
Metrol. Meas. Syst., Vol. 29 (2022) No. 3, pp. 505–523
DOI: 10.24425/mms.2022.140040

METROLOGY AND MEASUREMENT SYSTEMS
Index 330930, ISSN 0860-8229
www.metrology.wat.edu.pl

NON-INTRUSIVE CURRENT-BASED FAULT DETECTION OF
ELECTRO-MECHANICAL ACTUATORS WITH BRUSHED DC MOTORS

Ondřej Hanuš, Radislav Smid

Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Measurement, Technicka 2,
166 27 Prague, Czech Republic (B hanuson1@fel.cvut.cz, +420 22435 2346, smid@fel.cvut.cz)

Abstract
This paper proposes data-based fault detection methods for an electromechanical actuator (EMA) with
a brushed DC motor. The jam and winding short faults are considered in the study as the most prominent
EMA faults. The fault detection is based on evaluating the properties of the motor current, considering the
basic electromechanical parameters of EMAs. The main advantages are a non-intrusive approach utilising
a commonly accessible motor current measurement, simple configurability, and the ability to detect faults
under varying operation modes of EMA, including changes of speed, load, or movement profiles. The
proposed methods have been evaluated with a custom testing system, and the results have proven the
performance of the proposed approach to detect faults under varying operating conditions in industrial
applications.
Keywords: Electro-mechanical Actuator (EMA), Fault Detection and Diagnostics (FDD), jam, winding
short.
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1. Introduction

Electro-mechanical actuators (EMAs) are among the most widespread types of linear actua-
tors. They are used in many industries, including automotive, mechanical engineering, robotics
or aerospace. The main advantages of these actuators are their simplicity, reliability, easy con-
trol, compact size, and high power density. Undetected failures and degradations of EMAs can
lead to an increase in repair and maintenance costs and could be dangerous, especially in safety-
critical applications. To prevent failures, embedded fault detection systems for EMAs are required,
consequently there is a need for low-complexity unsupervised fault detection methods.

In recent decades, considerable efforts have been made to develop diagnostic methods for
EMAs. These methods can be divided into two categories: model-based and data-based ap-
proaches. Model-based approaches require a mathematical model that will correspond as closely
as possible to the behaviour of an actual device. The advantage is that degradations can be tracked
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based on changes in model parameters. The disadvantage is that the models tend to be too complex
and need to be thoroughly validated [1].

In [2], a model-based fault detection approach uses the evaluation of discrepancy between the
commanded position and the actual position or between positions of two parts of the actuator. [3]
demonstrates a model-based prognostic health management (PHM) algorithm for identifying the
mechanical transmission backlash using the limit cycle oscillations in the EMAs position values.

In contrast to model-based approaches, data-based approaches use various patterns or signa-
tures evaluated in monitored signals [1].

In [4] the researchers present the detection of a return channel jam, spalling and sensor
faults using an artificial neural network trained by temperature and vibration data. In [1], the
fault detection approach is based on vibration and motor current signatures in the frequency
domain synchronous with the motor position. The paper [5] presents the method based on signal
parameters such as steady value, overshoot, settling time, or the presence of unexpected peaks
from the electric current and position measurement to detect lack of lubrication, spalling and
backlash. The work [6] utilises the Computed Order Technique (COT) to transform transient
vibrations into ordered vibrations; their frequencies are used to detect a partial jam and spall
in the EMA ballscrew mechanism. The research presented in [7] describes a health monitoring
approach based on statistical process monitoring to detect loss of control and an actuator jam.
The researchers in [8] describe how to detect faults using vibration data measured under different
working conditions by semi-supervised learning and neural networks.

Fault detection in EMAs is difficult due to their dynamic behaviour during operation (frequent
changes in speed and direction). Some methods compensate for rotational speed dynamics, such
as order tracking [6] or Vold–Kalman filtering [9]; however, implementing these methods is costly
due to computational complexity or necessary installation of additional sensors.

This paper proposes a novel non-intrusive approach for jam and winding short fault detection
of an electromechanical actuator with a permanent magnet DC brush motor. The proposed
methods depend on a single quantity measurement – the electrical current intensity. They are
designed to deal with the dynamic behaviour of EMAs doing so without any other additional
sensors or sources of information.

2. Detection of EMA faults

2.1. Signal description

The proposed fault detection methods are based on evaluating the features of electric current
specific for an EMA with a brushed DC motor. Both methods process the absolute values of the
measured current, and therefore the direction of movement is not apparent from the collected
data. The typical current waveform, influenced by mechanical and electrical properties of the
actuator, can be seen in Fig. 1.

