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COMMERCIAL AIRPLANE TRAJECTORY OPTIMIZATION 
BY A CHEBYSHEV PSEUDOSPECTRAL METHOD 

The paper presents application of direct pseudospectral Chebyshev method for 
solving a commercial airplane trajectory optimization problem. This method employs 
Nth-degree Lagrange polynomial approximations for the state and control variables 
with the values of these variables at the Chebyshev-Gauss-Lobatto (CGL) points as 
the expansion coefficients. This process is converted to a nonlinear programming 
problem (NLP) with the state and control values at the CGL points as unknown NLP 
parameters. The kinetic model of flight is formulated, where it is assumed that an 
airplane is a particle and the motion takes place in the vertical plane. The method is 
implemented in Matlab using sequential quadratic programming algorithm (SQP) as 
an efficient solver. Sensitivity analyses are performed concerning the influence of the 
degree of discretization and the initial approximation on the solution. Three examples 
of optimized trajectories in presence of wind are shown. 

NOMENCLATURE 

a speed of sound, 
c1, cost of fuel per kg, 
c; specific fuel consumption, 
c1 cost of airplane operation per hour, 
ex drag coefficient, 
cz lift coefficient, 
g gravity acceleration, 
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h - altitude,
J cost function,
m airplane mass,
M Mach number,
Ps thrust,
P, drag,
P, - lift,
S reference area of the airplane,
u horizontal wind velocity,
v vertical wind velocity,
V - airspeed,
V8 ground speed,
w11 fuel mass flow per hour,
x - horizontal coordinate,
a angle of attack,
y - flight path angle,
£ angle between the airspeed and the ground speed,
1J throttle coefficient,
p air density,
r time,
(.)o initial value,
(.)j final value,
(.) max maximal value.

1. Introduction 

The methods of classical calculus of variations were successfully applied
to many airplane performance problems at the beginning of the fifties. The
minimum-time-to-climb problem was considered employing simplified
Lagrange-Euler equation (Rutowski, 1954). In this problem, the supersonic
fighter should increase its speed and altitude operating with full thrust. The
applied method indicates that acceleration in a dive at Mach number M = 1 is
a part of the optimum climbing path. At the beginning of seventies one can
observe attempts of extension of this approach to the minimum fuel
consumption problem. It was connected with the fuel crisis. A difficulty
arose, however. For relatively simple airplane kinetic models, the flight with
partial throttle and constant velocity referring to the cruise appeared to be
non-optimal. Such regime of flight refers to a singular arc in calculus of
variations. The so-called "chattering" solution, where the throttle chatters
between maximal and minimal value with the frequency going to infinity
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provides the best performance. The detailed discussion of such a case one can
find in (Maroński, 1988). For civil transportation, the unstable regime of
flight is rather unacceptable, therefore some authors assume "a priori" the
cruise with constant velocity computing the parameters of such flight.
Barman and Erzberger (1976) assume that each optimal profile consists of
segments: climb, constant cruise and descent. Their method is relatively
simple and does not contain singularities. It cannot be extended for the
airplane kinetic model involving the variations of the mass of the airplane,
therefore it may be applied for a short-haul airplane only (Krawczyk, 1983).

For more advanced models, application of sophisticated numerical
methods is necessary. They may be divided into two groups: indirect methods
basing on necessary conditions of optimality (for example Pontryagin's
maximum principle) and direct methods. In these methods the optimal control
problem is converted to a parameter optimization problem by assuming that
the control functions are known functions of time involving a number of
unknown parameters. The values of these parameters are optimized using
parameter optimization methods. For example, Reader and Hull (1975) used
fifth-order series of Chebyshev polynomials to minimize the time to climb of
a high performance airplane. The experience of one of the authors of this
paper with direct methods has been unsatisfactory for years (Maroński,
Łucjanek, 1979). However, the great progress in development of these
methods has happened. Direct methods have several advantages over the
indirect methods. They are easy to program. They may be used for advanced
airplane kinetic models including inequality constraints imposed on the state
variables. That is why the authors decided to pay their attention to these
methods.

