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APPLICATION OF NEURAL NETWORK TO DETECTING 
FAULTS OF HELICOPTER ROTOR 

The paper presents the possibilities of neural network application in recognition of 
rotor blade faults. Computer calculated data of rotor response due to faults were used 
for neural network training. The rotor was modeled by elastic axes with distribution of 
Jumped masses. The rotor defects were simulated by changing aerodynamic, inertial 
or stiffness properties of one of the blades. Time results were subjected to spectral 
analysis for the purpose of neural networks training. 

1. Introduction 

Flight safety is one of the main demands of helicopter users. During 
life-time of exploitation, the helicopter structure can be damaged due to 
varying loads. In flight conditions, the main rotor is subjected to complex 
system of vibratory aerodynamic and inertial forces depending on flight 
speed, rotor speed and control of blade pitching angle. The use of trained 
neural networks can help in recognition of rotor blades failures. For the 
network training purpose, it is necessary to collect data connecting the level of 
damage with other measurable parameters. 

The research works on using artificial neural networks were conducted in 
respect to helicopters utilizing recorded flight data [ 1] to foresee load level of 
the main rotor in manoeuvres. The difficulties in gathering the measurement 
data for real objects with damaged structural parts prompt us to use simulation 
methods. Rotor models based on finite element method were used for load 
calculation including effects of simulated blade faults [2], [3]. The obtained 
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results formed the data for training neural networks detecting the rotor
damages.

In this paper, the author presents the possibilities of neural networks in
recognizing the rotor failures for flight conditions covering hover and forward
speed. The results of calculation, including blade, hub and shaft loads and
blade motion parameters, were used to train neural networks. The simulation
calculations for a rotor with damaged blade were conducted using computer
program code generated at the Institute of Aviation [4], [5].

2. Model of main rotor 

The physical model of rotor consists of the elastic axes replacing the real
blades (Fig. 1).

direction of
flight

blade 2

blade 3

elastic axis

blade 1
with
defect

azymuth 0°

Fig. I. Rotor scheme with defected blade

The elastic axis of each blade can be bent in the flapping plane, in the
lagging plane and can be twisted. The elastic axis includes also the arm of
rotor hub, which is settled on stiffness shaft. It was assumed that in
undeformed state the elastic axis coincided with the pitching axis of each
blade. The real blade mass distribution was replaced by lumped masses
connected with the elastic axis. Blade stiffness properties were assigned to
segments of axis located between sections with lumped masses. Besides
elastic deflections, the blade elements undergo displacements subsequent to
collective and cyclic control.
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The equations of blade motion form a mathematical model of the rotor. 
For the elastic axis, the equation of motion can be derived using Lagrange 
formula: 

d ( dT) st d U _ Q - - --+-- . 
d t dqi dq, dqi I 

i= l, ... , n (1) 

The potential energy of elastic axis being bent and twisted equals: 

R 2 R 2 R 2 

I Mr J Mz J Ms 
U= o 2Elr dx + o 2Elz dx + o 2Glx dx (2) 

The kinetic energy of elastic axis equals: 
R R R 

T= ~[ m(x)V}(x)dx + ~[ m(x)V}(x)dx + ~[ lx(x)Qi(x)dx (3) 

The bending and twisting moment loading that loads the elastic axis can be 
expressed according to deformations: deflection in the plane of rotation y, 
deflection out of-plane z and angle of torsion <p: 

d<p 
Ms= Glx dx (4) 

In the case of whirling blade, the stiffening effects of centrifugal forces must 
be considered in the equations of motion. The centrifugal forces per unit 
length that reduce bending moments out of plane are equal: 