A PWM control of motor speed causes the high-frequency component in the raw current.
The current switching is driven by a PWM signal, defined by the frequency 𝑓𝑃 and duty cycle
𝐷 expressed in percentage. The effect of switching is more noticeable at lower values of 𝐷 and
completely disappears at 𝐷 = 100%. It can be seen in Fig. 1 during the motor run-up. The 𝐷 is
about 50% at the beginning to decrease the inrush current. It increases up to 100% with the rise
of the motor speed, and the effect of switching disappears.

The low-frequency oscillations in the waveform are caused by commutation spikes which
occur when the brush breaks the contact with the commutator sector connected to the energized
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Fig. 1. Electric current during the controlled run-up of the EMA
with a zoomed detail of the switching effect.

winding. Figure 1 shows the filtered signal where the switching effect was suppressed while
commutation spikes are still visible. Commutation spikes are directly related to motor rotation,
and therefore this information is essential for fault detection.

2.2. Jam detection

The jam of an EMA can be caused by many factors such as excessive overload or wear,
insufficient lubrication of the moving parts, mechanical damage or thermal stress. As a result, the
jammed actuator cannot move, which causes further overloading and, possibly, some extent of the
damage. The overcurrent protection might be used as a countermeasure against the jam. However,
for low duty cycles of PWM, the actual current can be lower than the current for maximum load,
and the protection fails. This problem is solved by the proposed algorithm depicted in Fig. 2.

Fig. 2. Block diagram of the jam detection algorithm.

Raw sampled data from the block “Data Acquisition” are first filtered. The block, called
“Suppression of Switching”, suppresses high-frequency components caused by the PWM motor
control. The output from this block still contains commutation spikes that provide information
about the motor’s movement. The second filtering block, called “Suppression of Spikes”, aims
to eliminate both high-frequency PWM switching components and low-frequency commutator
oscillations. The output represents the averaged motor current over time and gives the information
on whether the motor is under load.
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Standard digital filters (FIR/IIR) can be computationally intensive; in this paper, a different
approach was chosen. The filtration was done by averaging data with different windows length
without overlap. This approach worsen resolution in time but reduces computational complexity.

The length of the window for suppression of switching is based on the sampling frequency
𝑓𝑆 and PWM switching frequency 𝑓𝑃 as

𝑁𝑤𝑝 = 𝑎 · 𝑓𝑆

𝑓𝑃
, (1)

where 𝑁𝑤𝑝 is the length of the window, 𝑎 is the factor that extends averaging over multiple
periods, and the 𝑓𝑃 is the lowest PWM switching frequency.

The suppression of commutation spikes is based on the EMA’s lowest speed of motion. The
length of the window for suppression of commutation spikes is calculated as

𝑁𝑤𝑐 = 𝑓𝑆 · 𝑇max , (2)

where 𝑁𝑤𝑐 is the window’s length, 𝑓𝑆 is the sampling frequency, and 𝑇max is the longest time of
a commutation spike measured during the slowest possible movement of the EMA without load.

The filtered data with the commutation oscillations are used to detect movement, while the
filtered data without oscillations are related to load. The proposed algorithm measures a peak-to-
peak (pp) value of the signal with commutations for motion detection. This value is calculated
using the window with a length equal to 𝑁𝑤𝑐 .

The last part of the algorithm are fault detection and evaluation that process peak-to-peak
and averaged signals. The presence of significant values of the peak-to-peak signal represents the
rotation of the motor. In contrast, low values mean that the motor is not moving. The 𝑋𝑝𝑝 threshold
is used to distinguish between these two states. In the case when the motor is not moving, it can be
either jammed or stopped. The averaged current is used to assess these situations by a comparison
with the 𝑋𝑎 threshold. If the average current is above the 𝑋𝑎 and at the same time the peak-to-peak
signal is below 𝑋𝑝𝑝 , a fault is detected. The peak-to-peak signal and averaged current values can
vary substantially during operation, mainly due to the change in load, movement speed, and
operating regimes. Thresholds must be set accordingly to cover all possible states. They can be
determined from the measurements on the EMA without any load at the lowest possible speed.
Values of the peak-to-peak signal and averaged current are minimal in this condition compared to
all possible states during the nominal operation of the EMA. The proposed method uses thresholds
that are established as 50% of these minimal measured values to ensure acceptable margins.

