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EKIN KÖKeN 1*

ASSESSMENT OF LOS ANGElES ABRaSION ValUE (LAAV) aND MaGNESIUM SUlPHaTE  
SOUNDNESS (Mwl ) OF ROCK AGGREGaTES USING GENE EXPRESSION PROGRaMMING  

aND ARTIFICIal NEURal NETWORKS

It has been acknowledged that two important rock aggregate properties are the Los Angeles abrasion 
value (LAAV) and magnesium sulphate soundness (Mwl). However, the determination of these properties 
is relatively challenging due to special sampling requirements and tedious testing procedures. In this stu-
dy, detailed laboratory studies were carried out to predict the LAAV and Mwl for 25 different rock types 
located in NW Turkey. For this purpose, mineralogical, physical, mechanical, and aggregate properties 
were determined for each rock type. Strong predictive models were established based on gene expression 
programming (GEP) and artificial neural network (ANN) methodologies. The performance of the proposed 
models was evaluated using several statistical indicators, and the statistical analysis results demonstra-
ted that the ANN-based proposed models with the correlation of determination (R2) value greater than 
0.98 outperformed the other predictive models established in this study. Hence, the ANN-based predictive 
models can reliably be used to predict the LAAV and Mwl for the investigated rock types. In addition, the 
suitability of the investigated rock types for use in bituminous paving mixtures was also evaluated based 
on the ASTM D692/D692M standard. Accordingly, most of the investigated rock types can be used in 
bituminous paving mixtures. In conclusion, it can be claimed that the proposed predictive models with 
their explicit mathematical formulations are believed to save time and provide practical knowledge for 
evaluating the suitability of the rock aggregates in pavement engineering design studies in NW Turkey.
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1.	I ntroduction

Due to the advances in the construction and building industry, the demand and supply for 
rock aggregates have increased considerably. In the USA, for instance, an estimated 364 million 
metric tons of crushed stone was produced and shipped for consumption in the fourth quarter 
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Based on AASHTO T104 [32], soundness refers to aggregate durability under meteorological 
conditions and indicates the resistance to physical and chemical weathering of fine and coarse 
aggregates. From this perspective, the effects of freezing-thawing on rocks have been handled 
by direct and indirect testing methods. Within the direct testing method, freezing-thawing cabi-
nets have been utilised for rock and soil samples as specified by TS EN 1367–1 [33] and ASTM 
D6035/6035M [34], respectively. 

The magnesium sulphate soundness (Mwl), an accelerated weathering test, is another al-
ternative to simulating the freezing-thawing effects based on the dislocation of rock-forming 
minerals and volume expansion of grains [32,35,36]. Compared to the direct testing method, 
soundness tests such as sodium sulphate or magnesium sulphate are considerably preferable in 
most engineering applications due to their practicability.

Relating to the various environmental features, salt and ice crystallisation results in physical 
and chemical degradation in the rock itself [37-39]. When excluding the chemical properties of 
the solution engaging in the rock, salt and ice crystallisation are associated with thermodynamic 
properties of rock-forming minerals, pore geometry, size and micro-fissure-related moisture 
susceptibility of release surfaces [40, 41].

The presence of water or other salty solutions makes the overall rock structure slowly dis-
integrate and decreases the rock strength properties in the progress time [42]. Consequently, the 
water-rock interaction directly depends upon porosity and degree of microfracture in/on the rock 
material. The more the porosity and microfracture, the more susceptible is the rock. For instance, 
porous limestones can suffer from rapid degradation due to freezing-thawing cycles [43]. In this 
regard, soundness tests are convenient in assessing rock durability in harsh environmental condi-
tions with a view to porosity and microfracture effects under the domination of salty solutions. 
However, soundness tests have a long-lasting testing procedure (i.e., in practical applications, 
one cycle of magnesium sulphate soundness approximately takes two days, and for a complete 
examination, at least five cycles are mainly required, according to TS EN 1367–2 [35]. Herein, 
it is logical to suppose that practical approaches or empirical formulae focusing on the LAAV 
and Mwl would evaluate the rock aggregate quality from several aspects. Herein, Rogers et al. 
[44] emphasised the importance of Mwl for the evaluation of fine aggregates. Consequently, they 
found considerable relationships between Micro-Deval abrasion loss (MDE, %) and Mwl. Similar 
correlations were also obtained by Jayawickrama et al. [43], Phillips [45], and Fowler et al. [46].

