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In this paper, neural networks are presented to solve the inverse kinematic models
of continuum robots. Firstly, the forward kinematic models are calculated for variable
curvature continuum robots. Then, the forward kinematic models are implemented in
the neural networks which present the position of the continuum robot’s end effector.
After that, the inverse kinematic models are solved through neural networks without
setting up any constraints. In the same context, to validate the utility of the developed
neural networks, various types of trajectories are proposed to be followed by continuum
robots. It is found that the developed neural networks are powerful tool to deal with
the high complexity of the non-linear equations, in particular when it comes to solving
the inverse kinematics model of variable curvature continuum robots. To have a closer
look at the efficiency of the developed neural network models during the follow up of
the proposed trajectories, 3D simulation examples through Matlab have been carried
out with different configurations. It is noteworthy to say that the developed models are
a needed tool for real time application since it does not depend on the complexity of
the continuum robots’ inverse kinematic models.
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1. Introduction

Labyrinth-like paths, clustered environments where a traditional rigid robot
cannot fit the bill due to their rigid links and their inability to adapt to these
kinds of paths, thus it would be tempting to find an alternative to these robots.
To this end, researchers have developed the so-called continuum bionic robots
that are biologically inspired from nature such as tentacle and appendices [1–11],
which can easily adapt to any kind of paths thanks to their flexibility and high
performance, yet they still present an impediment to researchers, because of their
complexity when it comes to modeling, in particular the inverse kinematic model
(IKM) of continuum bionic robots. It remains unanswerable despite the fact that
many researchers have come up with new methodologies to model them, yet they
are not sufficiently reliable and further accuracy is required.

From a modeling point of view, the forward kinematic model (FKM) of con-
tinuum robots have been widely proposed for both, continuum bionic robots with
constant curvature (CC) [12–15] as well as with variable curvature (VC) [16–18].
For the former ones, the researchers suggest that the robot’s each section bends as
an arc of circle, while the latter describes the robot’s each section as a concatenation
of arcs, in other words, each section is a serially connected arcs, each arc owns its
bending angle. As far as the IKM is concerned, few works have been developed. In
[19], the authors have developed the IKM of one bending section which is based
on an active catheter used in surgery. Their model provides unsatisfying results. In
[16] the authors have used a velocity based-feed forward motion control to solve
the IKM of continuum bionic handling assistant (CBHA) with VC. In [20], the
authors have developed specific kinematics of a single section based on an energy
modeling technique. Due to the complexity of the analytically developed models
to solve the IKM, researchers have switched to using optimization method as well
as artificial neural network (ANN) and many other intelligent methods. To empha-
size, in [17], the authors have solved the inverse kinematic model of a multi-section
continuum robot with VC using particle swarm optimization (PSO) in planar as
well as in a spatial case. They formulated the problem of IKM as an objective
function, which describes the distance between the robot’s end effector and the
position on the prescribed trajectory. Similarly, in [21], genetic algorithm (GA)
and PSO are applied to solve the IKM of a continuum robot with CC using some
constraint conditions. Formulating the IKM of continuum robots as an objective
function is handy since the degrees of freedom of the robot are not included in it,
thus the meta-heuristic approaches can be extended to be applied on further section
of continuum robots. In the other hand, these meta-heuristic approaches show their
drawbacks when it comes to real-time applications, for this exact reason, in this
paper, an artificial neural network is applied to solve the inverse kinematic model
of VC continuum robot for both cases, a spatial single section continuum robot
as well as a planar two-section continuum robot with VC. The main advantage of
ANN is its simplicity and fast response towards the IKM and to top it up, it can
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cover a wide range of trajectories even the ones which were not trained on, namely
it can solve the IKM of continuum robots following a random trajectory.

Many works have formulated the problem of using ANN for the CC but for
VC, very few works have been proposed. In [22], the inverse kinematic model of
a dual-backbone continuum robot is solved using PRBM and ANN. The problem
of the IKM in their research is divided into two phases, the first one resides in
calculating the forward kinematic model via the PRBM approach then the obtained
results are adopted to create an ANN model which aims at solving the IKM. In
[23], a learning-based approach is used to deal with the IKM of continuum robots
which is based on learning the global solution through supervised learning. The
benefit of this method is its ability to come up with solution without knowing any
prior information of the system. In [24], Kepler oval is implemented to solve the
IKM of inextensible continuum robot. It starts by identifying the workspace of the
robot, then it formulates the IKM through a binary equation, which consists of
the oval equations, thus its solution is the one of the IKM. The IKM of a multi-
section continuum robot is solved through the forward and backward reaching
inverse kinematic (FABRIK) algorithm [25]. It is mainly based on reaching out
to the targeted point, which paves the way to controlling the robot’s end effector
orientation, it can be performed through replacing the robot’s bending section by a
serially connected chords using spherical joints and that occurs during the forward
reaching. While in the backward reaching, the algorithm memorizes the arcs, which
are obtained from the chords and updated at each iteration.