2. Problem formulation 

In the case of a specific airplane, which has to complete its given mission,
the most important factor which is highly connected with the performance of
the airplane is the operational procedure. For airlines, the main goal is to
minimize the direct operating costs (DOC). In the year 1997, DOC made up
on average 51.4% of all operational costs (Burrows et al., 2001). The most
essential in these costs is fuel participation and categories depending on time
i.e.: inspection, maintenance, overhaul, airplane depreciation, pilots and
cabin crew. These are about 35% of the DOC. That is why in formulations of
the optimization problem the following indices are used: the cost of the fuel
per kg c11 and the cost of the airplane operation per hour c,. The ratio erl c fl is
called the cost index (CI) and it is often used in financial analysis and in the
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flight management systems (FMSs), which are installed on the airplane flight
decks to control performance. The cost index is not used directly in this
analysis, but it is taken into consideration by using c1 and cf/ in the following
way:

rf 

j = Cj1(mo - 111j) + C1(Tj- To)= f (CjtWJt + C1)dT, (1)
To 

where (mo - mf) is mass of all fuel used.
The equations of airplane motion are derived assuming that:

• the airplane is a particle,
• the motion takes place in the vertical plane,
• Earth is an inertial system, flat with constant gravitational acceleration,
• the thrust vector P, is parallel to the mean aerodynamic chord,
• the air density and speed of sound are changing due to altitude,
• engine characteristics depend on altitude and airplane velocity,
• the variation of airplane mass depends only on the fuel consumption,
• critical angles of attack are not exceeded,
• the flight is subsonic (M < 1).
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Fig. I. Forces acting on the airplane

Equations of an airplane motion are as follows:

mVg = 17Ps'"xcos(a+ £)-PxcosE- P2sin£- mgsiny, (2)

mVri= Pzcos£+ 17P's'"xsin(a+ E)- Pxsin£- mgcosy, (3)
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x = Vgcosy, 

h = Vgsiny, 

111 = -W_rt, 

(4) 

(5) 

(6) 

where: E = a.resin ( -& (u siny - vcos y)} 
V= ✓v~ - 2Vg(ucosy + vsin y ) + u2 + v2 
a.re the geometrical relations resulting from Fig. 2. In equations (2), (3) the lift 
P, and the drag P,. are respectively: 

h 

V 

u X 

Fig. 2. Dependences between velocities: v, u, V, V8 

In addition, there are the following dependences used for describing: drag 
coefficient, lift coefficient, th.rust and fuel mass flow per hour respectively: 

Cx=Cx(M,a), Cz=Cz(M,a), Ps=17Pfax(M,h), W_r1=11Pfaxc;(M,h) 

According to the earlier assumption, the trust vector Ps is parallel to the 
mean aerodynamic chord, and in general it is not collinear to the airspeed 
vector V. On the basis of this fact, the angle of attack ais the angle between Ps 
and V. Relations (2) and (3) are the equations of motion in natural coordinate 
system and they follow on the Newton's second law. The first one comes from 
projection of forces on the ground speed direction, and the second one - on the 
perpendicular direction. Equations (4) and (5) are the additional kinematical 
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relations. Equation (6) characterizes variation of the airplane mass due to fuel
consumption. The state variables in this model are: ground speed Vg, flight
path angle y, horizontal coordinate x, altitude h, airplane mass m, and the
control variables are: throttle coefficient rJ and angle of attack a. The time is
the independent variable.

The problem is formulated as follows. We should minimize the
performance index (1). The state equations describing the airplane motion
(2-6) should be satisfied in every point of the path. The state variables Vg, y, x, 
h are given in initial and final points of the path. The state variable
m representing the mass of the airplane is given in the initial point of the path.
Its final value is not known "a priori", and it results from the computed
optimal path including inequality constraints.

3. Numerical analysis 

In this part, there are examples of trajectory optimization for the airliner of
Boeing 767 class. First analysis concerns the method itself: convergence,
accuracy and iteration process. Next, wind influences on airplane trajectory
are investigated by using three different wind conditions.

To solve NLP problem referred by Fahroo and Ross (2000), the function
finincon is used. It is one of the available functions from Optimization 
Toolbox of MATLAB. Fmincon is an implementation of the sequential
quadratic programming method (SQP), which represents state-of-the-art in
nonlinear programming methods (Matlab, 2000). It allows us to closely
mimic Newton's method for constrained optimization just as it is done for an
unconstrained optimization. At each major iteration, an approximation of the
Hessian of the Lagrangian function is made using a quasi-Newton updating
method. This is then used to generate a quadratic programming subproblem.
The obtained solution is used to form a search direction for a line search
procedure. The constrained quasi-Newton methods guarantee super linear
convergence by accumulating second order information regarding the
Kuhn-Tucker equations using a quasi-Newton updating procedure. A non­
linear constraint problem can often be solved in fewer iterations than an
unconstrained problem using SQP. One of the reasons for this are limits on the
feasible area, thus the optimizer can make well-informed decisions regarding
the search of direction and step length.

