunov spectrum agree with the results given by the bifurcation diagram.

![Figure 7: Dynamic analysis of the hyperchaotic four-wing system (4) when $a = 2.5$, $b = 2.5$, $m = 1$, $p = 0.2$ and c varies in $[0, 1.3]$: (a) bifurcation diagram and (b) Lyapunov exponents spectrum](image)

From Figure 7, we can see that system (4) is hyperchaotic for almost all the region of parameter values of c in $[0, 1.3]$. In addition, the system (4) can exhibit periodic behavior for the rest of the parameter c region in $[0, 1.3]$. We can identify the behavior of the four-wing system (4) when parameter c varies as follows:

When $c \in [0, 1]$, the system (4) has two positive Lyapunov exponents, one zero Lyapunov exponent and one negative Lyapunov exponent. This implies the existence of hyperchaos for the system (4). The values of Lyapunov exponents when $c = 0.4$ are:

$$
\mu_1 = 0.516, \quad \mu_2 = 0.098, \quad \mu_3 = 0, \quad \mu_4 = -3.511. \quad (18)
$$

When $c \in [1, 1.3]$, we can see from Figure 7 that the four-wing system (4) has only one positive Lyapunov exponent. Thus, the system (4) evolves into a chaotic attractor and the values of Lyapunov exponents obtained when $c = 1.3$ are:

$$
\mu_1 = 0.478, \quad \mu_2 = 0, \quad \mu_3 = -0.097, \quad \mu_4 = -4.313. \quad (19)
$$

Figure 8 shows different phases plots corresponding to different behavior of the new hyperchaotic four-wing system (4) when c varies. Table 1 gives the dynamics, Lyapunov exponents and Lyapunov dimension of the system (4) for different values of c.

![Figure 8](image)
3.4. Bifurcation analysis when \(m \) varies

Bifurcation diagram and Lyapunov exponents spectrum of the hyperchaotic four-wing system (4) are plotted in Figure 9 when \(m \) varies in the region \([0.4, 1]\) while the other parameters are fixed as \(a = 2.5, b = 2.5, c = 0.2 \) and \(p = 0.2 \). We can see that the results obtained from the Lyapunov spectrum agree with the results given by the bifurcation diagram.

From Figure 9, we can see that system (4) can generate chaotic or hyperchaotic attractor when \(m \) varies. We can identify the behavior of the system (4) when the parameter \(m \) varies as follows:

When \(m \in [0.4, 0.5] \), the maximal Lyapunov exponent is positive, the second Lyapunov exponent is zero, while the last two Lyapunov exponents are negative. This means that the system (4) evolves into a chaotic attractor with the following values of Lyapunov exponents obtained when \(m = 0.45 \):

\[
\mu_1 = 0.248, \quad \mu_2 = 0, \quad \mu_3 = -0.282, \quad \mu_4 = -3.612. \quad (20)
\]

When \(m \in [0.5, 1] \), we can see from Figure 9 that the four-wing system (4) has two positive Lyapunov exponents. Thus, the system (4) evolves into a hyperchaotic attractor and the values of Lyapunov exponents obtained when \(m = 0.75 \) are:

\[
\mu_1 = 0.502, \quad \mu_2 = 0.079, \quad \mu_3 = 0, \quad \mu_4 = -3.420. \quad (21)
\]

Figure 10 shows different phases plots corresponding to different behavior of the new hyperchaotic four-wing system (4) when \(c \) varies. Table 1 gives the dynamics, Lyapunov exponents and Lyapunov dimension of the system (4) for different values of \(m \).
3.5. Bifurcation analysis when p varies

Bifurcation diagram and Lyapunov exponents spectrum of the hyperchaotic four-wing system (4) are plotted in Figure 11 when p varies in the region $[0, 0.4]$ while the other parameters are fixed as $a = 2.5$, $b = 2.5$, $c = 0.2$ and $m = 1$. We can see that the results obtained from the Lyapunov spectrum agree with the results given by the bifurcation diagram.
From Figure 11, we can see that system (4) can generate hyperchaotic or chaotic attractor when p varies. We can identify the behavior of the system (4) when the parameter p varies as follows:

When $p \in [0, 0.34]$, we can see from Figure 11 that the four-wing system (4) has two positive Lyapunov exponents. Thus, the system (4) evolves into a hyperchaotic attractor and the values of Lyapunov exponents obtained when $p = 0.2$ are:

$$\mu_1 = 0.548, \quad \mu_2 = 0.063, \quad \mu_3 = 0, \quad \mu_4 = -3.389 \quad (22)$$

When $p \in [0.34, 4]$, the maximal Lyapunov exponent is positive, the second Lyapunov exponent is zero, while the last two Lyapunov exponents are negative. This means that the system (4) evolves into a chaotic attractor with the following values of Lyapunov exponents obtained when $p = 0.37$ are:

$$\mu_1 = 0.509, \quad \mu_2 = 0, \quad \mu_3 = -0.051, \quad \mu_4 = -3.558 \quad (23)$$

Figure 12 shows different phases plots corresponding to different behavior of the new hyperchaotic four-wing system (4) when c varies. Table 1 gives the dynamics, Lyapunov exponents and Lyapunov dimension of the system (4) for different values of p.
Table 1: Dynamics and Lyapunov Exponents of the 4-D System (4) versus its Parameters

<table>
<thead>
<tr>
<th>Dynamics</th>
<th>Parameters</th>
<th>Bifurcation Parameter</th>
<th>Lyapunov Exponents</th>
<th>L_D</th>
<th>Attractor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>m</td>
<td>p</td>
</tr>
<tr>
<td>Periodic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$[0.4,0.75]$</td>
<td>2.5</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>A</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Quasi-periodic</td>
<td>2.5</td>
<td>$[-2.3, -1.8]$</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Chaos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$[0.75,0.85]$</td>
<td>2.5</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>B</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>$[1,1.3]$</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>$[0.4,0.5]$</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>0.2</td>
<td>1</td>
<td>$[0.34,0.4]$</td>
</tr>
<tr>
<td>Hyperchaos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$[0.85,3]$</td>
<td>2.5</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>C</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>$[0.1]$</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>$[0.5,1]$</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>0.2</td>
<td>1</td>
<td>$[0.34]$</td>
</tr>
</tbody>
</table>
4. Multistability phenomenon in the hyperchaotic four-wing system

In order to observe the strange phenomenon of multistability, the attractors of the new four-wing system (4) are calculated for two different initial values and plotted using Matlab software.

As we mentioned in Section 2, the new system (4) is invariant under the transformation

$$F: (y_1, y_2, y_3, y_4) \mapsto (-y_1, -y_2, y_3, -y_4).$$

(24)

Thus, a good choice of two different initial conditions can give rise to the appearance of coexisting attractors. Let X_0 and Y_0 be two different initial conditions for the new four-wing system (4), where $X_0 = (1, 1, 1, 1)$ generates a blue color orbit and $Y_0 = (-1, -1, 1, -1)$ generates a red color orbit.

When we set $b = 2.5$, $c = 0.2$, $m = 1$, $p = 0.2$ and vary a in the range $[0, 3]$, the system (4) exhibits coexistence of point attractors, periodic attractors, chaotic attractors or hyperchaotic attractors starting from the two different initial points X_0 (blue color) and Y_0 (red color).

When $a = 0.1$, the system (4) exhibits two coexisting point attractors, where the blue one converges to the balance point E_2 while the red one converges to E_3 as clearly shown in Figure 13(a).

When $a = 0.5$, the system (4) generates two coexisting periodic attractors, the blue one starts from X_0 while the other one starts from Y_0. Results are depicted in Figure 13(b).
When $a = 0.78$, the four-wing system (4) generates two coexisting chaotic attractors as Figure 13(c) shows. Each attractor has only one positive Lyapunov exponents as follows:

$$
\mu_1 = 0.148, \quad \mu_2 = 0, \quad \mu_3 = -0.069, \quad \mu_4 = -0.875.
$$

(25)

Finally, when $a = 2.5$, the proposed system (4) generates two coexisting hyperchaotic attractors as shown in Figure 13(d). The blue attractor starts from X_0 while the red attractor starts from Y_0. These two coexisting attractors are characterised by the following values of Lyapunov exponents:

$$
\mu_1 = 0.547, \quad \mu_2 = 0.060, \quad \mu_3 = 0, \quad \mu_4 = -3.404.
$$

(26)
5. Offset Boosting Property of the New Hyperchaotic Four-Wing System

Clearly, we can boost the variable y_4 of the new hyperchaotic four-wing system (4) as it appears only once in the first equation of the system. Therefore, we can control it using a control parameter g.