The main contributions of this paper can be described in; first, creating a
database for the FKM of a spatial single section as well as a planar two-section
continuum robot with VC. The second part, the implementation of the ANN to solve
the IKM is applied on varies types of trajectories. The error between the provided
solution by ANN and the desired solution are calculated and depicted through
3D simulations. The rest of the paper is arranged as follows: Section 2 describes
the continuum robot design as well as demonstrates the followed methodology to
derive the forward kinematic models for variable curvature continuum robot using
ANN. Section 3 presents the implementation of the ANN method for solving the
inverse kinematic models as well as the identification of its workspace. Section 4
provides with a conclusion and future works.

2. Continuum robot kinematics

The profile of the whole robot is similar to a backbone curve. Each bending
section 𝑘 consists of serially connected units. Every single unit has its own bending
and orientation angles, 𝜃 𝑗 ,𝑘 and 𝜙𝑘 respectively, which gives birth to the so-called
variable curvature continuum robot, see Fig. 1. Each unit is composed of two disks
which differ in terms of diameter and each disk has three holes through which the
cables pass. Basically, the robot’s each section is separately controlled by three
cables. Generally, the backbone curve of continuum robots takes two forms, virtual
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Fig. 1. Two-section continuum robot with its coordinate frames for each section 𝑘

as in [16] or a realistic one, which is found in some robots with flexible backbone
such as [17, 21] and that considered in this paper. The geometrical parameters of
each unit and its kinematics nomenclature are illustrated in Fig. 2 and Table 1.

Fig. 2. Description of each unit with its coordinates (left); details of a single unit
and its cables (right)

For the constant curvature continuum robot, each unit of the robot has a lower
and an upper disk which have the same diameters and connected through the
points 𝐴𝑖, 𝑗 ,𝑘 and 𝐵𝑖, 𝑗 ,𝑘 . For the variable curvature continuum robot, each unit
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Table 1. Nomenclature
Symbol Description

𝑖 the index of cables 𝑖 = 1, 2, 3
𝑗 the index of units 𝑗 = 1, 2, ..., 5
𝑘 the index of sections 𝑘 = 1, 2
ℓ𝑖, 𝑗 the non-conic unit cable length
ℓ̂𝑖, 𝑗 the conical unit cable length
𝑙 𝑗 the length of the central axis of the unit 𝑗

(𝑥, 𝑦, 𝑧) 𝑗 ,𝑘 the local coordinate frame
(𝑋,𝑌, 𝑍)𝑘 the global coordinate frame

𝜃 𝑗 ,𝑘 the bending angle
𝜙𝑘 the orientation angle
𝜅 𝑗 the curvature
𝑟 𝑗 the radial distance between cables and the central axis

has two disks with different diameters and connected through
⌢

𝐵𝑖, 𝑗 ,𝑘 and 𝐴𝑖, 𝑗 ,𝑘 .
Interestingly, the differentiation of the disks’ diameters paves the way to establishing
an equation which relates the units with each other by a ratio as it is explained in
detail in [17]. Basically, the development of the used equations in this paper is
inspired from [17]. The used assumptions for the modeling of the VC continuum
robot along this paper are inspired from the CC [15], which can be summarized as
follows:

• The flexible continuum robot is described as an open kinematic chain of 𝑛
sections.

• Each section is a set of conically equidistant units.
• Each conical shaped unit is modeled as an inextensible circular arc having

its individual parameters.
• The cable lengths are homogeneously fragmented along the robot.
• The robot deformations at sections and units are done without torsion (ne-

glected torsion).

2.1. ANN and problem formulation

Neural Networks (NN) have achieved a great success in many areas due to
their learning and generalization capabilities as well as their parallelism. They have
been successfully used in many applications, such as classification, noise filtering,
system modeling and control, etc. One of the fields where NN has received an
increasing interest is that of solving the robots’ inverse kinematics models.

