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Research paper

A nonlinear statistical empirical model for transversely
isotropic rocks under uniaxial compression condition

Yansheng Deng1, Chenjie Shen2, Baoping Zou3

Abstract: The mechanical characteristics of transversely isotropic rocks are significantly different
under various levels of inclination, and it is difficult to describe exactly the mechanical behaviour of
transversely isotropic rocks. Assuming that rock consists of a great deal of microelements, and the
microelement strength controlled by Mohr–Coulomb criterion follows the log normal distribution. The
elastic modulus is used to reflect the anisotropy of rock, and the weak patches stiffness model is verified
and employed to depict the variation of elastic modulus with different inclination angle. Based on basic
damage mechanics theory and statistical method, a nonlinear statistical empirical model for transversely
isotropic rocks is proposed under uniaxial compressive condition. In order to verify the correctness
of the proposed model, comparison analyses between predicted results and experimental data taken
from published literature are carried out, which have good consistency. Finally, the discussions on the
influences of the distribution parameters 𝑎, 𝑐 and elastic modulus with different inclination angle, 𝐸𝜃 ,
on proposed model is offered.
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1. Introduction

Rock is formed by long-term geological effects with lots of defects such as fine cracks
and voids, which is different frommetal material or polymers. With the increase of external
load,more andmore faults inside rock appear. Themechanical properties of rock deteriorate
gradually; finally, the failure or yield occur. This process from damage to fracture is very
similar to damage mechanics. Therefore, according to continuous damage theory and
statistical method, Krajcinovic and Silva [1] derived a statistical damage constitutive model
in the early research. Numerous researches about statistics damage constitutive model have
been published since Lemaitre [2] proposed the equivalent strain assumption. Tang [3]
and Cao et al. [4] supposed the strength of microelement follows statistical distribution,
like Weibull distribution. Drucker–Prager (D–P) failure criterion was employed as the
failure criterion of microelement. Wang [5] assumed the microelement strength follows the
Weibull distribution, studied the effects of Mohr–Coulomb (M–C) and D–P on statistical
model of rock, and introduced a coefficient to represent the residual strength of rock.
To determine the microelement strength, Yu [6] introduced the four-parameter criterion
for quasi-brittle materials, like rock, concrete, etc, which can degenerate to the common
criteria, such as Hsieh-Ting-Chen (H-T-C) criterion, von Mises, D–P, M–C criteria, when
the four parameters values are equal. Due to the existence of voids or pores in natural rocks,
Cao et al. [7] employed the statistical damage model to investigate the influences of voids
and volume changes on the stain softening and hardening.
In recent years, a number of researchers have mainly focused on the three aspects study

of statistical damage constitutive model: the probabilistic distribution of microelement
strength in rocks [8–10], the failure criterion of rock [11–13] and the application of statistical
damage constitutive model to different rock [14–16]. In addition, some developed statistical
damage constitutivemodels have been proposed, like Zhao et al. [17] introduced the damage
tolerance principal to improve constitutive law for quasi-brittle rocks; Peng et al. [18]
proposed the strength degradation index (SDI) and a negative exponential function, by
which the relationship between SDI and confining pressure can be described.
Most of statistical damage constitutive models mentioned above are suitable for nearly

isotropic rocks. For transversely isotropic rocks such as phyllites, shales, schists and slates,
as well as gneisses, the elastic and strength behaviour are substantially different from that
of isotropic rock due to the presence of banding [19–23]. In this paper, the probabilistic dis-
tributions of microelement strength in rocks are analysed at first, and the variation of elastic
modules with the orientation of the sample with respect to the principal stresses is studied.
Then, the statistical empirical model for transversely isotropic rock is proposed consider-
ing the M–C criterion as the microelement strength criterion in transversely isotropic rock
under uniaxial compressive condition. Finally, comparisons between calculated results and
experimental studies are displayed to illustrate the feasibility and validity of the proposed
model.
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2. Statistical empirical model