Pz = !!:_(Ndz) 
dx dx 

(5) 

and in plane: 

d ( dy) 2 p.=- N- -m(x)w y 
> dx dx (6) 

where 
R 

N= J m(x)W2xdx 
o 

(7) 

centrifugal force for cross-section in distance r from axis of rotor shaft. 
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Substituting Eqs.(2)-=- (7) into Eqs. (1) yields the equations of blade
motion in the following form:
for bending in-plane

for bending out-of-plane

and for torsion

(10) 

where FYE, FzE, Ms£ - shearing forces and torsion moment of external blade
loading, Fn, FZI, M51 - inertial forces and moment without components my, 
mz; fr<P 

A Gal erkin procedure is used to obtain the solution to Eqs. (8)-=- (1 O). In
this case, the deformation of elastic axis y, z, <p are assumed as a superposition
of modal solution p;1, ó;2, 17;3 of the form:

li 

y(x,t) = L p;i(t)y;1 (x), 
il= I

/2

z(x,t) = L ói2(t) z,2 (x), 
i2= l

/3

<p(x,t) = L 17;3(t) <pi3 (x) 
i3= I

(11) 

(12) 

(13)

where y;1, Z;2, <p;3 are blade eigen modes for in-plane bending, out-of-plane
bending and torsion respectively; /1, /2, /3 are number of eigen modes for
bending and torsion.

Taking into consideration Eqs. ( 11 )-=- ( 13), one can transform the blade
motion equation (8)-:- (1 O) to a set of differential equations:
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•. 2 
ói2 + ó;if;2 = Qz, i2 = 1, ... ,/2 

;2 

.. 2 Q 
7/;3 + 7/;3V;3 = <p

0
, 

il=l, ... ,/1 

(14) 

i3 = 1, ... ,13 

where p,f, v are eigen frequencies of the considered modes, and Q y;J, Qz;,, Q r., 
are generalized forces. The Runge-Kutta algorithm is used to solve the set of 
equation ( 14 ). Integrating the distribution of forces along the blades makes it 
possible to calculate loads of rotor hub and shaft. 

Aerodynamic sectional forces and moments are calculated using Tarzani n 
dynamic stall model [6]. For blade element, the local angle of attack 
a depends on temporary airflow terms: 

a= qJ- arc tg(::) (15) 

v ; v, - components of airflow, <p - pitch angle of blade element 

qJ = qJo + 1JxCOS Wt+ qJy sin Wt+ 1)s - K/3 (16) 

where: qJ0 - collective pitch control angle, 
1)x, qJy - lateral and longitudinal cyclic control angle, qJ s - local torsion angle, 
x: - flap and pitch coefficient, /3 - flapping angle. 

3. Simulation of rotor defects 

The calculations, made for four blades rotor of medium weight helicopter, 
were conducted to collect data useful for neural network training. The level 
flight conditions with speed range from hover up to V = 250 km/h were 
considered. The rotor defects were simulated only for one blade by changing 
its aerodynamic, inertial or stiffness properties. The others blades remained 
identical with their properties unchanged. 
The following faults, denoted as (D 1 )-(D6), were selected: 
• blade mass increase as a result of moisture absorption with uniform 
distribution along the blade up to 1 % of total blade mass (Dl); 

• misadjusted pitch link with 1 ° difference of pitch angle to other blades 
(02); 
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• fault of improper trim tab angle changing the aerodynamic characteristics
of blade section with the tab (03):
- increase of drag coefficient ~ex= 0.003,
- increase of maximum lift coefficient Ac, = 0.05,
- change of moment coefficient ~Cma = -O.Ol,

increase of derivative lift coefficient to attack angle ~(dc2/da) = 0.05
(1/rd),
change of zero lift angle ~a= l 0; 

• damage of blade damper with total decay of lead-lag moment damping
(D4); 

• loss of trim mass at the tip blade ~m = 0.1 kg (05);
• 10% stiffness decrease of blade pitch link (06).
The mentioned values of faults or changes of blade properties were assumed
as fully developed defects. For six kinds of defects, a mathematical model was
used to predict time function of the rotor shaft forces and moments, hub arm
bending moments, blade bending moments, deflection of blade tip, flap and
lag angles and the moment of blade pitch control for the increasing percentage
level of faults from 0% (no defect) to 100% (developed defect). One
considered 11 values of speed flight, 6 defect kinds and 100 increasing defect
levels what yielded 6611 cases for computing including 11 cases with no
defect.