Due to the complexity of variable curvature continuum robots models, very
few works which aim at solving their IKMs have been carried out. To this end, the
Multi-Layer Perceptron (MLP) neural networks are used and developed to find the
IKMs of a single as well as a two-section continuum robot with variable curvature.
The hidden layers contains neurons with sigmoid activation function and a linear
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activation function in output layers. For the sake of avoiding the complexity of the
neural networks a minimum number of neurons and hidden layers that gives the
good learning are chosen.

The forward kinematic model is calculated for the sake of obtaining the 𝑃𝑥𝑖 ,𝑃𝑦𝑖 ,
and 𝑃𝑧𝑖 coordinates of the robot’s end tip which themselves are used to train the
proposed MLP. The problem of IKM in this paper can be expressed by equation
(1), as follows:

𝐹 =
1
𝑁

𝑁∑︁
𝑖=1

(
(𝑃𝑥𝑖 − 𝑋𝑐𝑖 )2 + (𝑃𝑦𝑖 − 𝑌𝑐𝑖 )2 + (𝑃𝑧𝑖 − 𝑍𝑐𝑖 )2

)
, (1)

where 𝑁 represent the number of data. 𝑋𝑐𝑖 ,𝑌𝑐𝑖 , and 𝑍𝑐𝑖 represent the spatial coordi-
nates of a located position on the prescribed trajectory. 𝑃𝑥𝑖 , 𝑃𝑦𝑖 , and 𝑃𝑧𝑖 represent
the position of the robot’s end tip for each specific position of the prescribed tra-
jectory, which are obtained from the FKM. Explicitly, they present the three first
components of the forth column of the following matrix:

T0
𝑛 =

0∏
𝑛

T 𝑗−1,𝑘
𝑗,𝑘

, (2)

in which

T 𝑗−1,𝑘
𝑗,𝑘

=

(
R 𝑗−1,𝑘

𝑗,𝑘
P 𝑗−1,𝑘
𝑗,𝑘

01×3 1

)
, (3)

where R 𝑗−1,𝑘
𝑗,𝑘

and P 𝑗−1,𝑘
𝑗,𝑘

are the rotational matrix and the vector position, respec-
tively. They can be expressed as a function of arc parameters as follows:

R 𝑗−1,𝑘
𝑗,𝑘

= rot(𝑍 𝑗−1,𝑘 , 𝜙𝑘) · rot(𝑌 𝑗−1,𝑘 , 𝜃 𝑗 ,𝑘) · rot(𝑍 𝑗−1,𝑘 ,−𝜙𝑘), (4)

P 𝑗−1,𝑘
𝑗,𝑘

=



𝑙 𝑗 ,𝑘

𝜃 𝑗 ,𝑘

(1 − cos(𝜃 𝑗 ,𝑘)) cos(𝜙𝑘),

𝑙 𝑗 ,𝑘

𝜃 𝑗 ,𝑘

(1 − cos(𝜃 𝑗 ,𝑘)) sin(𝜙𝑘),

𝑙 𝑗 ,𝑘

𝜃 𝑗 ,𝑘

sin(𝜃 𝑗 ,𝑘),

(5)

and the bending angle 𝜃 𝑗 ,𝑘 is given as a function of the first bending angle 𝜃1 as
follows [17]:

𝜃 𝑗 ,𝑘 =
𝑟1,𝑘

𝑟 𝑗 ,𝑘
𝜃1,𝑘 . (6)

Since the treated continuum robot in this work is actuated by cables, it is
crucially important to calculate its cables length during the follow up of a specific
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trajectory for the sake of evaluating the behavior of cables when the robot bends.
The equation which can express the cables length for a variable curvature continuum
robot is as follows [16]:

ℓ𝑖, 𝑗 ,𝑘 =

√︃
⌢

ℓ 𝑖, 𝑗 ,𝑘 −
(
𝑟 𝑗−1,𝑘 − 𝑟 𝑗 ,𝑘

)2
. (7)

The diameters of the disks can be calculated using equation [17]:

𝑟 𝑗 ,𝑘 = 𝑟max,𝑘 −
𝑗

𝑘

(
𝑟max,𝑘 − 𝑟min,𝑘

)
. (8)

3. Outline and simulation

In this paper, two simulations examples are considered, for the first simulation;
a single spatial section continuum robot with variable curvature is ordered to
follow up two types of trajectories, namely, arc-shaped trajectory as well as a
circular trajectory.

For the second simulation, a planar two-section continuum robot with variable
curvature is ordered to follow up two types of trajectories, linear trajectory and an
arc-shaped trajectory. The characteristics of the considered robot are demonstrated
in Table 2.

