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Abstract: Humic substances are ubiquitous materials found in terrestrial and aquatic 
ecosystems. Humic acids, a diagenetic product can interact with various components 
present in aquatic sediments. The present research is on the evaluation of sedimentary 
humic acids from the Krossfjorden glacial fjord situated within the Svalbard archipelago. 
The results of this study are needed to understand the structural characteristics of humic 
acids isolated from the fjord. Surface sediment samples were collected from four stations 
throughout the fjord during a summer period in 2018. Various spectroscopic techniques 
such as UV-visible, Fourier-transform infrared spectroscopy (FTIR), and Nuclear magnetic 
resonance spectroscopy (NMR) were applied for studying the humic acids. The elemental 
composition as well as the presence of tannin and lignin were also analyzed. The results of 
this study revealed the variation in the structure of humic acids from aliphatic to aromatic 
from the outer to the inner region of the fjord. This change in humic acids was well 
supported by the FTIR and NMR results with differences in the spectrums.  
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Introduction

The impacts of climatic variations are distinctively higher in the Polar
environments when compared to the rest of the world. An appropriate site in
connection with this distinctiveness is relevant to studying the effects of climatic
changes in marine environments. One such site is an Arctic double fjord system
located at the Svalbard Archipelago, a Norwegian Arctic Region. The specific
characteristics of this fjord system include how the freshwater is supplied as
meltwater from the surface and as icebergs at deeper levels of calving glaciers
(Svendsen et al. 2002). The fraction of suspended particle accumulation in this
fjord system was studied by various researchers (Koide et al. 1973; Meslard et al.
2018). This deposition process depends on the physical properties of suspending
particles. The coarse grains deposit close to the glacier front whereas the fine
particles accumulate near the glacial outflow and the rest of the particles were
transported by surface waters and deposited in the middle and the outermost part
of the fjord (Zaborska et al. 2006).
The transformation of organic particles in the Arctic region proceeds under

specific conditions which are the characteristic features of this bioclimatic zone.
The low temperature, humidity, and a short span of biological activity make the
humification and mineralization processes unfavorable in these regions. There-
fore, the polar sediment zone contains higher levels of organic matter,
notwithstanding a limited input of organic matter remains determined by a low
primary production (Dziadowiec et al. 1994). The humic acid formation in
specific conditions can exhibit specific characteristics making it different from
other environments.
The studies on the nature and characteristics of humic acids isolated from

Arctic fjords, especially in the Krossfjorden are very scarce (Mathew et al. 2019).
Most of the studies were performed in the Arctic tundra soils (Schnitzer and
Vendette 1975; Dziadowiec et al. 1994; Abakumov et al. 2015; Chukov et al.
2017; Lodygin et al. 2017; Zherebker et al. 2019). Other than tundra soils there
are also works related to the molecular composition of humic acids isolated from
lake sediments (Guzeva et al. 2021). Hence, this work is an attempt to find out
the nature of humic acids isolated from the sediments of Krossfjorden and to
understand the spatial variability in their structure.

Study area

The organic matter present in this north most regions on earth is suitable for
studying the early stage of the humification process entirely different from
those happening in the rest of the world. The climatic conditions prevailing in
these regions are the major cause of the specificity of their organic matter
components. The area under study is a glacial fjord system named Krossfjorden
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located at 77°30'N and 13°06'E with the orientation in a north to south direction.
The 30 km long fjord system has a width varying between 3 and 6 km. The Kong
Haakons Peninsula divides the inner part of the fjord into two parts,
Lilliehookfjorden and Mollerfjorden. The estimated volume of the Krossfjorden
is about 25 km3 (Howe et al. 2016). The fjord system is influenced by the
climatic changes from two directions, the inner part of the fjord with glacier
inputs and the outer part of the fjord with an opening to the sea. Alterations in the
glacier melting process will cause changes in the runoff pattern. The temperature
and salinity changes in the adjacent Atlantic and Arctic water will cause changes
in the fjord through exchange processes (Svendsen et al. 2002).

Methods

Sampling. — The sediment sampling from the fjord system was done once
during summer in July 2018. Four samples were collected from upper 10cm
sediments across the fjord. AVan Veen grab was deployed from the research boat
M.S. Teisten for the purpose. Four stations from Krossfjorden, i.e., K1, K2, K3,
and K4 (Fig. 1) were located in the inner-outer region of the fjord. The sediment
samples were transferred to –20°C at the earliest and were cold shipped to our
laboratory for further analysis.