Examples of the obtained time functions for flight speed V= 250 km/h are
shown in Fig. 2-=- 6, where, due to constant rotor speed, time was replaced by
azimuth position of blade number 1. Fig. 2 shows the comparison of thrust
force for rotor without failure and for the case of incorrect ( 100%) pitch link
adjustment for one blade.

The comparisons for rotor shaft torsion moment (Fig. 3), blade bending
moment (Fig. 4), angle of flapping (Fig. 5) and blade pitch control moment
(Fig. 6) also pertain to the cases of fully developed faults.

Time results were subjected to fast Fourier transformation to form vector
of cosine and sine components of the selected harmonics for the purpose of
neural network training.

For the parameters shown in Fig. 2-=- 6, the influence of the developed
faults on the harmonic amplitudes are presented in Fig. 7-=- 11. The examples
of blade parameters changes due to increasing level of defects or flight speed
are shown in Fig. 12-=- 13.
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Fig. 2. Thrust of the four blades rotor for the level flight speed V = 250 km/h, 
comparison for rotor without faults and for rotor with misadjusted pitch link of one blade 
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Fig. 3. Rotor shaft torsion moment for the level flight with speed V= 250 km/h, 
comparison between rotor without defects and rotor with failed one blade damper 
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Fig. 4. Blade bending moment in plane of greater stiffness on radius r = 0.42R for the level flight with speed
V= 250 km/h, comparison between rotor without faults and rotor with misadjusted pitch link of one blade
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Fig. 5. Blade flapping angle for the level flight with speed V= 250 km/h,
comparison between rotor without faults and one blade with improper trim tab angle
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Fig. 6. Blade pitch control moment for the level flight with speed V= 250 km/h, 
comparison between rotor without defects and rotor with failed one blade damper 
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Fig. 7. Effects of developed faults on harmonic amplitudes of the rotor thrust for condition of flight 
with speed V= 250 km/h (constant component not shown) 
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Fig. 8. Effects of developed faults on harmonic amplitudes of the rotor shaft torsion moment
for condition of flight with speed V= 250 km/h (constant component not shown)
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Fig. 9. Effects of developed faults on harmonic amplitudes of the blade bending moment in plane
of higher stiffness on r = 0.42R for condition of flight with speed V= 250 km/h 
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Fig. 10. Effects of developed faults on harmonic amplitudes of the blade flapping angle 
for condition of flight with speed V = 250 km/h 
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Fig. 11. Effects of developed faults on harmonic amplitudes of the blade pitch control moment 
for condition of flight with speed V = 250 km/h 
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Fig. 12. Changes of first harmonics of blade tip deflection out of plane due to increasing defects
for flight speed V= 250 km/h
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Table I.
Spectrum components at frequencies (related to rotor speed) initially selected to network training file

parameter frequency

Loads of rotor shaft O.O, 0.25, 0.5, 0.75, I.O, 1.25, 1.75, 2.0, 2.25, 3.0, 3.25, 4.0,
4.25, 5.0, 5.25, 6.0 6.25, 7.0, 7.25, 8.0

Blade and hub arm parameters O O, I .O, 2.0, 3.0, 3.25, 4.0, 4.25, 5.0

In the case of rotor with identical blades without defects, the spectrum of
shaft loads includes harmonics of numbers equal to the multiple of blade
number. The other harmonics vanish on the rotor hub. If the blade is damaged
and its properties are different from the other ones than in the spectrum of
rotor shaft loads there emerge additional harmonics with number not equal to
the multiple of rotor blade number.

