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In this study, the thermal conductivity ratio model for metallic oxide based nano-fluids is proposed.
The model was developed by considering the thermal conductivity as a function of particle con-
centration (percentage volume), temperature, particle size and thermal conductivity of the base fluid
and nano-particles. The experimental results for Al,O3, CuO, ZnO, and TiO, particles dispersed in
ethylene glycol, water and a combination of both were adopted from the literature. Artificial neural
network (ANN) and power law models were developed and compared with the experimental data
based on statistical methods. ANOVA was used to determine the relative importance of contributing
factors, which revealed that the concentration of nano-particles in a fluid is the single most important
contributing factor of the conductivity ratio.
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1. INTRODUCTION

The fluids such as engine oil, water and ethylene glycol are widely used fluids in different thermo-fluid
systems, having low thermal conductivity. The thermal behaviour of nano-fluids prepared by mixing base
fluid with nano particles was first studied by Choi and Eastman (1995). The study reported that the
homogenized mixture of nano-particles at low volume fraction with conventional fluids such as ethylene
glycol, glycerine, oil, and water remarkably increased the thermal performance. Nano-fluids have been
thoroughly investigated and their importance has been studied by Sayes et al. (2006), Wang et al., (2006).
These models depict the impact of nano-particles on the thermal conductivity of the combination. This
prompted the advancement of new hypothetical models to assess the thermal conductivity of nano-liquids,
which reveals the strong dependence of the two. Brownian motion was used by Koo and Clement (2004)
to study the heat transfer enhancement by nano partcles.
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Lately, neural networks (ANN) with broad limit and effortlessness were used in different mechanical
and design fields. Thus ANN was used for predicting the thermo physical characteristics of nano-liquids
by Mohanraj et al. (2012). Studies conducted on nano-fluids have shown that the thermal conductivity
ratio (k, s /kpy) is effected by factors: concentration, temperature, size, nano-particle thermal conduc-
tivity, base fluid thermal conductivity, pH, shape factor and also the preparation technique of nano-fluid.
Mathematically, it can be given by:

k
nf =F(®’T,kbf7kp,D3S’pH) (1)
kbf

Most of the models use only two characteristics of nano-fluids i.e., concentration of nano-particles and
temperature of nano-fluid. Only few models have included particle size and thermal conductivity of base
fluid. However, no equation or group of equations could be found in the literature which takes into account
all the parameters affecting thermal conductivity, resulting in the deviation from the experimental results.
This study aims to develop a model based on concentration, temperature, diameter, thermal conductivity
of base fluid and nano-particles in bulk with minimum deviations from the true values. The main aim of
this study is to provide a general approach for calculating the thermal conductivity ratio of metallic oxides
based nano-fluids using ANN and power-law regression model. This study further aims to further evaluate
the contribution percentage of each factor by ANOVA.

2. MODELLING METHODOLOGY

Thermal conductivity ratio being a nonlinear function of input factors, a power model is assumed, to take

non linearity into account.
knr

kbf:aXQbXTcxk;’xszfo 2)
where k,, and kj, s are thermal conductivity of nano-particle, and base fluid in W/(m-K), @ concentration
(% volume), T is temperature in Kelvin, D is nano-particle diameter in nano-metres. The model parameters
a, b, c,d, e, and f in Eq. (2) were estimated using least square method. In Eq. (3), C is the coefficient
matrix

c=[aT A [47] 5] ®

Artificial neural is a kind of intelligence that has a capacity to learn without being expressly customized. It
utilizes the presented information and draws inductions from the presented data. The general architecture
of an ANN is shown in Fig. 1.
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Fig. 1. Weighted synapses of ANN

The nature of ANN is exceptionally subject to the appropriate choice of information boundaries. The
feed-back multilayer was applied to reproduce the output i.e. thermal conductivity. Multilayer perceptron
neural network has various layers that include counterfeit neurons associated with the neighbours in the
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network. Every unit has the capacity of getting, figuring, and sending information. In the initial phase of
ANN, the information is acquainted with the network along with the ideal yield. At first, the inputs are
set haphazardly and the backpropogation algorithm is used for calculations, to accomplish an agreeable
degree of accuracy. The back spread calculation is a learning strategy that changes loads in ANN by
proliferating weight changes backward from the yield to enter neurons. At the point when the acceptable
degree of execution is accomplished, the preparation stops. At this stage, the organization utilizes these
loads to settle on choices. The neural network MATLAB tool kit was used for ANN for modeling. A few
autonomous runs having diverse introductory arbitrary loads were performed to achieve desired results.