2.1. Statistical damage variable

It is assumed that rock consists of lots of microelements. With the increase of external
loads, the microelements fail gradually. The statistical damage variable, 𝐷, can be given as

(2.1) 𝐷 =
𝑁𝑑

𝑁

where: 𝑁 is the total number of microelements; 𝑁𝑑 is the number of damaged microele-
ments.
The microelement fails when its stress 𝑆 reaches the critical strength 𝐹, and assuming

that the microelement critical strength 𝐹 follows a certain probability distribution. When
the stress 𝑆 increases to 𝑆+d𝑆, the number of damaged microelements enhances by

(2.2) d𝑁𝑑 = 𝑁𝑝(𝑆) d𝑆

where: 𝑝 denotes the density function of the probability distribution for the microelement
strength 𝐹.
If the stress level increases from 0 to 𝑆, the number of damaged microelements is

(2.3) 𝑁𝑑 =

𝑠∫
0

𝑁𝑝(𝑥) d𝑥 = 𝑁𝑃(𝑆)

Subscribed Equation (2.3) into Equation (2.1), the statistical damage variable 𝐷 is

(2.4) 𝐷 = 𝑃(𝑆)

According to the above literatures, the Weibull distribution is most popular probability
distribution for the microelement strength. However, theWeibull distribution still has some
drawbacks when it is adopted to describe statistical strength distribution for rock [24–26].
Basu et al. [25] proposed that the gamma or log-normal distribution function may reflect
more appropriately statistical strength distribution for brittle materials. Ji et al. [27] used the
non-normal distribution function and statistics damage theory to investigate deformation
and strength anisotropy of layer rocks. So, based on [27], the log normal distribution is
employed as an alternative in this paper, and its probability density function is

(2.5) 𝑃(𝑆) = 𝐹

[
ln(𝑆/𝑆0)

𝜂

]
= 𝐹 (𝑎 ln 𝑆 + 𝑏)

where: 𝑆0 and 𝜂 are distribution parameters, 𝑎 = 1/𝜂, 𝑏 = −(ln 𝑆0)/𝜂, 𝐹 represents standard
normal distribution function

(2.6)


𝐹 (𝑥) =

𝑥∫
−∞

𝑓 (𝑠) d𝑠

𝑓 (𝑥) = 1
√
2𝜋
exp

(
𝑥2

2

)



40 Y. DENG, C. SHEN, B. ZOU

So, the statistical damage variable 𝐷 for transversely isotropic rocks is

(2.7) 𝐷 = 𝐹 (𝑎 ln 𝑆 + 𝑏)

Fig. 1 represents the variation of 𝐷 with 𝑆/𝑆0 under different 𝜂 in log normal distribu-
tion. With the increase of 𝑆/𝑆0, 𝐷 rises gradually from 0 to 1. 𝜂 reflects the uniformity of
the material to a certain extent. The smaller 𝜂 is, the faster damage develops, which means
the more uniform the material is.
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Fig. 1. Variation of damage variable 𝐷 with 𝑆/𝑆0 for different 𝜂

2.2. The equivalent elastic modulus E𝜃

Considering the inclination angle 𝜃 (Fig. 2) plays a significant role in mechanical be-
haviour of the transversely isotropic rock. The equivalent elastic modulus 𝐸𝜃 is introduced
to express the effect of different 𝜃 on mechanical behaviour, which denotes the elastic
modulus at different 𝜃. Therefore, the key is to determine the relationship between 𝐸𝜃 and
𝜃. 𝐹𝜙𝜌 and 𝑁𝜀𝜎 [29] proposed the equivalent elastic modulus model below to consider the

Bedding plane 

Fig. 2. Definition of the inclination angle 𝜃



A NONLINEAR STATISTICAL EMPIRICAL MODEL FOR TRANSVERSELY ISOTROPIC . . . 41

bedding plane-induced anisotropy based on the anisotropic stiffness prediction in the plane
of a patchy weakness model.