Fig. 1. Map of the Krossfjorden from the GEBCO 2020 data. The dashed contour lines represent the
bathymetry. The red symbol represents the station locations. The shaded region represents the
topography.
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Isolation and characterization of humic acid. — About 1kg of air-dried
sediment samples from each station were initially treated with 1N HCl for the
elimination of weakly bound carbonates, sulfates, hydroxides, etc. (IHSS 2010a,
2010b). The removal of the HCl solution was done after a few minutes with the
settlement of the sediment particles. It is then followed by the extraction process
involving 1N NaOH. The samples were continuously shaken for 24 hours in
a rotary shaker and allowed to rest overnight at room temperature. The soluble
humic material was collected and acidified with 6M HCl for precipitation by
adjusting the pH in the range 1–2. The solution was kept overnight for complete
precipitation. The separation of precipitate was done with a centrifuge and then
freeze-dried for further characterization with UV-visible (Thermofischer UV-
visible spectrophotometer - Model no. 117), Fourier-transform infrared spectro-
scopy (FTIR) (IR prestige 21 model of Schimadzu), and Nuclear magnetic
resonance spectroscopy (NMR) (400 MHz Bruker AVANCE III) spectroscopic
techniques (IHSS 2010a, 2010b; Kachari et al. 2015; Mathew et al. 2019). The
elemental composition of both humic acid and sediment was determined by
a direct ash-free analysis using a Carbon, Hydrogen, Nitrogen, Sulphur (CHNS)
elemental analyzer of Elementar Vario ELIII. Apart from these, the tannin and
lignin component was extracted with NaOH and estimated by sodium tungstate
phosphomolybdic acid method with a UV-visible spectrophotometer (Nair et al.
1989; APHA 1995). It was observed that there is no accurate and precise method
for humic acid determination. But the best-recommended method for giving the
highest reasonable results is the IHSS method (Shamia et al. 2017). For the rest
of the components, an average value of multiple data set is provided in the
results.

Results and interpretation

Elemental composition of humic acids. — Elemental composition is
a useful tool for identifying the origin of humic acids. It gives an idea regarding
the aliphatic nature and the degree of carboxylation of the humic acids (Rashid
1985; Davies and Gabbor 1998; Giovanela et al. 2004). The elemental
composition of humic acids isolated from the Krossfjorden sediments is given
in Table 1 along with the tannin and lignin content present in the sediments.
The carbon content present in the humic acids under study ranged from 36–

48% with N% not exceeding 2% (1.2–1.8). The percentage of hydrogen was
found same for the first three stations K1, K2, and K3 with a value of 4%, and
K4 had value slightly greater than the rest of the stations (6%). In the case of
sulfur, it was undetectable in K1, K2, and K3, whereas K4 exhibited its presence
with 0.22%. The presence of sulfur in the humic acids provides information
regarding the type of sulfur-containing functional groups. An excessive amount
of sulfur reflects a sulfate-reducing condition in the area under study (Christensen
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1989; Solomon et al. 2003). Since the presence of sulfur in the humic acids was
very low, groups such as sulfides, disulfides, thiols or thiophenes, sulfoxides or
sulfonates, and sulfates might be absent in the molecule (Christensen 1989;
Solomon et al. 2003).
The percentage of oxygen present in the humic acids ranged from 46.8 to

56.38%. The highest value was observed at K4 and the lowest at K2. The value
for the H/C ratio ranged between 0.08–0.16 with the maximum observed in the
K4 region of the fjord. This ratio is an indicator of aliphatic-rich humic acid
moieties (Rashid 1985; Giovanela et al. 2004). Higher values of the H/C ratio
reveal the presence of aliphatic moieties present in the humic acids (Rashid 1985;
Rice and MacCarthy 1991; Giovanela et al. 2004). This statement is discussed
furthermore with the FTIR spectrums of humic acids in this study.
The O/C ratio of station K4 has the highest value and hence the carboxylation

process happening in this area is higher than in the other stations. There is not
much difference in the values of the O/C ratio, even though the lowest value was
observed at the K2 station. The degree of carboxylation that occurred during the
humification process can be understood with the O/C ratio. The higher the value
of the ratio, the higher will be the extent of carboxylation. The carboxylation
degree varies significantly with spatial differences (Rice and MacCarthy 1991;
Sierra et al. 2004; Klavins et al. 2013).
In terms of lignin contribution, the humic acids can be understood with the