When a fault is detected, it is acknowledged by the duration of the occurrence. It is assumed
that the jammed actuator remains in this state for some time. The acknowledgement procedure
prevents incorrect identification of faults that may occur during the slow movement of the actuator.
A necessary condition is that evaluation time 𝑇𝑜 is always higher than 𝑇max.

2.3. Winding short detection

Electrical faults in motors are among the most common faults in electromechanical actuators.
Typical faults include winding shorts and open winding [4]. The proposed method focuses on
detecting rotor winding shorts that arise in the case of an insulation failure between coil turns.
The most critical are shorts between the individual coils of the rotor [10]. They are usually caused
by the degradation of the insulation due to thermal effects, contamination or centrifugal force
(for a detailed overview, see [11]). The defect of shorted winding causes a reduction in torque
and changes in resistivity, inductance, which usually do not lead to a complete loss of EMA
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functioning. The extent of motor’s electrical imbalances depends on the number of shorted turns
and arrangment of the winding [10].

During the operation of the brushed DC motor, the damaged winding is energised twice in one
revolution, every time with opposite polarity. Thus, the increased current’s electrical imbalance
should be noticeable at twice the motor’s speed. The motor current signal analysis shows that the
commutation peaks’ dominant frequency is a multiple of the motor’s speed. The relation between
the motor speed expressed as motor frequency 𝑓𝑀 , fundamental commutation frequency 𝑓𝐶 and
frequency of winding short fault 𝑓𝑤𝑠 can be described by the following equations:

𝑓𝐶 = 𝑁𝐶 · 𝑓𝑀 , (3)

𝑓𝑤𝑠 = 2 · 𝑓𝐶

𝑁𝐶

= 2 · 𝑓𝑀 , (4)

where 𝑁𝐶 is the number of commutator segments resulting from the commutator arrangement.
The algorithm for winding short detection is depicted in Fig. 3; it comprises four parts; data

sampling, data selection, spectrum analysis and fault evaluation.

Fig. 3. Block diagram of the winding short detection algorithm.

The sampled data are processed in windows of the length based on the system’s parameters,
such as the maximal speed of rotation and number of measured rotations. The measured time
interval should be short of catching the motor’s steady operation but with reasonable resolution
in the frequency spectrum. Also, it should be long enough to capture periodicity in the measured
signal. It is therefore preferable to perform the detection at higher motor speeds. The measured
time interval is established for 50% of motor’s speed as

𝑇𝑑 = 𝑟 · 60
𝑣max · 0.5

, (5)

where 𝑟 is the number of revolutions required for analysis and 𝑣max is the maximal rotation speed
of the tested motor in RPM. The resolution in the frequency spectrum is directly related to the
measured time interval, and it is described as

𝑓Δ = 𝑓𝑆/𝑁𝑊 = 𝑓𝑆/( 𝑓𝑆 · 𝑇𝑑) = 1/𝑇𝑑 , (6)

where 𝑓𝑆 is the sampling frequency and 𝑁𝑊 is the length of the window. Ten per cent or lower
values of the lowest frequency of interest should be sufficient resolution for spectrum analysis.

Electromechanical actuators can be controlled up to a specific position, to required motion
profiles or other desired parameters based on the particular case of use. Rapid control actions of
the controller cause dynamic changes in EMA’s speed and direction of movement that are also
reflected in the measured current. The proposed method brings a novel approach to dealing with
the dynamic changes of EMA behaviour during control; fault detection is provided in short time
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segments where the signal is near a steady state. Kurtosis is used to assess the steady state; outliers
primarily determine its value [12]. It reaches highs when the signal is not regular, and conversely,
lows indicate a steady state. The motor current signal can also vary with the speed and load; the
coefficient of variation is used to compensate for these fluctuations. Multiplying these parameters
produces an indicating signal that is calculated over the 𝑇𝑑 period as

𝐼𝑠 = 𝑘 · 𝑐𝑣 =

1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)4

(
1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2

)2 · 𝑠
𝑥
, (7)

where 𝑘 is kurtosis, 𝑐𝑣 is the coefficient of variation, 𝑛 is the number of samples, 𝑥 is mean and 𝑠

is standard deviation. The minimum in every ten samples of the indicating signal is used to select
data that are suitable for subsequent analysis.