The file for initial neural network training includes harmonics of the
following rotor shaft loads: rotor thrust, longitudinal and side forces, rolling
and pitching moments and torsion moment. The data file also includes
harmonics of hub arm in plane and out of plane bending moments and the
following blade parameters: bending moments in the plane of low stiffness at
location of 0.12R, and 0.42R; bending moments in the plane of higher
stiffness at location of 0.12R, 0.42R, and 0.61 R; deflections in plane and out
of plane and the torsion angle of blade tip; the flap angle, the lag angle and
blade pitch control moment. The spectral analysis was conducted in
a frequency range up to the 10th harmonic of rotor speed with steps equal 0.25 
frequency of rotor speed. The selected frequencies of spectrum components
taken into consideration in training file are shown in Table 1. For each applied
frequency the results of spectral analysis were put in the training file as the
following pair of numbers:

F1 = A cosmrot + ę),
F2 = A sinmrot + ę),

where: A - amplitude, w - rotor speed.

4. Results of neural network training 

The STATISTICA Neural Network program with automatic network
designer function was applied for network training. During training, it is
possible to find a suitable network structure that gives output with
a minimized error. Basic input data are divided into learning, validation and
testing files. The learning file is used in the training process. In the cases of too
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little data or too complicated structure of the network, an overtraining effect
may occur what means too much fitting of the network structure to the
learning data. The overtrained network is not adapted to other data and gives
the output with larger error. Validation data, not taken for learning, are used to
identify the overtraining effect. Testing data are used for final checking of the
trained network. The results of learning depend on the number of parameters
in data files and on the number of presented events. It is recommended to
simplify the network by reducing the input data to the parameters of the
highest influence on the correctness of network output.

The blade damage detecting was divided in two stages. The scheme of the
proposed diagnostic system for recognition of the kinds of the blade faults in
the first step, and estimation of the level of previously recognized defect in the
second step, is shown in Fig. 14. In the first step, the network performs
a classifying task. In the next step, for the recognized fault kind, the network
with regression task- individual for each kind of fault- will estimate the level
of development of rotor defect.

,- - - -- - - -- -, 
: network 1 

~~' estimating :
Dl - no,,,,~ : Dl level :

.,.., I I 

~--~,.................... ---------- 
rotor
parameters

flight
parameters

FFT network
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estimating
D2 level

level of D2 fault

',,,,, 
',, 

D6 - no',,
' ',, ' ,---------- 

~ network :
: estimating : 
, D6 level :
I 1 

• 
• 
• 

Fig. 14. Scheme of the diagnostic system for recognizing the kinds of blade faults
and estimation of their levels

Input data file components for network designer function (see table 2)
including rotor forces and blade tip deflection were selected after preliminary
trainings. The neural network obtained in the training procedure was a feedfor­
ward multilayer perceptron with structural scheme ( 12: 12-17-6: 1) shown in Fig.
15. The input file of the network was reduced in comparison with the number of
components for designer function (table 2). That network (12:12-17-6:1) was
able to recognize kinds of blade defects in the flight speed range from hover up to
V = 250km/h with network quality factor reaching the value of 0.988 for the
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testing file part of input data cases. For the classifying network, the quality factor 
is defined as a proportion of the number of correctly recognized events to all 
presented events. The lack of flight speed between components of the network 
input file could be explained due to rotor longitudinal force changes, whose value 
depends exactly on helicopter speed in steady flight condition. 

Fig. 15. The neural network scheme of structure (12:12-17-6:1) for recognition 
of the kinds of blade damage 

Such parameters as rotor forces or blade tip deflection can be measured 
using special stand at wind tunnel examination, but they are difficult to 
measure in flight test conditions. Neural network input data for airborne 
application ought to be changed. The training file was corrected by including 
parameters that had weaker influence on network output but were measurable 
in flight tests. The corrected input file for designer function consist of the 
harmonics of blade bending moments, the rotor arm bending moments, the 
flapping and lagging angles and the pitch control moment (table 3). In the 
training procedure, the classifying network of feedforward multilayer 
perceptron type (27:27-21-6: 1) was obtained. Neurons in the input layer had 
a linear function with saturation activation. Neurons in the hidden and output 
layer had a sigmoid activation function. The results of blade faults recognition 
for 6611 presented events are shown in tables 5-=- 7. The neural network 
output was false for 284 events. The network quality factor decreased to O. 948 
in the case of testing file (table 4 ). The incorrect recognition occurred only for 
the events at early stages of defect growing, and they did not exceed 18% of 
the assumed fully developed damage level. 
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Table 2.
Input for desiner function including rotor forces and input file for trained network