(2.8) 𝐸𝜃 = 𝐸90◦
(
1 − 𝛼 sin2 2𝜃 − 𝛽 cos4 𝜃

)
where: 𝐸90◦ means theYoung’smoduluswith 𝜃 = 90◦,𝛼means the number of weak patches
in the weak plane, 𝛽 is represents the degree of excessive normal compliance related to the
weak patches.
Both 𝛼 and 𝛽 are dimensionless parameters that can be determined experimentally.
To verify the validity of expression for transversely isotropic rock, comparisons are

carried out between experimental results taken from the published literatures and Equa-
tion (2.8) with different rocks. Fig. 3 plots these comparisons of experimental and predicted
results of different rocks such as artificial layered rocks, AS gneiss, BR shale, YC schist,
Mancos shale and Longmaxi shale. In the figures, the solid lines represent the calculated
results obtained from the Equation (2.8), while data points denote the experimental re-
sults. From Fig. 3, the correlation between experimental and predicted results of 𝐸𝜃 and 𝜃
corresponded well for different rocks.
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Fig. 3. Comparison of experimental data and calculated results with different rocks: (a) Artificial
transversely isotropic rock [30]; (b) AS gneiss, BR shale and YC schist [19]; (c) Mancos shale [29];

(d) Longmaxi shale [15]
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2.3. Statistics empirical model establishment

Based on the strain equivalent hypothesis [2], the effective principal stress 𝜎∗
𝑖
(𝑖 =

1, 2, 3) is

(2.9) 𝜎∗
𝑖 =

𝜎𝑖

1 − 𝐷
, 𝑖 = 1, 2, 3

where:𝜎𝑖 (𝑖 = 1, 2, 3) represents the apparent stress, 𝐷 is the damage variable, which varies
from 0 (intact states) to 1 (entire damaged states).
According to Hooke’s law, the axial strain 𝜀1 under uniaxial compressive condition for

transversely isotropic rock can be expressed by

(2.10) 𝜀1 =
𝜎∗
1

𝐸𝜃

To M–C criterion under uniaxial compressive condition, there is

(2.11) 𝑆 = 𝜎∗
1 − 𝜎∗

1 sin 𝜑 = 𝑐 cos 𝜑

where: 𝑐 and 𝜑 represent cohesive force and frictional angle, respectively.
Substituting Equations (2.4), (2.10)–(2.11) into Equation (2.9), the following equation

based on M–C criterion can be given:

(2.12) 𝜎1 = 𝐸𝜃𝜀1 (1 − 𝑃[𝐸𝜃𝜀1 (1 − sin 𝜑)])

Incorporating Equation (2.7) and Equation (2.8) into Equation (2.12), the statistical
empirical model for transversely isotropic rock under uniaxial compressive condition as
follows:

(2.13) 𝜎1 = 𝐸90◦𝜀1𝐹 (−𝑎 ln 𝜀1 − 𝑐)
(
1 − 𝛼 sin2 2𝜃 − 𝛽 cos4 𝜃

)
where: 𝑐 = 𝐸𝜃𝜀1 (1 − sin 𝜑).

2.4. Determination of parameters

Based on Equation (2.8) and experimental data, the parameters 𝛼 and 𝛽 can be de-
termined by the least square method for 𝐸𝜃 . The extreme value method is employed
considering the peak value characteristics of stress-strain curves to solve the parameter 𝑎
and 𝑐 in Equation (2.13).
Differentiating Equation (2.12) gets

(2.14)
𝜕𝜎1
𝜕𝜀1

= 𝐸𝜃𝐹 (−𝑎 ln 𝜀1 − 𝑐) − 𝑎𝐸𝜃 𝑓 (−𝑎 ln 𝜀1 − 𝑐) = 0

Rearranging of Equation (2.14) obtains

(2.15) 𝜎1 = 𝑎𝐸90◦𝜀1 𝑓 (−𝑎 ln 𝜀1 − 𝑐) (1 − 𝛼 sin2 2𝜃 − 𝛽 cos4 𝜃)