The detection of a winding short fault is based on the Motor Current Signature Analysis
(MCSA) [13, 14] using amplitude spectrum. Spectrum analysis is performed only on the block
of data that the data selection procedure provided. The main goal of this analysis is to identify
𝑓𝐶 and then search winding short fault represented by 𝑓𝑤𝑠 . The spectrum is gradually analysed
in different ranges depending on the maximum engine speed. The border frequencies of desired
range can be expressed by the 𝑓𝐶 as

𝑓𝐶 = 𝐷𝑀 · 𝑁𝐶 · 𝑣max
60 · 100

, (8)

where 𝐷𝑀 is the desired percentage of maximum motor speed.
The first step of the algorithm is to find a significant peak ( 𝑓𝑖). The spectrum is analysed

at a narrower frequency range corresponding to 50 to 100% of maximum motor speed at first.
Only the fundamental frequency of 𝑓𝐶 or its second harmonics 𝑓2𝐶 should be present within this
range. When no significant frequencies are found, the range is extended to 25 to 125%, and the
process is repeated. This wider range is beneficial in the cases when the motor is rotating faster
than maximal RPM given by the manufacturer (the actual 𝑓𝐶 is higher than maximal expected
𝑓𝐶 , (see (8)) or slower than 50% when the peak of second harmonic is insignificant. However,
the analysis in the narrower frequency range must always be performed first to prevent confusion
of higher harmonics of 𝑓𝐶 with the fundamental in the broader range. The required range of the
spectrum is always searched in descending order until a peak is found. If no significant peaks
are found, the tested block of data is discarded. Otherwise, the amplitude of the found peak is
compared to the mean value in this range. The low ratio between them indicates the changing
motor speed (smeared peak), and the data block is also excluded from the analysis. The peak with
a high ratio is further investigated. The threshold for this step (𝑋𝑠𝑟 ) can be determined based on
measurements conducted during nominal operation at the 25% of speed and without load, because
the amplitude of 𝑓𝐶 reaches the lowest values acceptable for analysis. It might be established as
a multiple of mean value that is still lower than the amplitude of 𝑓𝐶 at this speed.

The next step is to verify whether the frequency of the investigated peak ( 𝑓𝑖) is the fundamental
commutation frequency ( 𝑓𝐶 ). The amplitudes at 𝑓𝑖 and 𝑓𝑖/2 are compared. If the amplitude of
𝑓𝑖/2 is higher than amplitude at 𝑓𝑖 , it means that 𝑓𝑖/2 is fundamental commutation frequency
( 𝑓𝐶 ). Otherwise, 𝑓𝑖 is the fundamental commutation frequency. The found 𝑓𝐶 is used for fault
detection. The detection is based on searching for the significant amplitude at twice 𝑓𝑀 (see (4)).
The height of the peak 𝑓𝑤𝑠 reflects the extent of the fault. The 𝑋𝑤𝑠 threshold defining the fault
can be established by comparing the amplitudes of 𝑓𝑤𝑠 and 𝑓𝐶 .
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Fault evaluation is used to suppress unwanted false-positive results by the failure/pass count-
ing. Identified failures increase the error value faster than passes that decrease the error value.
When the error value exceeds the preset threshold, the motor’s fault is indicated.

2.4. Fault detection concept

The proposed approach utilizes the non-intrusive concept that is depicted in Fig. 4. The fault
detection procedure uses only current measurement, either using current clamps on the supply
cables or output from power drive electronics that allows current sensing. If a fault is detected,
a warning signal is sent to either deactivate the actuator or take the necessary action to prevent
damage. The fault detection procedure does not interfere with the actuator in any way and therefore
can be implemented as part of the control electronics.

Fig. 4. Block diagram of the fault detection concept.

3. Testing system

3.1. Block diagram

For validation of the proposed methods, a custom EMA testing system was developed. The
fundamental parts of the system are depicted in Fig. 5.

Fig. 5. Block diagram of the testing system.
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The system is composed of a PC connected over the USB to two NI cDAQ chassis. The main
chassis (top branch of the diagram) is responsible for actuators control and basic data acquisition.
The control of actuator motors is achieved by an NI 9401 module that generates PWM pulses
for two integrated H-bridge circuits. The main chassis includes two modules for data acquisition;
high-speed acquisition of current and voltage and low-speed acquisition of position and force.
The position and force sensor data are used as feedback for controlling movement and load during
testing.

The secondary chassis (bottom branch of the diagram in Fig. 5) is used for additional mea-
surements. The properties of all depicted sensors are summarised in Table 1.

Table 1. Parameters of used sensors.