(12: 12-17-6:1) recognizing kind of blade damage

desiner
Network

parametr frequency component function
input file

input

Flight speed X

Rotor thrust force F, X X
lrn

F2 X X

F, X X
8ro

F2 X

Rotor longitudinal force F, X X
lro

F2 X X

F, X
3.25ro

F2 X

Shaft torsional moment F, X
7ro

F2 X

Blade bending moment in plane F, X

of smaller stiffness at O.l 2R location 4ro
F2 X X

F, X
4.25ro

F2 X

Blade bending moment in plane F, X X

of bigger stiffness at 0.42R location !ro
F2 X X

Hub arm in plane of rotation bending F, X X

moment lco
F2 X X

Hub arm out of rotation plane bending F, X

moment 4ro
F2 X

F, X
4.25ro

F2 X

Out of plane blade tip deflection F, X
Ito

F2 X X

Blade flap angle F, X
I ro

F2 X

Blade pitch control moment F, X X
2ro

F2 X
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Table 3. 
Input for desiner function and input files for networks including parameters measureable 

in flight tests conditions 

:, Network input file 
§- 

"Cl 
~ C: 

parametr >. C: C: -"' - N (") 'SI' V") u "' ·u; 'D 
C: "' Cl Cl Cl Cl Cl Cl C: "' bl) 

"' o "Cl "' v ::l o. v v v v .:i O" E .s2 E > > > > > > "' o li: "' "' "' "' "' "' "' J:: u Cl ....J ....J ....J ....J ....J -l 

Flight speed X X X X X X X X 

Shaft torsional moment o X X X X X X 

F1 X X X X X X X 
Iw 

F, X X X X X X X 

F1 X X X X X X X 
4w 

F, X X X X X X X X 

Blade bending moment in o X X X X X X X 

plane of smaller stiffness 
F1 X X X X X X X at 0.12R location Iw 
F, X X X X X X X 

F1 X X X X X X X X 
3w 

F, X X X X X X 

Blade bending moment in o X X X X X 

plane of bigger stiffness 
F1 X X X X X X X 

at 0.42R location Iw 
F, X X X X X X X 

F1 X X X X X X 
3w 

F, X X X X X X X X 

Hub arm in plane of o X X X X X X X X 

rotation bending moment 
F1 X X X X X X X 

Iw 
F, X X X X X X X X 

Hub arm out of rotation o X X X X X X X X 

plane bending moment 
F1 X X X X X X X 

Iw 
F, X X X X X X 

Blade lag angle o X X X X X X X 

Blade flap angle o X X X X X X X 

Blade pitch control o X X X X X X X X 

moment 
F1 X X X X X 

Iw 
F, X X X X X X X 
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Table 4.
Data of the networks for blade faults detecting (input consists of parameters measureable

in flight tests conditions)