Table 2. The parameters of the considered flexible continuum robot
Parameter Section 1 Section 2 Description
𝑚𝑘 5 units 5 units Number of units
𝑙𝑘 300 mm 300 mm Total length of the section
𝑟min,𝑘 17.5 mm 10 mm Radial distance of the cable
𝑟max,𝑘 25 mm 17.5 mm Radial distance of the cable

Furthermore, it has been shown in several works that a neural network with
one or two hidden layers is sufficient to approximate any nonlinear function [26–
29]. For the sake of simplicity, one hidden layer for a single-section continuum
robot and two hidden layers for two section continuum robot are used as well as a
minimum number of neurons that gives good learning and that reflects back on the
robot’s accuracy during trajectory tracking.

The whole process has been performed in Matlab 2018a software with the
following characteristics: an Intel Core i7, 3.60 GHz, 4 GB RAM.

3.1. IKM of spatial single section continuum robot

Variable curvature continuum robots suffer from the complexity of their kine-
matic models, especially when including rotation angles, which makes the neural
network unable to learn in the presence of rotation angles. Therefore, the rotation
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angles are first calculated mathematically in order to know the direction of the
robot in its workspace. Then, to give the neural network more information for good
learning about the problem, the rotation angles are given along with the Cartesian
coordinates as inputs to extract the bending angles with more accuracy.

The FKM of a spatial single section is first calculated using equation (2), and
the orientation angle is then calculated analytically using FKM by dividing the
position 𝑃𝑦 by the position 𝑃𝑥 . Finally, the static MLP (Fig. 3) with the following
configuration is used to calculate the bending angles:

• The input layer contains four inputs (𝑥, 𝑦, 𝑧, 𝜙).
• One hidden layer with 20 neurons.
• One linear output neuron that gives the approximated 𝜃.
• Learning rate: 𝛼 = 0.01.
• Type of optimizer: Levenberg-Marquardt backpropagation.
• Loss function: 𝑀𝑆𝐸 .

Fig. 3. Neural structure spatial single section continuum robot

A dataset with 10000 random samples (values) is generated using the FKM to train
the developed model as follows:

1. Random values for the bending and rotation angles that covers all-inclusive
possible positions in the robot’s workspace are created using the following
two equations: {

𝜃𝑖 = rand(𝜃max − 𝜃min) + 𝜃min ,

𝜙𝑖 = rand(𝜙max − 𝜙min) + 𝜙min ,
(9)

where: 𝜃max =
𝜋

8
; 𝜃min = −𝜋

8
; 𝜙max = 𝜋; 𝜙min = −𝜋 .

2. The bending and rotation angles created using the FKM are applied to
calculate the corresponding Cartesian coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖).
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3. Finally, Cartesian coordinates and rotation angles are saved as inputs, and
bending angles as outputs.

The training performance result error value to the bending angle is given by Fig. 4.

Fig. 4. Training performance error (MSE) results of the neural model for the bending angle 𝜃

Following the same previous steps, a second database with 10000 random val-
ues that cover all-inclusive possible positions in the robot’s workspace is generated
to evaluate the effectiveness of the obtained IKM. Fig. 5 gives the error test results
of the developed neural model for the bending angle 𝜃.

Fig. 5. Error test results of the neural model for the bending angle 𝜃

After tested the effectiveness of the obtained model (IKM), the considered
robot is tested on practically realistic-like trajectories (circular and arc-shaped
trajectories) in order to assess the robot’s behavior via 3D simulations.

As it is shown in Fig. 6, the considered single section continuum robot with VC
can accurately follow the arc-shaped trajectory within its 3D workspace (yellow
curved arcs).
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Fig. 6. Two configurations of a single section continuum robot following
an arc shaped trajectory within its 3D workspace

To show the accuracy of the generated trajectory, Euclidean errors are calcu-
lated. As it is shown in Fig. 7, the maximum error between the generated and the
desired trajectory is of the order of 0.002 mm.

Fig. 7. Error between the reference trajectory (arc-shaped) and the trajectory (arc-shaped)
given by the NN

Similarly to the first simulation example, the continuum robot tracks a circular
trajectory within its workspace (Fig. 8). Fig. 9 shows the Euclidean error of the
trained NN.
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Fig. 8. Representation of the continuum robot’s first section
tracking the desired circular trajectory

Fig. 9. Error between the reference circular trajectory and the circular trajectory given by the NN

3.2. IKM of planar two-section continuum robot

In the second simulation, two databases with 10000 values have been created
from the FKM of a two-section VC continuum robot using random values of the
bending angles within the robot’s workspace. After that, to calculate the IKM of the
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considered robot, an ANN with two hidden layers is built up (Fig. 10). Using the
generated data, the error between the generated bending angles and angles obtained
from the trained NN is shown in Fig. 11.