Measurement Range Acq. sampling rate
(during experiments / max. possible)

Force ±500 N 1 kHz / 100 kHz

Position 225 mm 1 kHz / 100 kHz

Motor current 15 A 200 kHz / 500 kHz

Motor voltage ±32 V 200 kHz / 500 kHz

Temperature –30/200◦C 1 Hz / 100 Hz

Vibrations Peak 60 g, 0.3–6000 Hz 51.2 kHz / 51.2 kHz

Motor rotation 200 CRP Given by rotation speed (up to 20 kHz)

A Honeywell Load Cell 151 is used as a force sensor. It is an S-beam tension and compression
sensor that is, besides the data acquisition, used in a load control loop. Also, data from the
sensor are utilised in a safety feature that protects the system from overloading. The position
is measured with a Honeywell SPS-L225-HALS magnetoresistive linear sensor. This sensor
allows controlling the movement of the tested actuator on predefined paths. The system enables
motor current measurement with a current clamp or a current sensing pin, part of the H-bridge
driver. The frequency range of the Fluke i30s current clamp is from DC to 100 kHz, allowing
the analysis of artefacts caused by PWM switching. In contrast, the H-bridge current sensing
significantly suppresses PWM switching artefacts, which may be beneficial for some types of
analysis that would otherwise require low-pass filtering. A voltage is acquired utilising the voltage
divider placed directly next to the motor supply cables. The temperatures are measured with four
miniature Pt100 sensors (indicated in diagram as T1, T2, T3 and T4), whose positions can
be changed depending on the specific demands of an experiment. The typical placement of
temperature sensors is at the motor, gearbox, rod housing and frame of the testing system to
measure ambient temperature. The system offers two measurements of vibrations using two
Bruel&Kjaer 4507-B-004 accelerometers (indicated in diagram as A1 and A2), usually placed
at the motor and the gearbox. The rotation of the tested motor is measured with an 5421-ep111
optical encoder.

The system allows conducting experiments with one or two EMAs, depending on the re-
quirements of tests. Two different EMAs with similar parameters were used during experiments.
The DSZY1 actuator is manufactured by the Drive-Systems Europe Ltd and TA 2 actuator by
Timotion. The detailed picture with a description of actuators is in Fig. 6. Both EMAs consist of
a brushed DC motor, a speed reducer gearbox and a housing with a rod that uses a screw and nut
to transform rotary to linear motion. The parameters of tested actuators are shown in Table 2.
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Fig. 6. DSZY1 and TA 2 actuators used during experiments.

Table 2. Parameters of the tested EMAs.

Parameter DSZY1 TA 2 Unit

Motor voltage 24 24 V

Maximum load 150 120 N

Maximum speed at 24 V 40 to 45 33 to 44 mm/s

Motor speed at 24 V 6000 4000 RPM

Rod stroke 200 150 mm

Gear ratio 5:1 5:1 –

Typical current 2 1.2 A

The EMAs are driven by the fully integrated EV-VNH7070AS H-bridge drivers manufactured
by STMicroelectronics. These drivers enable controlling in ranges up to 28 V, 15 A, and PWM
up to 20 kHz. They are also equipped with various protection functions such as overvoltage
protection, short-circuit protection, thermal fuse, current and power protection or inductive voltage
diodes.

The block diagram also comprises three different power supplies used in the system and
a conditioning circuit responsible for amplifying the force sensor signal and noise reduction.

3.2. Mechanical construction

The testing system’s mechanical construction comprises a frame, linear guides, one or two
EMAs, and brackets to attach the actuators and sensors. The frame is made of lightweight
aluminium, and can be modified based on the actuator’s specific dimension. The construction
with one EMA is shown in Fig. 7.

The tested EMA is attached to the frame at the bottom, and its upper part is connected to
the movable trolley through a force sensor. The trolley slides on guides in a linear motion and
allows force-loading of the tested actuator, using either static weight or artificial load. The static
weight is composed of metal blocks for scalable force loading in one direction. In order to achieve
variable force loading in both directions, a secondary actuator can be attached.

513

https://doi.org/10.24425/mms.2022.140040


O. Hanuš, R. Smid: NON-INTRUSIVE CURRENT-BASED FAULT DETECTION OF ELECTRO-MECHANICAL ACTUATORS . . .

Fig. 7. Mechanical construction of the testing system with the TA 2 actuator.