The offset-boosted system is obtained from the hyperchaotic four-wing system (4) by replacing y_4 with $(y_4 + g)$ in the first equation of the system (4). The offset-boosted system is given as follows:

\[
\begin{align*}
\dot{y}_1 &= ay_1 + y_2 + y_2y_3 - (y_4 + g), \\
\dot{y}_2 &= (y_2 - y_1)y_3, \\
\dot{y}_3 &= -y_3 - my_1y_2 - py_2^2 + b, \\
\dot{y}_4 &= y_1.
\end{align*}
\]

(27)

Here, g is a control parameter, which plays the role of offset-boosting controller.

For $a = 2.5$, $b = 2.5$, $c = 0.2$, $m = 1$, $p = 0.2$ and $Y_0 = (0.4, 0.2, 0.4, 0.2)$, the hyperchaotic signal y_4 can be boosted from a bipolar signal to a unipolar signal as shown in Figure 14 (a) by varying g in different directions. In addition, the locations of signal portraits of the hyperchaotic four-wing attractors can be adjusted by changing the value of the constant controller g. These results are plotted in the (y_3, y_4)-plane and shown in the Figure 14 (b).

Figure 14: Offset Boosting Plots: (a) y_4 signal and (b) (y_3, y_4) phase portraits of the system with different values of offset boosting controller: $g = 0$ (blue), $g = 10$ (red), $g = -10$ (green), $g = 20$ (violet) and $g = -20$ (brown)
6. Master-slave synchronisation of new hyperchaotic four-wing systems

Integral sliding mode control (ISMC) is successfully applied to achieve global synchronisation of the master hyperchaotic system \((M)\) and slave hyperchaotic system \((S)\) in this section.

\[
\begin{align*}
\dot{y}_1 &= ay_1 + y_2 + y_2y_3 - y_4, \\
\dot{y}_2 &= (y_2 - y_1)y_3, \\
\dot{y}_3 &= -y_3 - my_1y_2 - py_2^2 + b, \\
\dot{y}_4 &= y_1; \\
\end{align*}
\]
\tag{28}

\[
\begin{align*}
\dot{z}_1 &= az_1 + z_2 + z_2z_3 - z_4 + U_1, \\
\dot{z}_2 &= (z_2 - z_1)z_3 + U_2, \\
\dot{z}_3 &= -z_3 - mz_1z_2 - pz_2^2 + b + U_3, \\
\dot{z}_4 &= z_1 + U_4. \\
\end{align*}
\]
\tag{29}

Here, \(U_1, U_2, U_3, U_4\) are integral sliding mode controls (ISMC) which will be designed so as to synchronize the states of the master system \((M)\) and the slave system \((S)\).

The synchronisation error between the systems \((M)\) and \((S)\) is defined as follows:

\[
\begin{align*}
E_1 &= z_1 - y_1, \\
E_2 &= z_2 - y_2, \\
E_3 &= z_3 - y_3, \\
E_4 &= z_4 - y_4. \\
\end{align*}
\]
\tag{30}

The error dynamics is obtained as follows:

\[
\begin{align*}
\dot{E}_1 &= aE_1 + E_2 - E_4 + z_2z_3 - y_2y_3 + U_1, \\
\dot{E}_2 &= z_2z_3 - y_2y_3 - z_1z_3 + y_1y_3 + U_2, \\
\dot{E}_3 &= -E_3 - m(z_1z_2 - y_1y_2) - p(z_2^2 - y_2^2) + U_3, \\
\dot{E}_4 &= E_1 + U_4. \\
\end{align*}
\]
\tag{31}
With each error variable, we link an integral sliding surface as follows:

\[
\begin{align*}
S_1 &= E_1 + m_1 \int_0^t E_1(\nu) \, d\nu, \\
S_2 &= E_2 + m_2 \int_0^t E_2(\nu) \, d\nu, \\
S_3 &= E_3 + m_3 \int_0^t E_3(\nu) \, d\nu, \\
S_4 &= E_4 + m_4 \int_0^t E_4(\nu) \, d\nu.
\end{align*}
\]