help of the N/C ratio. A lesser N/C ratio is due to rich lignin contents (Stuermer
and Harvey 1978; Stuermer et al. 1978; Saito and Hayano 1981; Sierra et al.
2004). The values obtained for the N/C ratio of all Krossfjorden station is <1 and
are comparable with each other. This value is attributed to a higher concentration
of lignin present in the system. The result of lignin contribution is supported by
the data of tannin and lignin components of the sedimentary organic matter from
Krossfjorden. The results are in mg/g units and ranged from 0.03 to 0.06 mg/g.

UV-visible spectroscopic analysis of humic acids. — The UV-visible
studies of humic acids are performed with the help of various ratios considering
absorptions at 250, 270, 280, 365, 400, 465, 472, 600, 664, and 665 nm
wavelength. E250/365 and E465/665 are the most commonly used ratios for

Ta b l e 1 .

Elemental composition and tannin and lignin components of sedimentary organic matter
from Krossfjorden.

Station C
(%)

H
(%)

N
(%)

S
(%)

O
(%) H/C O/C N/C Tannin &

Lignin (mg/g)
K1 40 4 1.2 ND 54.8 0.1 1.37 0.03 0.05
K2 48 4 1.2 ND 46.8 0.08 0.97 0.02 0.03
K3 46 4 1.8 ND 48.2 0.08 1.04 0.03 0.04
K4 36 6 1.4 0.22 56.38 0.16 1.56 0.03 0.06
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humic acids studied by researchers. Apart from these, there are a few other less
common ratios that provide additional information about the humic acids. They
are E270/400, E472/664, E280/472, and E280/664 ratios. Along with these ratios,
there is also an additional term called ΔlogK = logE400 – logE600 defined as the
difference between the logarithms of the absorbance at 400nm (logE400) and
600nm (logE600) (Ghosh and Schnitzer 1979; Kumada 1987).
Humic acids are macromolecular compounds comprising numerous aromatic

networks. The degree of condensation of these macromolecules and the process of
humification are interrelated. The E4/E6 ratio relates the aromaticity and degree of
condensation. Hence, the ratio can be used as a humification index. The E4/E6
ratio decreases as the degree of condensation increases, which is an inverse
correlation (Stevenson and Schnitzer 1982; Kumada 1987). In our study, the
values of the E4/E6 ratio range between 1.12–1.22. Initially, there was a gradual
increase in the ratio from K1 to K3 stations and then decreased at K4. The values
of the ratio obtained at K2 and K4 stations are in a closer range. Among the
Krossfjorden stations, K3 showed the lowest degree of condensation and
aromaticity. This variation of K3 may be due to the accumulation of suspended
particles on the sediment surface (Koide et al. 1973; Meslard et al. 2018).
The E270/400 ratio (Fig. 2) is used to understand the degradation of phenolic/

quinoid core to simple carboxylic aromatic compounds (Uyguner and Bekbolet
2004). Among the stations of Krossfjorden under study, the highest value is
observed at K2. The values observed at K1 are very much closer to K2. The rest
of the stations exhibited a lesser degree of degradation with the lowest value at
K4. Thus, the humic acids isolated from stations closer to the ocean exhibit
higher degradation of phenolic or quinoid core than that obtained from the region
with glacier influence.

Fig. 2. UV-visible spectroscopic ratios of various humic acids isolated from Krossfjorden
sediments.
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The proportion between lignins and other materials during the initial stages of
the humification process is obtained from E280/472 ratio. It also provides
a similar proportion to the content of the material at the beginning of
transformation (Albrecht et al. 2011). There is a gradual increase in the E280/
472 values from K1 to K4. This indicates the presence of the highest lignin
concentration at K4 which is supported by the sedimentary tannin and lignin
values (0.06 mg/g).
A relation between non-humified and strongly humified material can be

produced using absorbance for 280 and 664nm wavelength denoted by E280/664.
The ratio E472/664 indicates the degree of condensation and polymerization of
aromatic constituents and acts as a humification index. A higher degree of
aromatic condensation and the level of organic material humification are
reflected by a lower ratio and vice versa (Zbytniewski and Buszewski 2005;
Albrecht et al. 2011). In this study, the E280/664 ratio has the same pattern as
that of E280/472, providing the highest for K4 and the lowest for K1. Thus, the
highest degree of aromatic condensation and organic material humification was
observed at station K1.
A coefficient ΔlogK can be correlated with the degree of humification.