4. Experimental Results

4.1. Jam detection

The algorithm for jam detection was verified in a series of experiments. The testing was
performed for different working conditions, including various duty cycles, movement speeds, and
loads. Conditions during experiments were determined as follows: 𝑓𝑆 = 2 kHz, 𝑓𝑃 = 16 kHz,
𝑎 = 3, 𝑁𝑤𝑝 = 38 (see (1)) and the longest time of a commutation spike was measured as
𝑇max = 67.6 ms, therefore 𝑁𝑤𝑐 = 13520 (see (2)). This period corresponds to the rod’s movement
at a rate of 𝑣min = 0.8 mm/s, which is about 1.7% of the maximum speed. The fault detection
thresholds are determined from the measurements conducted on the EMA without any load at
the lowest speed. The span of values of commutation peaks and the averaged current in this
measurement are minimal compared to all possible states during the nominal operation of EMA.
Therefore, thresholds are established as 50% of these values to ensure acceptable margins. The
resulting thresholds came out as 𝑋𝑝𝑝 = 50 mA and 𝑋𝑎 = 65 mA.

The jam fault was simulated using a solid mechanical barrier in the path of the actuator rod.
The rod impact into the barrier was either direct (hard stop) or gradual using a resilient insert
(soft stop). The example of current change measured during the jam fault is depicted in Fig. 8.
The figure illustrates the course of averaged and peak-to-peak signals that the algorithm uses for
fault detection.

Two outcomes from the method testing are shown in Fig. 8. The experiment in Fig. 9a was
performed with the duty cycle 𝐷 = 100% and the evaluation time set to 𝑇𝑜 = 0.1 s. The nominal
operation can be seen at the beginning of the experiment. After about 500 ms the load is so high
that the motor cannot move anymore, and the algorithm detects a fault which is highlighted in
the frame called “Fault detection” (values 1 or 0). The detected state is evaluated after the set
time has elapsed as a jam fault. This experiment shows the case of a hard stop at the full speed
of the actuator. The raw data are fully overlapped by filtered data in this case, as explained in
Section 2.1. Figure 9b shows a situation where the actuator was driven slowly (𝐷 = 20%) to a soft
stop. Oscillations between 3 to 4.5 seconds in the filtered signal demonstrate the deformation of
resilient material before the jam.
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Fig. 8. Example of calculated components of electric current during the jam of an EMA.

Fig. 9. Jam fault detection: a) hard stop, b) soft stop.

It can be seen from Fig. 9a and 9b that by setting a longer time to acknowledge the fault, false
positive detection can be prevented.

Figure 9b also demonstrates that simple overcurrent current protection would be not sufficient.
When the EMA is driven using low duty cycles, the averaged current is within the nominal range
even when the actuator is jammed.

The proposed method was tested and evaluated using 35 records of nominal (no fault injected)
operation and 34 records containing jam faults. Each test was performed under different operating
conditions. The duration of the jam fault was higher than 500 ms in 31 records, two had jams
shorter than 300 ms, and one had a jam fault between 300 and 500 ms. The confusion matrices
in Fig. 10 summarise the ability of the presented method to detect faults.
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Fig. 10. Confusion matrices for jam detection with different evaluation times:
a) 0.5 seconds, b) 0.3 seconds, c) 0.1 seconds.

The method uses three measured motor parameters that can vary for individual motors piece
by piece. The effect of variability 𝑇max and minimal of peak-to-peak and averaged current were
tested. The experiments were performed for each of the tested parameters separately. Individual
parameters were examined in the range of 5 to 195% of the correct measured value. The testing
was conducted for a set of 32 nominal records and 32 records with jam faults. The set of records
was selected to be always correctly evaluated at 100% of the tested parameter. All experiments
were conducted for 𝑇𝑜 = 0.3 s. The results from the experiments are shown in Fig. 11.

Fig. 11. Influence of input parameters on the jam detection method.

4.2. Winding short detection

The winding short detection method was tested during the DSZY1 actuator’s faulty and
nominal operation. During tests, the actuator was autonomously driven by a controller that moved
the rod along predefined trajectories. The function generator produced a position set-point, which
formed sinusoidal, triangular and rectangular motion profiles. The EMAs were exposed to loads
20%, 53%, 100%, and 120% of the nominal load for each motion profile during experiments.
Two faults were injected by artificially shortening the two nearest turns of the rotor coil. In the
case of Fault 1, two turns of the same coil were shorted, and in the case of Fault 2, two turns of
different coils were shorted. The artificial faults are shown in Fig. 12.
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Fig. 12. Rotor winding – a) intact winding, b) detail of Fault 1, c) detail of Fault 2.

Conditions during the experiments were determined as follows: 𝑣max = 6000 RPM, 𝑟 = 10
thus𝑇𝑑 = 0.2 s (see (5)), 𝑓𝑆 = 200 kHz and 𝑓Δ = 5 Hz (see (6)). The following examples illustrate
the function of the proposed method’s data selection and spectrum analysis blocks.