(32)

By differentiation of the equations (32), we get

\[
\begin{align*}
\dot{S}_1 &= \dot{E}_1 + \nu_1 E_1, \\
\dot{S}_2 &= \dot{E}_2 + \nu_2 E_2, \\
\dot{S}_3 &= \dot{E}_3 + \nu_3 E_3, \\
\dot{S}_4 &= \dot{E}_4 + \nu_4 E_4.
\end{align*}
\]

(33)

The integral sliding mode controls for the master-slave synchronisation are defined as follows:

\[
\begin{align*}
U_1 &= -a E_1 - E_2 + E_4 - z_2 z_3 + y_2 y_3 - \nu_1 E_1 - \alpha_1 \text{sgn}(S_1) - \beta_1 S_1, \\
U_2 &= -z_2 z_3 + y_2 y_3 + z_1 z_3 - y_1 y_3 - \nu_2 E_2 - \alpha_2 \text{sgn}(S_2) - \beta_2 S_2, \\
U_3 &= E_3 + m(z_1 z_2 - y_1 y_2) + p(z_2^2 - y_2^2) - \nu_3 E_3 - \alpha_3 \text{sgn}(S_3) - \beta_3 S_3, \\
U_4 &= -E_1 - \nu_4 E_4 - \alpha_4 \text{sgn}(S_4) - \beta_4 S_4.
\end{align*}
\]

(34)

By implementing the sliding control law (34), we derive the following closed-loop system:

\[
\begin{align*}
\dot{E}_1 &= -\nu_1 E_1 - \alpha_1 \text{sgn}(S_1) - \beta_1 S_1, \\
\dot{E}_2 &= -\nu_2 E_2 - \alpha_2 \text{sgn}(S_2) - \beta_2 S_2, \\
\dot{E}_3 &= -\nu_3 E_3 - \alpha_3 \text{sgn}(S_3) - \beta_3 S_3, \\
\dot{E}_4 &= -\nu_4 E_4 - \alpha_4 \text{sgn}(S_4) - \beta_4 S_4.
\end{align*}
\]

(35)
Theorem 1 The master-slave 4-D hyperchaotic models (28) and (28) are asymptotically and globally synchronised by the integral sliding mode control law (34) where \(\nu_i, p_i, q_i, \) \((i = 1, 2, 3, 4) \) are assumed to be positive constants.

Proof. We regard the Lyapunov function given by the definition

\[
V(S_1, S_2, S_3, S_4) = \frac{1}{2} \left(S_1^2 + S_2^2 + S_3^2 + S_4^2 \right)
\]

which is evidently a strictly positive definite function on \(\mathbb{R}^4 \).

We observe next that

\[
\dot{V} = S_1\dot{S}_1 + S_2\dot{S}_2 + S_3\dot{S}_3 + S_4\dot{S}_4.
\]

Using (33) and (35), we can simplify (37) as

\[
\dot{V} = \sum_{i=1}^{4} S_i (-\alpha_i \text{sgn}(S_i) - \beta_i S_i).
\]

A simplification shows that

\[
\dot{V} = -\sum_{i=1}^{4} [\alpha_i |S_i| + \beta_i S_i^2].
\]

Since \(\alpha_i > 0 \) and \(\beta_i > 0 \) for \(i = 1, 2, 3, 4 \), we conclude that \(\dot{V} \) is a strictly negative definite function defined on \(\mathbb{R}^4 \).

By Lyapunov stability theory, we have \(S_i(t) \to 0 \) for \(i = 1, 2, 3, 4 \) as \(t \to \infty \).

Consequently, we see that \(E_i(t) \to 0 \) for \((i = 1, 2, 3, 4) \) as \(t \to \infty \). ■

For MATLAB simulations, the parameters are taken as in the hyperchaotic case (5), viz. \(a = 2.5, b = 2.5, c = 0.2, m = 1 \) and \(p = 0.2 \).