According to the coefficient values, humic acids can be classified into three
types. Type 1 includes humic acids with a high degree of humification with
ΔlogK values up to 0.6. Type 2 has ΔlogK values corresponding between 0.6–0.8
and for type 3 the coefficient ranges from 0.8 to 1.1. Thus, the present work is
provided with humic acids with a high humification degree having ΔlogK values
<0.6. Among the stations under study, the lowest value is observed for K1 with
the influence of oceanic inputs containing fresh organic matter (Fong et al. 2006).

FTIR spectroscopic analysis of humic acids. — Infrared spectroscopy is
a frequently used tool for the identification of various fractions or sources of
humic substances. Various researchers use this method to distinguish between
marine and terrestrial humic acids. Also, it is a common tool used for
understanding the variations in humic and fulvic acids. Even though there are
differences in the spectrums of humic substances obtained from different sources,
the overall similarity is more remarkable than the differences. This is due to the
similarity in the net functional group content of various samples. The main
difference occurs in the relative intensities of vibration bands than that of their
positions (Fooken and Liebezeit 2003).
The four Krossfjorden stations under study can be understood in terms of

their structure including the functional group with the FTIR spectroscopic
method. In an overview, there are differences in the spectrums with some minor
shifts of varying absorbance bands. The spectrums (Fig. 3) of K1 and K2 are
more similar to K3 and K4 and vice versa.
In the region 3350–3450 cm–1, a broad band is observed for all the humic

acids under study. The presence of a band in this region is attributed to O-H
stretching vibration. The absorbance of OH groups is around 3600 cm–1 even if it
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is in the undissociated or free state. The frequency of O-H vibrations reduces if
there is hydrogen bonding in the association of molecules. Hence, this broad band
can be assigned to the O-H stretching vibration within the polymeric association
of molecules (Silverstein et al. 1981; Kachari et al. 2015).
The characteristic absorption for C-H stretching vibration in the FTIR

spectrum is observed as small but broad bands. The asymmetric and symmetrical
stretching vibration of C-H of methylene groups occurs at 2926 and 2853 cm–1,
respectively. Also, the band occurring within the range of 2830–2695 cm–1 is
attributed to the C-H stretching of aldehydes. The stretching vibrations for
aromatic C-H appear within the region of 3100 and 3000 cm–1 (Silverstein et al.
1981). In the spectrums of humic acids isolated from Krossfjorden sediments, it
is found that the C-H stretching vibrations of methylene groups are present in all
the four spectrums whereas, the aromatic C-H stretching vibrations are not
visible in the spectrums. This result indicates the extensive substitution of
aromatic rings causing masking of the band due to O-H stretching (Kachari et al.
2015).
The stretching vibrations of C=O of carboxylic acids, aldehydes, and ketones

are identified in the spectrum with bands that appear slightly above 1700 cm–1,
most commonly at 1720 cm–1. This band is weak and is observed in all the humic
acid samples under study. The weakening of the band is due to hydrogen bonding
and resonance. The frequency of C=O stretching is reduced to a great extent by
internal hydrogen bonding. According to the substituents, the band can shift to
a slightly higher or lower wavelength than normal (Silverstein et al. 1981).

Fig. 3. Fourier-transform infrared spectrums of various humic acids isolated from Krossfjorden
sediments.
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Bands appearing in the region of 1650–2000 cm–1 specify the C-H bending of
the aromatic compounds. Around 1650 cm–1 C=C stretching mode of
unconjugated olefins produces moderate to weak bands. The aromatic C-C ring
stretching can be observed within the region of 1300–1500 cm–1 with bands
appearing near 1497 cm–1 and 1460 cm–1. The asymmetrical bending vibrations
of C-H bonds of methyl and methylene groups are seen near 1430 cm–1. Also, the
symmetrical C-H bending vibrations of methyl groups appear near 1380 cm–1. In
the spectrums under study, the bands corresponding to the C-C stretching of
aromatic nature are found absent in the K1 and K2 spectrums, whereas it is
slightly visible in the K3 and K4 spectrums. This can be due to the presence of
a higher aromatic nature of humic acids isolated from the K3 and K4 stations
located at the glacier-influence regions of the fjord (Kachari et al. 2015).
The bands appearing in the region 1000–1100 cm–1 are due to the stretching