Fig. 10. The architecture of the neural model for a planer two-section continuum robot

The value of the mean square error (MSE) of the achieved model are given in
Fig. 11.

Fig. 11. Training performance results (MSE) of the neural model
for the two-section continuum robot

Finally, the IKM accuracy is evaluated by applying the second created database,
and the error in its bending angles is shown in Fig. 12.
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Fig. 12. Test results of the obtained model for the two-section continuum robot

Fig. 13 shows that the considered two-section continuum robot with variable
curvature can accurately follow the linear trajectory expressed by equation (10):

𝑋 = 10𝑡 + 200 ,
𝑌 = 0 ,
𝑍 = 370 − 4𝑡 ,

(10)

with 𝑡 = 0:0.1:15 .
It is noteworthy to say that each position on the linear trajectory can be reached

by the robot’s end-effector through at least three configurations (redundancy), as it

Fig. 13. Different configurations for the robot following the linear trajectory
with respect the minimum curvature norm (left); central axis of the robot

following the linear trajectory (right)
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is shown in Fig. 14. Therefore, only one existing configuration (solution) is taken
which allows the robot to track the linear trajectory and that can be achieved by
adding constraints to the objective function during the learning phase according to
many norms such as velocity sensitivity and minimum curvature, etc., [30, 31]. In
this work, the minimum curvature norm is chosen with the aim of keeping the robot
from more undesirable curvatures. To emphasize, through the added constraints
only one solution can be considered which allows the robot to reach the specific
position through one configuration as shown in Fig. 13.

Fig. 14. Possible solutions for each desired point on the linear trajectory (redundancy)

The Euclidean error between the generated and the desired linear trajectory is
shown in Fig. 15.

Fig. 15. Euclidean errors between the desired and the obtained trajectory (linear trajectory)
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In the last simulation, an arc-shaped trajectory is followed up by a two-section
continuum robot, as shown in Fig. 16. This kind of trajectory is deliberately used
since it allows the robot to considerably bend and in order to assess the NN
when dealing with large bending angles (Fig. 17). Furthermore, the cables length
are calculated based on the bending angles (Fig. 18) which are provided by the
obtained NN, as it is shown in Fig. 19.

Fig. 16. Different configuration for the robot following the arc-shaped trajectory (left);
central axis of the robot following the arc-shaped trajectory (right)

Fig. 17. Euclidean errors between the desired and the obtained trajectory
(arc-shaped) for the two-section continuum robot
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Fig. 18. Lengths variation of the two-section continuum robot while tracking
the arc-shaped trajectory

Fig. 19. Needed bending angles for the two-section continuum robot following
the arc-shaped trajectory

Although the tackled trajectory which is shown in Fig. 16 is relatively difficult
compared to the previously proposed trajectories, the NN IKM gives satisfactory
tracking accuracy (Fig. 17).
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4. Conclusion

In this paper, artificial neural networks are used to solve the inverse kinematic
model of variable curvature continuum robots. The established inverse kinematic-
based neural network does not depend on the highly non-linearity of continuum
robot’s equations, namely, the forward kinematic model is used to build up a
database which is then adopted to train the neural network model. The obtained
database for training the neural model covers all-inclusive and reachable positions
within the robot’s workspace. To emphasize, the database contains the Cartesian
coordinate of the robot’s end effector as inputs and the bending angles as outputs
therefore, for a given trajectory the robot’s end effector can predict the needed
bending angle since it has been trained throughout its whole workspace allowing
the robot to reach to any position on the prescribed trajectory. Basically, through
the performed simulations dedicated to trajectory tracking, neural network can
be considered as an alternative to solving the inverse kinematic model with a
remarkable accuracy without any prior knowledge of the equations related to the
inverse kinematic model. Furthermore, it is crucially important to say that the ANN
is an appropriate tool to deal with real time application on the contrary to other
meta-heuristic approaches, namely their accuracy is good but they do not respond
to the needs which are required by industry and that can be shown in the real
time application. The potential work for the developed ANN can reside in solving
the inverse kinematic model of variable curvature with the presence of torsion
and variable length since the ANN has nothing to do with the complexity of the
IKM model.
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