Thanks to such empirical models or relationships, practical theories have been postulated, 
making engineering geological judgments much easier. Based on road and pavement design 
studies, rock aggregate quality must be quickly evaluated through practical approaches. The 
empirical models to predict several aggregate properties also provide practical knowledge on 
quarry quality control processes.

Therefore, fast and reliable techniques are required to estimate the fundamental aggregate 
properties. In this study, several aggregate properties of 25 different rock types located NW 
Turkey were documented. Statistical and soft computing methods were employed to estimate 
the LAAV and Mwl of the investigated rocks. For this purpose, mineralogical, physical and 
mechanical aggregate properties were determined for each rock type in the laboratory studies. 
Several predictive models were established based on gene expression programming (GEP) and 
artificial neural network (ANN) methodologies. The established predictive models were then 
compared to one another based on several statistical indicators. Furthermore, the suitability of 
the investigated rock types for use in bituminous paving mixtures was also evaluated based on 
an ASTM standard.
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microscope, the rocks were characterised from the mineralogical point of view. For this purpose, 
thin sections were prepared for each rock type, and the quantities of rock-forming minerals were 
determined based on the point-counting method clearly defined by Larrea et al. [51]. For each 
rock type, at least three thin sections were analysed under a polarised microscope, and average 
quantities of rock-forming minerals were presented in this study. 

Typical thin sections of the investigated rock are illustrated in Fig. 2. According to the thin 
section analysis results, it was determined that the mineralogical composition of the rocks is quite 
different due to the origins of the rock types. The mineralogical composition of the rocks is listed 
in Table 1. When focusing on Table 1, The calcite (cal) content of the limestones (R1-R12) var-
ied from 74% to 95%. The andesitic rocks (R13-R17) had hyalopilitic and porphyritic textures, 

Fig. 2. Typical thin sections of the investigated rocks



406

TaBle 1

Mineralogical composition (areal percentage) for each rock type

Constituent 
(%)

Rock type
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

Qtz. – – – – – – – – – – – – –
Orth. – – – – – – – – – – – – –
San – – – – – – – – – – – – –
Plg. – – – – – – – – – – – – 61

Pryx. – – – – – – – – – – – – 1
Ol. – – – – – – – – – – – – –

Horn. – – – – – – – – – – – – 1
Bt. – – – – – – – – – – – – 5

Mus. – – – – – – – – – – – – –
Ep. – – – – – – – – – – – – 1
Chl. – – – – – – – – – – – – 1

Clay min. – – – – – – – – – – – – 7
Lim. – – – – – – – – – – – – 1
Sid. – – – 1 1 1 1 3 2 – – 1 –
Cal. 74 80 95 93 89 95 79 91 92 80 93 94 –
Dol. – 11 1 4 – 1 2 1 – 18 6 5 –

Op. min. 1 1 3 1 – 1 2 4 1 1 1 – 6
Fossil rem. 25 8 1 1 10 2 16 1 5 1 – – –
Ground m. – – – – – – – – – – – – 16

Constituent 
(%)

Rock Type
R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25

Qtz. – – 1 – – – 1 24 31 11 – –
Orth. – – – – – – – 10 12 7 – –
San. – – – – – – 2 – – – – –
Plg. 74 75 71 64 69 84 53 47 33 66 62 58

Pryx. 2 3 4 5 12 5 – 6 7 6 16 14
Ol. – – – – 1 – – – – – 3 1

Horn. – 1 3 18 2 1 – 7 5 4 4 10
Bt. 3 3 3 2 1 1 1 4 5 2 2 7

Mus. – – – – – – 1 – 1 1 –
Ep. 1 1 1 – 1 1 2 1 – 1 1 2
Chl. 1 – 1 – – – – – 1 – – 2

Clay min. 1 1 4 – – 1 1 – 1 – – –
Lim. 2 – – – – 1 1 – – – – –
Sid. – – – – – – – – – – – –
Cal. – – – – – – – – – – – –
Dol. – – – – – – – – – – – –