vibrations of C-O present in polysaccharides (Stevenson and Goh 1971; Hatcher
et al. 1980a). This characteristic band is present in all four spectrums under study
indicating the absence of polysaccharides. The rest of the region 500–700 cm–1
exhibits characteristic bands of mono-substituted benzene. Mostly, two strong
bands appear between 690–780 cm–1 (Kachari et al. 2015). These types of bands
are not found in the spectrums and thus provide information regarding the
absence of mono-substitution in the compounds.

NMR spectroscopic analysis of humic acids. —The NMR spectrums of
humic acids isolated from the sedimentary organic matter of Krossfjorden are
provided in Fig. 4. There was no considerable variation in the spectrums obtained,
but a slight change is noticed in the spectrums of glacier-influenced fjord stations.
An additional resonance at 8.3 is observed in stations K3 and K4 and is found
absent in K1 and K2. The resonance at >8.1δ is due to the presence of polycyclic
aromatics having sterically hindered peri protons also termed bay protons. Thus,
the major fraction of the aromatic carbon in the case of inner fjord regions could
be comprised of polycyclic aromatics. The signals produced in the range of 6–8.4
ppm arise from the aromatic hydrogen. The presence of phenols can be suggested
by the presence of signals that extends as low as 6 ppm (Wilson et al. 1983). All
spectrums produce resonance at ~1.2δ and are due to a variety of aliphatic carbons
(Hatcher et al. 1980b; Wilson et al. 1983).

Comparison with previous studies. — A comparative study of present data
with the previous ones was performed. The elemental composition of humic acids
isolated from the study area and the nearby areas are provided in Table 2. The
data are limited and hence for comparison, a similar polar environment
(Antarctica) was also included in the table. The FTIR spectrums of humic acids
isolated from the Krossfjorden have properties similar to those reported earlier.
But there are shifts in the spectral peaks which might be due to the differences in
the mass of the molecule isolated from diverse environments (Schnitzer and
Vendette 1975; Campanella et al. 1994; Dziadowiec et al. 1994; Braguglia et al.
1995; Guzeva et al. 2021).
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Fig. 4. 1H Nuclear magnetic resonance spectrums of various humic acids isolated from
Krossfjorden sediments.

Ta b l e 2 .

Comparison of elemental composition of humic acid with previous data.

Study Area C
(%)

H
(%)

N
(%)

S
(%)

O
(%) H/C O/C Reference

Krossfjorden, Arctic 42.5 4.5 1.4 0.22 51.54 0.105 1.235 This study

Arctic tundra 56.2 6.2 4.3 0.5 32.8 0.110 0.583 Schnitzer and
Vendette (1975)

Arctic tundra,
Spitsbergen 46.76 5.52 4.46 43.24 (O+S) 1.42 0.695 Dziado

wiec et al. (1994)

Arctic lake 37.37 4.3 1.83 – 51.83 1.36 1.1 Guzeva et al. (2021)

Antarctica 54.91 7.34 6.21 – – 1.62 – Campa
nella et al. (1993)

Ross Sea
(Antarctica) 66.26 7.21 6.57 – 19.94 1.32 – Braguglia et al.

(1995)
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Conclusions

The humic acids isolated from the sedimentary organic matter of
Krossfjorden glacial fjord were studied with various spectroscopic techniques
which included UV-visible, FTIR, and NMR. UV-visible spectroscopy has used
different ratios to understand the nature of these humic acids. It is clearly
understood that the humic acids isolated from the fjord stations influencing
glacial melt water are more aromatic than those present in the fjord region having
oceanic influence. This fact is well supported by the FTIR spectrums showing the
absence of vibrations corresponding to aromatic C-C bands in the K1 and K2
fjord stations. The NMR spectrums of these humic acids also provide evidence
for this variation in the structural nature with additional resonance peaks
corresponding to polycyclic aromatics, which are observed in the spectrums of
K3 and K4 fjord stations. Thus, it can be concluded that the humic acids from the
K1 and K2 regions of the fjord are more aliphatic than the humic acids obtained
from K3 and K4.
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