Hence, 𝑎 and 𝑐 can be obtained when the values of 𝜎1 and 𝜀1 at the peak. Finally, the
relationship between 𝑎, 𝑐 and 𝜃 can be obtained by 3-order polynomial fitting method.
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3. Validation and discussion

3.1. Model verification

To verify the accuracy of the proposed model for transversely isotropic rock, experi-
mental data for layer shale made by Jia et al. [30] are adopted. According to Section 2.4
and experimental data, the parameters 𝛼, 𝛽, 𝑎 and 𝑐 can be calculated in Table 1.

Table 1. Parameters for verification example

Parameters
Inclination angle, 𝜃 [◦]

0 30 60 90

𝛼 –0.125

𝛽 –0.722

𝑎 16.7 37.5 83.6 17.4

𝑐 85.6 226 415 80

Fig. 4 presents the comparisons of experiment and calculated results for 𝐸𝜃 . Fig. 5
plots the 3-order polynomial fitting of 𝑎, 𝑐 and 𝜃. It can be seen that the calculated results
are in good agreement with the experimental results.
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Fig. 4. Comparisons of experiment and calculated results for 𝐸𝜃

Put the parameters in Table 1 and fitting equation in Fig. 5 into Equation (2.12), the
stress-strain curves under uniaxial compressive condition with different inclination angle,
𝜃, can be obtained. Comparison of experiment and calculated results with different 𝜃
are shown in Fig. 6. From Fig. 6, the proposed model of transversely isotropic rock can
preferably depict the experimental results. With the increase of axial strain, the stress
increases linearly to peak strength and then decreases. In particular, the peak strength is the
smallest when 𝜃 = 30◦, while the peak strength reaches the maximum when 𝜃 = 0◦. It is
noticed that when 𝜃 = 90◦, the peak strength is also high, which is similar to the maximum.
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That’s probably because when 𝜃 = 20−50◦, the failure is controlled by the sliding mode,
while the non-sliding mode in which the material strength dominated occurs with the others
inclination angle.
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3.2. Influence of the parameters on the model

Taking the uniaxial experiment data with 𝜃 = 90◦ as an example, the related parameters
𝑎 = 17.4, 𝑐 = 80, and 𝐸90◦ = 14.1 GPa. The other parameters are constant when one of
them is changed to research its effect on the model. Fig. 7 plots the stress-strain curves with
different 𝑎, 𝑐 and 𝐸𝜃 .
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From Fig. 7, parameters 𝑎, 𝑐 influence the uniaxial compression strength (UCS) of rock,
but they have no effect on the overall trend of the stress-strain curves. With the increase
of parameter, 𝑎, the UCS increases, while with the increase of parameter 𝑐, the strength
decreases. It is noted that elastic modulus, 𝐸𝜃 , affects not only the compression strength of
rock but also curves form. Hence, it is significant to predict accurately the elastic modulus
for different inclination angle, 𝜃.
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4. Conclusions

A nonlinear statistical empirical model for transversely isotropic rock under uniaxial
compressive condition was proposed in the present study. A log normal distribution is
employed to depict the distribution of microelement strength, which obey M–C criterion.
The proposed model is checked by compare the experimental data and predicted results.
The main conclusions are as follows:
1. The current nonlinear statistical empirical model can be effective to express well
stress-strain relationship of transversely isotropic rock with different inclination
angle under uniaxial compressive condition. All of parameters can be determined
conveniently by using uniaxial compression testing.

2. By comparing artificial layered rocks, AS gneiss, BR shale, YC schist, Mancos shale
and Longmaxi shale, the weak patches stiffness model proposed by Fjær and Nes
(2014) can predict precisely the variation of elastic modulus for transversely isotropic
rock with different inclination angle and can be used in the model.

3. Elastic modulus influences both the UCS and stress-strain curve formation, while 𝑎
and 𝑐 just relate to the compression strength.
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