In this paper, the airplane is regarded as a particle. It allows us use very
simple description of aerodynamic properties. Sufficient to this, is the
knowledge on the drag-lift polar or relations c,(M, a), cx(M, a) and the
reference area S. In this paper, the data are taken for Boeing 767 class airliner.
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Long range commercial airplanes (more then a few thousand kilometer 
range) flying with the Mach number M < l are mostly jet propelled without 
after-burning. In Boeing 767 airplane, there are jet engines of GE CFM6 class. 
The data for this type of engine are taken from (Cichosz et al., 1980). In 
altitude-velocity characteristics the value of normalized maximal thrust 
(180000N at h = O for one engine) and the corresponding specific fuel 
consumption c; are introduced. These data are taken for Mach number from 
the interval <0;0.9> and for the altitude up to 14000111. Visualizations are 
given in Fig. 3 and Fig. 4. The surface spreaded on well-known points is 
generated linearly so it is not smooth. In the numerical code sought values of 
the maximal thrust P!T"x and the specific fuel consumption c; are obtained 
interpolating two variables function employing splines. 

cii 
2 1 
5 
~ 0.8 
E 
"O 
-~ 0.6 

ro 
E 0.4 o 
C 

0.2 
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h 

Fig. 3. Normalized maximal thrust versus M and h 

M 

Fig. 4. Specific fuel consumption versus M and h 

To estimate performance of the airplane, the unified description of 
atmosphere is applied. It was introduced by !CAO in 1962 and it is called 
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Standard Atmosphere. In numerical analysis, such features described by
Standard Atmosphere as speed of sound and air density changing according to
altitude are used.

Given are: range of flight x1 = 4000 km and take off mass 150000 kg.
Assumed values of cf/ and c, are: c11 = 0.5 (1kg of fuel costs 0.5$), c, =O
(such a case refers to minimization of fuel consumption). Equality constraints
are equations (2-6). In addition, there are the following inequality constraints:

-5 mis ś h ś 5 mis, 

Pz <-_ l.2,
mg

V ś 265 mis. 

The first condition refers to climb and descent velocity up to 5 mis, the
second one to the load factor. It is because of passenger and crew comfort.
Third relation regards not exceeding M = 0.9 which, after taking into account
the speed of sound at the altitude 14000 m, constrains the airspeed (M = Via 
ś 0.9). Additionally, the following constraints are imposed on variables in any
node:

100 mis ś Vg ś 500 mis, 

500 m ś h ś 14000 m,

-5° ś a s: 15°,

Oś 77 ś 1,

-5° ś yś 30°,

50000 kg ś m ś 150000 kg,

2000 s ś r ś 100000 s.

In order to establish how the number of nodes influences the quality of the
solution, five computations are performed for different number of nodes:
N= 5, 10, 15, 20 and 30. Some solutions are shown in Fig. 5-8. Duration of the
flight is shown in Tab. 1.
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Table I. 
Influence of number of nodes on the duration of the flight 

Case Duration of the flight [s] 

N=5 17262 

N= IO 16385 

N= 15 16364 

N= 20 16407 

N= 30 16320 

I 
.c 
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---e--- N=15 
---v'- N=30 

1000 1500 2000 2500 3000 3500 4000 

X [km] 

Fig. 5. Altitude for different number of nodes 
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Fig. 6. Ground speed for different number of nodes 
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Fig. 7. Throttle coefficient for different number of nodes
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Fig. 8. Cost function for different number of nodes

In Fig. 8 the influence of the number of nodes on the cost function is
shown. It should be emphasised, that even for few numbers of nodes (about
10) the solution is acceptable. Concerning Fig. 5-8, it is assumed that num­
ber of 15 nodes is sufficient for further analysis. It represents the compro­
mise between the accuracy of the computations and the computing time.
The computations for N = 5 for PC Athlon 1,4 GHz class takes about fif­
teen minutes, for N = 15 it takes a few hours, and for N =30 a few dozen
hours.