The sliding constants for MATLAB simulations are regarded as \(\alpha_i = 0.2, \beta_i = 8 \) and \(\nu_i = 10 \) for \(i = 1, 2, 3, 4 \).

For the master system (M), we take the initial state as \(y_1(0) = 3.9, \ y_2(0) = 7.4, \ y_3(0) = 10.3, \ y_4(0) = 5.1 \).

For the slave system (S), we take the initial state as \(z_1(0) = 15.4, \ z_2(0) = 5.9, \ z_3(0) = 6.2, \ z_4(0) = 12.4 \).

The time-history for the synchronization errors between the master system (M) and the slave system (S) is depicted in Figure 15.

From Figure 15, we can see that the master system (M) and the slave system (S) are synchronised asymptotically for the initial states taken for the numerical simulation.
Figure 15: Asymptotic synchronisation of the master system (M) and the slave system (S) via integral sliding mode control (34)

7. Circuit simulation of the new 4D Hyperchaotic System

In this work, the new 4D hyperchaotic four-wing system (4) is realized by the NI MultiSim 14.0 platform. The electronic circuit design of the hyperchaotic four-wing system is shown in Figure 16, in which AD633JN is selected as OPAMP. Applying the Kirchhoff's laws, the circuit presented in Figure 16 is described by the following equations:

\[
\begin{align*}
\dot{y}_1 &= \frac{1}{C_1 R_1} y_1 + \frac{1}{C_1 R_2} y_2 + \frac{1}{10 C_1 R_3} y_2 y_3 - \frac{1}{C_1 R_4} y_4, \\
\dot{y}_2 &= -\frac{1}{C_2 R_5} y_1 + \frac{1}{10 C_2 R_6} y_2 y_3 + \frac{1}{10 C_2 R_7} y_1 y_3, \\
\dot{y}_3 &= -\frac{1}{C_3 R_8} y_3 - \frac{1}{10 C_3 R_9} y_1 y_2 + \frac{1}{10 C_3 R_{10}} y_2^2 + \frac{1}{C_3 R_{11}} V_1, \\
\dot{y}_4 &= -\frac{1}{C_4 R_{12}} y_1.
\end{align*}
\]

(42)

Here \(y_1, y_2, y_3, y_4 \) are correspond to the voltages on the integrators U1A, U3A, U4A and U5A, respectively. The values of components in the circuit are selected as: \(R_1 = 160 \, \text{k}\Omega, \ R_2 = R_4 = R_8 = R_{12} = 400 \, \text{k}\Omega, \ R_3 = R_6 = R_7 = R_9 = 40 \, \text{k}\Omega, \ R_5 = 2 \, \text{M}\Omega, \ R_{10} = 200 \, \text{k}\Omega, \ R_{11} = 160 \, \text{k}\Omega, \ R_{13} = R_{14} = R_{15} = R_{16} = R_{17} = \ldots \)
\(R_{18} = 100 \, \text{k}\Omega, \, C_1 = C_2 = C_3 = C_4 = 3.2 \, \text{nF} \). MultiSIM outputs of the circuit are presented in Figure 17. These results are consistent with the Matlab simulation results shown in Figure 2.

Figure 16: Circuit design of the new 4D hyperchaotic four-wing system (42)
Figure 17: Hyperchaotic four-wing attractor of the new 4-D four-wing system (42 using MultiSim circuit simulation: (a) $y_1 - y_2$ plane, (b) $y_2 - y_3$ plane, (c) $y_3 - y_4$ plane and $y_1 - y_4$ plane
8. Conclusions

In this work, we modified the dynamics of 3-D four-wing Li chaotic system (Li et al. 2015) by introducing a feedback controller and derived a new 4-D hyperchaotic four-wing system with complex properties. We performed a detailed bifurcation analysis for the new hyperchaotic four-wing system and showed that the hyperchaotic four-wing system has multistability and coexisting attractors. We also investigated the offset-boosting properties of the new hyperchaotic four-wing system. Using integral sliding mode control, we got new results for the master-slave synchronization of hyperchaotic four-wing systems. Finally, we designed an electronic circuit using MultiSim which will be very useful for real implementation of the new hyperchaotic four-wing system.

References