network Quality factor for file

task type structure learning validation testing

kind of defect recognition classifying MLP 27:27-21-6:1 0.9570 0.9655 0.9485

estimating DI defect level regression linear 26:26-1:1 0.00505 0.00499 0.00486

estimating D2 defect level regression MLP 16:16-7-1:1 0.00921 0.00947 0.00919

estimating D3 defect level regression MLP 20:20-8-1: I 0.01250 0.01209 0.01288

estimating D4 defect level regression MLP 24:24-6-1: I 0.00859 0.00793 0.00955

estimating DS defect level regression MLP 24:24-7-1: I 0.02467 0.02235 0.02738

estimating D6 defect level regression linear 26:26-1 :1 0.05146 0.05549 0.05108

MLP - multilayer perceptron

Table 5.
Neural network results of blade defects recognition for learning file

Defect Dl D2 D3 D4 DS D6 total

Number of events 577 537 571 553 520 548 3306

Correct recognized 564 511 560 548 517 464 3164

False recognized 13 26 li 5 3 84 142

Table 6.
Neural network results of blade defects recognition for validation file

Defect Dl D2 D3 D4 DS D6 total

Number of events 272 291 249 259 306 276 1653

Correct recognized 264 279 245 257 306 245 1596

False recognized 8 12 4 2 o 31 57

Table 7.
Neural network results of blade defects recognition for testing file

Defect Dl D2 D3 D4 DS D6 total

Number of events 262 272 280 288 274 276 1652

Correct recognized 256 254 273 282 271 231 1567

False recognized 6 18 7 6 3 45 85
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Fig. 16. Scheme of linear network 26:26-1: I 
estimating the level of DI blade defect 

Fig. 17. Scheme of MLP multilayer perceptron 
network 16: 16- 7-1: I estimating the level 

of D2 blade defect 

The neural networks of regression task were trained using the same 
designer function input file as for the classifying network training. For the 
regression network, the quality network is defined as a quotient of two 
standard deviations: deviation of network output mistakes made for estimated 
values of the result parameter and deviation for output parameter values 
inserted into data for training. It is assumed that neural network well fulfills 
the regression task if standard deviations ratio reaches the value lower than 
O. I [7]. As an example, the scheme of linear network for estimating the level 
of D 1 fault is shown in Fig. 16 and the feedforward MLP network for level of 
D2 fault is shown in Fig. 17. 
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Simulated level of defect 

Fig. 18. Scatter plot of the simulated and estimated levels of the lag damper defects (D4) 
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Fig. 19. Scatter plot of the simulated and estimated levels of defects (D6) - pitch control stiffness decrease

For all defects but fault D6 - decrease pitch link stiffness, the quality
factors for networks estimating the development level of defects were lower
than 0.027. The quality factor for network estimating the level of D6 fault
reached the value of 0.0555 (table 4). The output results for neural networks
estimating the development of blade damper damage (Fig. 18) and the
development of blade pitch link stiffness defect (Fig. 19) are presented as
scatter plots for simulated and estimated level faults.

It should be expressed that good results obtained in applying neural
networks for detecting blade faults are connected with usage in training
procedure the computed data. The rotor loads calculation method assumes
some simplifications in comparison with real flight conditions. In the
simulation model, all blades but one have ideally the same properties The lack
of air turbulence was also assumed. Fast Fourier transformation was applied
to blade parameters of the simulation results for steady flight conditions. The
disturbances occurring in helicopter flight can affect neural networks
resulting in an increased level of the false damage recognition. Despite those
minor factors, it seems that neural networks could be applied for detecting
blade faults due to the changes of blade properties during helicopter life time.

5. Conclusions 

The trained neural networks make it possible to correctly recognize blade
defects using as input data the blade loads, the hub arm loads and the blade
motion components measurable in helicopter flight conditions. Processors
with an implemented code of the neural networks could provide data useful
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for helicopter health monitoring system. Neural network results that detect
rotor faults at low development level could increase safety of helicopter
flights.
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Zastosowanie sieci neuronowych do wykrywania uszkodzeń wirnika śmigłowca

Streszczenie

Przedstawiono możliwości zastosowania sieci neuronowych do rozpoznawania usterek łopat
wirnika nośnego śmigłowca. Do treningu sieci neuronowych wykorzystano obliczeniowe dane
uwzględniające zmianę obciążeń !opat i głowicy przy symulowanych uszkodzeniach. W modelu
fizycznym łopaty wirnika reprezentowały osie sprężyste z dołączonym układem mas skupionych.
Uszkodzenia wirnika symulowano poprzez zmianę wybranych własności aerodynamicznych,
masowych lub sztywnościowych łopat.