Next, the influence of the initial approximation on the solution obtained
by the pseudospectral Chebyshev method is considered. To start optimization
process, one has to approximate the initial point of iterations. Very often it is
difficult to provide initial approximation which gives fast convergence. For
example, it may be linear whereas the solution is nonlinear. Therefore, the
important feature of the method is that one can obtain solution even having
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"rough" initial approximation. To check sensitivity of the method on various 
starting points, two optimizations are performed. Results are given in Fig. 9, 
10 and Tab. 2. For both cases, the final solutions are the same. The computed 
trajectories possess identical character and the durations of flight are 
comparable. Other important thing is that the time of computations is nearly 
the same in both cases. 
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Fig. 9. Influence of the initial approximation on the altitude 
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Fig. IO. Influence of initial approximation on the flight path angle 

Table 2. 
Influence of the initial approximation on the cost function and the duration of flight 

Case Cost function values Duration of flight [s] 

Linear approximation 33681 16364 

Nonlinear approximation 33675 16431 
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To analyze the influence of wind on the trajectory, three wind conditions
are proposed (see Fig. 11). Four optimized trajectories are shown in Fig.
12-14. The values of the cost function and the duration of flight are shown in
Tab. 3.

Table 3.
Influence of wind on the cost function and the duration of the flight

Case Cost function values Duration of flight [s]

without a wind 33681 16364

wind I 29503 14360

wind 2 39209 19265

wind 3 27697 13331
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20 wind 3 w 
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Fig. 11. Different wind conditions
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Fig. 12. Influence of wind on the altitude of flight
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Fig. I 3. Influence of wind on the ground speed 
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Fig. 14. Influence of wind on the mass of the airplane 

4. Conclusions 

In this paper, the pseudospectral Chebyshev method is applied for B767 
class commercial airplane trajectory optimization. The direct operating costs 
are minimized. State and control variables are approximated by Lagrange 
Nth-degree polynomials. Values of these variables are computed at Chebys­ 
hev-Gauss-Lobatto points as the expansion coefficients, which are treated as 
parameters in NLP problem. 

The airplane is modeled as a particle and the motion takes place in the 
vertical plane. Equality constraints are: kinetic equations of motion including 
presence of wind, kinematical equations, and the equation of weight variation 
as a result of fuel consumption. Inequality constraints are imposed on: 
velocity relative to air, climb and descent velocities and the load factor. The 
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method is implemented in the Matlab. As a NLP solver, the functionjinincon 
is used from the Optimization Toolbox. It is an implementation of SQP 
algorithm. The performed numerical analyses indicate that low degree of
discretization generates satisfying results. Also, low sensitivity to the initial
approximation is a good feature of the method. The results of computations
concerning the presence of winds are reliable and show that the algorithm is
effective.

Versatility and effectiveness of the pseudospectral Chebyshev method
allows for a variety of applications. Considering performed trajectory
optimizations, one may draw a conclusion that it is a useful tool for
minimizing airlines' DOC as well as for supporting performance analyses
made by airplane designers. The method is easy to program. It may be used for
advanced airplane kinetic models that include inequality constraints imposed
on the state variables.

The presented examples show that during the cruise the optimal altitudes
of the flight increase with the distance as the mass of the airplane decreases
(Fig. 5 and Fig. 12) and the optimal cruising velocities are almost constant
(Fig. 6 and Fig. 13). For different wind conditions, the cruising altitudes are
nearly the same, whereas the cruising velocities are considerably different
(Fig. 12 and Fig. 13).
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Optymalizacja trajektorii lotu samolotu komunikacyj nego
za pomocą pseudospektralnej metody Czebyszewa

Streszczenie

W pracy została zastosowana bezpośrednia, pseudospektralna metoda Czebyszewa do roz­
wiązania zadania optymalizacji trajektorii lotu samolotu komunikacyjnego klasy Boeing 767.
W metodzie tej zmienne stanu i sterujące obliczane są w punktach Czebyszewa-Gaussa-Lobatto jako
współczynniki rozwinięcia w funkcje Lagrangea. Są one traktowane jako parametry w zagadnieniu
programowania nieliniowego z ograniczeniami. Przedstawiono model lotu, w którym samolot
traktowany jest jak punkt materialny poruszający się w płaszczyźnie pionowej. Metoda została
zaimplementowana w programie Matlab wykorzystując algorytm sekwencyjnego programowania
kwadratowego. Wykonano analizy wrażliwości ze względu na stopień dyskretyzacji i przybliżenie