Op. min. 9 6 4 6 6 2 1 1 4 2 12 2
Fossil rem. – – – – – – – – – – – –
Ground m. 7 10 8 5 8 4 37 – – – – 4

Explanations: Qtz: Quartz, Orth: Orthoclase San: Sanidine, Plg: Plagioclase, Ol: Olivine, Horn: Hornblende,  
Bt: Biotite, Mus: Muscovite, Ep: Epidote, Chl: Chlorite, Clay min: Clay minerals, Lim: Limonite, Sid: Siderite, 
Cal: Calcite (including micritic and sparitic) Dol: Dolomite, Fossil rem: Fossil remnant, Ground m: Ground mass.
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are presented in the following section. However, it should be mentioned that several researchers 
[56-59] adopted and emphasised the LAAV test for evaluating the aggregate quality from several 
geological engineering aspects.

In this manner, it can be claimed that the LAAV reflects the mechanical quality of rock ag- 
gregates, whereas the Mwl can be of prime importance when assessing the resistance of rock  
aggregates against freezing-thawing and salt attacks.

Fig. 4. Relationships to predict the LAAV and Mwl
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ment various GEP models. In the models, the number of chromosomes, head sizes, and gene 
sizes were set to 30, 8, and 3, respectively. The linking function was the addition, and root means 
square error (RMSE) was regarded as the fitness function. As a result of the GEP analyses, the 
sub-expression trees obtained from the GEP analyses are given in Fig. 5. 

Fig. 5. Sub-expression trees for the proposed GEP model
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ANN model were 0.993, 0.413, 0.221, and 99.32. Hence, the performance of the ANN models 
for estimating LAAV and Mwl are closer to the theoretically expected R2 and VAF values. In this 
direction, when comparing the statistical indicators of the GEP models with those obtained from 
the ANN analyses, the ANN-based models were found to have a higher prediction capability. 
The performance evaluation of the proposed models is also illustrated in Fig. 7, which clearly 
shows their prediction capability for each case.

TaBle 6

Performance evaluation of the predictive models

Model No Dependent variable Equation R2 RMSE MAPE VAF

GEP 
Models

LAAV 2 0.843 2.742 2.291 84.34
Mwl 6 0.864 1.830 1.571 86.37

ANN 
Models

LAAV 10 0.982 0.945 0.332 98.21
Mwl 15 0.993 0.413 0.221 99.32

4.5.	 Assessment of the investigated rocks for bituminous  
paving mixtures based on the proposed soft  
computing models

The soft computing tools (i.e., GEP and ANN) utilised in this study provide practical 
knowledge about estimating the LAAV and Mwl values of the investigated rocks. For a deeper 
investigation of the suitability and long-term usability of the investigated rocks, the measured 
and predicted LAAV and Mwl values were considered concerning the technical requirements 
of ASTM D692 / D692M [54]. Prior to this evaluation, it should be mentioned that based on 
the regression analysis (Fig. 4), the LAAV can be declared as a function of AIV, MDE, and 
PLS to some extent. On the other hand, the Mwl is associated mainly with the wa of the inves-
tigated rocks. 

Using such rock properties, strong predictive models were established based on the GEP and 
ANN analyses. Since the LAAV and Mwl are critical parameters, especially for road and pave-
ment design studies, they were evaluated using high-precision measuring tools or techniques. For 
assessing the rock aggregate quality, these parameters (i.e., LAAV and Mwl) were emphasised 
and highlighted by Köken et al. [67]. In that study, rock weathering was declared a critical phe-
nomenon for rock quality control processes. Since progressive rock weathering decreases the 
overall rock quality, only unweathered rock materials were considered and used in the present 
study. Therefore, their weathering trends were not evaluated. It is, however, required to have 
quantitative results on their weathering trends using rock weathering indices or ageing tests for 
further studies. Notably, the wa is a critical variable for bituminous paving mixtures. It is also 
necessary to be considered since asphalt absorption of rock aggregates in bituminous paving 
mixtures is associated with the wa of rocks [68, 69].

Coming back to the predicted LAAV and Mwl values, when comparing the LAAV and Mwl 
values obtained from the GEP and ANN models, it can be claimed that the predictions of the 
GEP models are sensitive to various rock types. On the other hand, the ANN model seems to be 
more stable and provides more consistent LAAV and Mwl values (Fig. 7). 
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