3. RESULTS AND DISCUSSION

The power regression model and ANN network were developed to predict the thermal conductivity ratio
of metallic oxide of nano-fluids. The data for the modelling was adopted from Chandrasekar et al. (2012),
Kumar et al. (2018), Lee (2008), Lee et al. (2015), Putra et al. (2003), Sundar (2014), Wang et al. (2005),
Yiamsawasd et al. (2012). ANN network was trained on a sample of 214 datasets, with each set containing 5
input parameters and one output. This procedure was carried out using ANN MATLAB toolbox using 150
data points for training and 32 each for testing and validation, thereby creating a neural network capable of
predicting outputs. During the training phase ANN predicted the output values for each of these 214 sets
of data inputs based on what the network had learned in the training phase. Further, the power-law model
parameters were determined using the experimental data. The coefficients were calculated by adopting the
same data used in the ANN training phase. The final regression equation is given as:

knfr
bf

= 03135 x @00474 5 702262 k?70393 % kg(])§15 w -00408 @

Eq. (4) predicted the outputs by back testing the same inputs. The results of ANN and power law model
were compared with the experimental data as shown in Fig. 2. MSE, MAE, MAPE, MAD were calculated

Training R=0.969

Validation R=0.963
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Fig. 2. Correlation coefficient for ANN model
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as deviations from experimental values. Fig. 3 shows 21 randomly selected outputs as predicted by ANN.
In order to check the validity of both ANN and regression models, the models were used to predict outputs
from a sample of 17 data sets of inputs which were not used in the training phase, these data sets were
specifically kept for predicting purposes. The performance of the current models was compared with
statistical performance parameters of existing models in literature. A comparison between experimental
and model values is depicted in Fig. 3. This study was carried out on a significance level of 95%. The
contribution of concentration (% volume), temperature, size, k (base fluid) and & (metal) factors to thermal
conductivity ratio was found to be 77.10%, 10.26%, 10.05%, 0.00% and 1.51% respectively. The single
most dominant factor affecting thermal conductivity ratio is concentration (%ovolume). At the same time
thermal conductivity of base fluid is found to have no bearing on overall results.
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Fig. 3. Experimental vs. predicted values of thermal conductivity ratio

4. CONCLUSION

ANN and power-law were used to predict the thermal conductivity ratio of metallic oxide. Nano—fluids with
reasonable degrees of accuracy as suggested by the statistical parameter MAPE being as low as 0.9% for
ANN and 2.1% for the power-law model were found during the training phase and MAD being 0.010365
and 0.0239 respectively. During the testing phase, the deviations increased considerably with MAPE being
3.45% for ANN and 4.01% for the regression model and MAD being 0.028828 and 0.02391 respectively.
At the same time, TS (tracking signal) during testing was found to be 0.1045 for ANN and 0.033411 for the
regression model which suggests a negative bias implying the predicted values are lower than experimental
values. During the testing phase, the TS in case of ANN is 2.83 which makes the signal significant and
implies a larger negative bias. The predictions in general are lower than experimental values. In other cases,
as TS = 5.75 (> 3.75). This suggests persistent underprediction which makes the model unreliable to an
extent. At the same time, MAE during both training and testing for ANN (7%, 9%) and the power-law
model (15%, 19%) is quite large. This becomes quite considerable because the thermal conductivity ratio
rarely exceeds 30% so a maximum error of 19% cannot be ignored. The performance characteristics were
also compared with other studies, which revealed an interesting observation. The present models performed
as well as other models and even better on some parameters like MAD. This is important because the
present models are applicable to a wider range of nano-fluids, whereas existing models were limited to at
most two types of nano-particles dispersed in a single base fluid. Finally, nano-particle concentration was
found to have the largest influence on the thermal conductivity ratio.
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