An example of data selection is shown in Fig. 13. The sinusoidal motion profile, which
includes various motor speeds, was applied during the experiment.

Fig. 13. Example of data selection based on the indicating signal.

Figure 13 shows time marks at the end of selected data segments. The amplitude of the
indicating signal is multiplied by two for better visibility. Notice that the indicating signal is high
after rapid changes in the current and low when the signal is uniform; selected areas were used
for spectrum analysis.

An example of analysis with three different cases is depicted in Fig. 14. The “Low speed” case
shows a situation where the frequency found in the required range is, in fact, the second harmonic
commutation frequency. The algorithm therefore continuously checks whether the significant
peak is at half the value of the found peak to detect the fundamental commutation frequency
correctly.

Winding short detection is based on searching for the significant amplitude at twice 𝑓𝑀 .
Figure 14 shows the case of a winding short where the significant amplitude should be at frequency
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Fig. 14. The amplitude spectrum analysis where 𝑓𝐶 are fundamental commutation frequencies,
𝑓2𝐶 is the second harmonic of 𝑓𝐶 and 𝑓𝑤𝑠 is a winding short fault. The area between dashed lines
represents the required speed range (in this case 50-100%) for which the calculated 𝑋𝑠𝑟 thresholds

are displayed. The 𝑋𝑤𝑠 threshold is defined as half of the 𝑓𝐶 amplitude.

𝑓𝑤𝑠 = 2 · 𝑓𝐶/𝑁𝐶 = 2 · 430/8, thus 𝑓𝑤𝑠 = 107.5 Hz. The peak at 105 Hz reveals the winding
short. The threshold defining fault was set at amplitude as 𝑋𝑤𝑠 = 𝑋 ( 𝑓𝐶/2). The height of 𝑓𝑤𝑠 is
three times more than 𝑓𝐶 , indicating the distinctive extent of the damage. The “No defect” case
shows no significant peak lower than commutation frequency, which means no fault is present.
The algorithm also excludes inappropriate data from analysis when the speed of the motor varies.
Varying speed is exhibited by the low amplitude and a smeared peak of examined frequency. The
measurements showed that a sharp peak during nominal operation is usually more than ten times
higher than the mean value The threshold 𝑋𝑠𝑟 was therefore set to quintuple of the mean value.
Thresholds are always calculated for each case individually, which can be seen in Fig. 14.

Three outcomes from the method testing are shown in Fig. 15. This example shows one period
of rectangular, sinusoidal and triangular motion profiles.

Green, red or grey highlighted stripes are areas selected by the data selection algorithm.
Figure 15a shows the output of the detection method during nominal operation. The rectangular
motion profile, which includes areas where the actuator holds the target position, was applied
during the experiment. These areas are not suitable for fault detection, and therefore they have
been automatically excluded from the processing. The relevant areas are evaluated as nominal.
Figure 15b and 15c shows examples of sinusoidal and triangular movements with winding short
faults. After three positive fault indications, the winding short failures are acknowledged in both
cases.

The fault detection ability of the proposed method was evaluated in a set of experiments. The
set consisted of 24 nominal records, 12 with Fault 1 and 12 with Fault 2. Figure 16 summarises
the ability to detect faults after a certain time.

An essential input parameter of the method is the maximum RPM. This parameter may vary
slightly for individual motors, and therefore the influence of RPM has been further investigated.
The effect was tested on a set of 24 nominal records and 24 records containing winding short
faults. Each of the records was 44 seconds long. The parameter was placed between 70 and 130%
of the correct value during testing. The result of the experiment is shown in Fig. 17.
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Fig. 15. Example of outcomes from the winding short detection algorithm (a, b, c) and the position of actuator rod
recorded during these experiments (d). Highlighted stripes represent the data blocks selected for spectrum analysis, and
their colour indicates results: green – no fault detected, red – a winding short detected, grey – data excluded from fault

detection analysis (low or changing motor speed), a red dashed stripe – fault confirmed.

Fig. 16. Confusion matrices with different record lengths used for evaluation of fault detection:
a) 8 seconds, b) 11 seconds, c) 14 seconds.

Fig. 17. Influence of input parameter on the winding short detection method.
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5. Discussion

The performed experiments point out to some beneficial properties of the presented methods.
The advantage of both presented methods is that they use only basic electromechanical properties
of the actuator and the electric current measurement. For comparison, other jam detecting methods
require additional sensors to measure parameters such as temperature, vibration or position [15]
or statistical approaches utilising learning [7].

In the case of winding shorts, there are some methods for faults detection in EMAs with
brushless DC (BLDC) motors [16]. Due to the different electrical excitation of the winding, the
manifestation of faults is entirely dissimilar, and these methods cannot be used for EMAs with
brushed DC motors. For a brushed DC motor, there are some hidden Markov model (HMM)-
based methods [17]. Unlike the proposed methods, these techniques use a supervised learning
approach, which is a significant disadvantage preventing their use in industry.

The proposed methods are also able to deal with the dynamic behaviour of EMA operation.
The jam detection method uses dynamic changes during operation to evaluate the movement of
EMA, while the winding short fault detection method utilises a novel approach to distinguish in
which sections of the signal the analysis should be performed. In contrast to other techniques
that utilise additional sensors or procedures, such as various order tracking or machine learning
methods, the proposed approach does not require supplementary information sources and complex
implementations.It can therefore be easily implemented in embedded devices such as generic 200
MHz microcontrollers or directly into control units typically equipped with current sensing [5].

The detection speed is different for each method. In the case of jam detection, the time to
detect a fault is given by the evaluation time, which was never longer than half a second during
the experiments. In the case of winding short detection, the time of fault detection depends on the
extent of the failure, chosen thresholds, and the most on the actuator operation conditions. The
time to detect a fault can vary in the range of several to tens of seconds. Even though the fault
may not be confirmed immediately, it is possible to inspect its development by monitoring the
defect amplitude in the spectrum.

Both methods are equipped with fault evaluation procedures that help avoid incorrect classi-
fication. In the case of the jam detection method, the evaluation time should be set individually
according to the required detection sensitivity. The fault evaluation procedure of the winding
short detection method ensures that the method classifies nominal records correctly. It delays the
fault confirmation but also increases the detection accuracy.

The proposed methods were also tested for sensitivity to the variability of input parameters.
The winding short detection method is more sensitive to maximal speed parameters, which may
cause false alarms when the motor has higher RPM than expected. However, the loaded actuator
tends to operate slower, so this limitation is not crucial.

6. Conclusions

This article introduces two data-based fault detection methods for electromechanical actuators
(EMAs) with a brushed DC motor. Both methods are based on an analysis of motor current
intensity.

The first method for jam detection is based on monitoring commutation oscillations that
indicate the motor’s movement. The detected oscillations are compared with the average current
utilising electromechanical parameters of the EMA determined during nominal operation. The
relation between these parameters allows identifying whether the actuator is jammed. Unlike
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conventional overcurrent protection, the proposed procedure provides jam fault detection even
during operation when the power or force of the actuator is limited.

The second method detects winding short faults. The operation of an EMA tends to have the
rapid speed or direction changes based on the mode of operation. The measured current is first
examined to find time periods suitable for reliable fault detection. The proposed algorithm uses
a novel data selection procedure that utilises the kurtosis and coefficient of variation to estimate
the motor’s stable operation. Selected signal sections are processed using spectrum analysis to
find frequencies that indicate a winding short fault. This approach allows the detection of the fault
and monitoring of development and the extent of the fault by comparing the measured amplitudes.

Both methods were tested using a series of experiments, and their ability to detect defects
was evaluated. The experiments proved that proposed methods can work under various modes
of operations, including rapid changes in speed or direction of motor rotation, variable loads,
or different movement regimes and detect faults successfully. In addition, the robustness of both
methods was verified via a variety of experiments that tested the sensitivity to input parameters.
The advantage of the presented methods is that they only require knowledge of the EMA’s basic
electromechanical properties, such as maximum and minimum motor speeds and commutator
arrangement. Also, they employ the measurement of only one quantity, motor current intensity,
which is accessible on the motor driver. Thanks to the non-intrusive approach and low computa-
tional complexity, the proposed methods are easy to implement in industrial applications utilising
EMAs.

The research results and benefits of the proposed approach can be summarized as follows:
– The proposed methods utilise only the current measurement and basic electromechanical

properties of actuators.
– They do not require any additional sensors, sources of information or complex data pro-

cessing methods to work under varying operating conditions.
– They are easy to implement because they do not need interventions into the actuator, thanks

to a non-intrusive approach.
– They utilise techniques to reduce computational complexity, and therefore diagnostics can

be performed at the level of the control power unit.
Future work will be devoted to further development of non-intrusive approaches. Measurement

and processing of electrical voltage in combination with the current can significantly expand the
number of detectable faults. In addition, data measured during operation can be compared with
historical data, which will benefit predictive systems that monitor equipment service life.
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