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ALGORITHM OF CONSTRUCTION OF SINGLE-BUCKET 
EXCAVATOR MOTION EQUATIONS 

The authors present a concept of constructing the equations of motion for 
a single-bucket pulling excavator in terms of generalised Lagrange's variables. The 
applied model is based on the assumption that the excavator is a system of rigid solids 
connected with rotational constrains of ten degrees of freedom. The essence of the 
proposed algorithm consists in reducing the procedure of constructing the system of 
excavator's motion equations to multiplication of adequate matrices. One avoids 
analytical or numerical derivation of the consecutive time derivatives of kinetic and 
potential energy of the system. The algorithm formulated in such a way may constitute 
a basis for constructing a numerical program for the analysis of excavator system 
dynamics. The proposed method of generation of Lagrange's equations can be 
generalised and applied to a wider class of multibody systems. 

1. Introduction 

The task of modelling of excavator dynamic system, treated as a system of 
rigid solids, can be accomplished in many different ways. Recently, many 
authors have utilised the method presented in [ 1], [8] in application to 
constructing the equations of motion of an excavator (for example in the work 
[2]). The essential feature of this approach is that the motion equations are 
formulated in the space of Euler's parameters - representing certain relations 
between Cartesian co-ordinates in the system [l], [8]. The start point in this 
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method is formulating the equations of constrains. The differentiated 
matrix of constrains, called the Jacobi matrix, created on the basis of 
the equations, makes it possible to introduce the constrains reaction 
forces into the matrix equations of motion and, in this way, to guarantee that 
the movements would comply with their mechanical limitations. The 
algorithm of constructing the motion equations is relatively simple in this 
method, and there is a possibility of fast, almost automatic generation of the 
equations. However, computer realization of such an algorithm can be 
associated with a certain hazard. In numerical calculations, the equations of 
constrains could not be satisfied quite strictly. It results from the cumulating 
computational errors, which - sooner or later, depending on the computer's 
power- cause that the conditions of constrains do not hold any longer, and the 
system does not realize the mechanical conditions. It is particularly 
important, for example, in the case of the closed kinematic loop in 
a single-bucket pulling excavator that consists of the boom's hydraulic 
cylinder, the boom and the bucket. 
The classic approach to the construction of the equations of motion is 
based on the second kind Lagrange's equations (see [3]). In comparison with 
the previous one, this method offers the advantage of constrains equations 
being satisfied virtually automatically, due to the very definition of the 
generalised co-ordinates. The disadvantage of the method is, however, the 
complicated process of deriving the equations, which involves multiple 
differentiations of the functions with respect to the generalised co-ordinates 
and velocities. The level of difficulties increases dramatically with the 
number of generalised co-ordinates, especially in the case of three-dimen­ 
sional model [9]. 
For several years, the authors have carried out the research on the construction 
of a dynamic model of an excavator. The experience gained in these research 
yielded the notion of developing such a method, which would combine the 
advantages of both above-mentioned methods, i.e. the automatism of the 
procedure of deriving the equations of motion, characteristic for the 
Nikravesh method, with the natural simplicity of complying with the 
constrains, which follows on the very definition of generalised co-ordinates in 
the Lagrange method. This work presents the proposed concept of automated 
algorithm for generating excavator motion equations in the generalised 
co-ordinates, on the basis of Lagrange's equations. The basic principles of the 
method are presented in this work with an example of a spatial model of 
a single-bucket excavator. 
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2. Model structure and basic assumptions 

Let us assume that the dynamic system of the excavator consists of the 
immobile subsoil and of seven rigid solids: the undercarriage (1 ), the body 
(2), the boom (3), the arm (4), the bucket (5) and two connectors, (6) and (7), 
whose mass we neglect (Fig. 1). The solids of the excavator are joined by 
cylindrical rotational constrains. 

y 

Fig. I. Functional diagram of mechanical system of single-bucket excavator 

A local system of co-ordinates is associated with each of the solids, and is 
steadily attached to it. Let us introduce the following denotations: { .Qxyz}
- global co-ordinate system attached to subsoil, {.Q~l]ś} - local co-ordinate 
system of - solid i, where i - index denoting the solid; O - subsoil, 
1 - undercarriage, 2 - body, 3 - boom, 4 - arm, 5 - bucket, 6, 7 - connectors. 
The characteristic points of the solids are denoted as Au, where i - number of 
the solid, j - index denoting a consecutive point of the solid. The solids are 
connected by rotational constrains in the points At2 = A21, A22 = A31, 

An= A41, A42 = As1, A43 = A61, A63 = A13, As4 = A11- 
Assuming that the origins of the local co-ordinate systems, in the solids whose 
mass is taken into consideration, are located at the centres of gravity, A;o, and 
the directions of the axes are consistent with those of the global Cartesian 
co-ordinate system { .Qi:yz} in the case of zero angle of rotation. The origins of 
the local systems in the massless connectors are assumed at the points 
AGo = A43 and As, = A54. The positions of solids' points in the local systems are 
determined by means of the vectors r~l = [ ~tu, ni", (fi1f, where k = O, ... 7 
denotes the number of the system. 
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Let lu= lr;?I denote the distance of point Au (i= 1, ... 7) from the origin of the
local co-ordinate system, and (f)& = <J ( Ę;, rul), <pJ = <J ( f/;, r\;>), (f)& = <J ( (;, r;})
the angles that the vectors defining the position of point Au in
local co-ordinate system make with the axes of the system. We assume
that the parameters lu, (f)&, <pJ, (f)& are given, and do not change during
the motion. Then, the co-ordinates of point Aij in its local co-ordinate
system are

(i) - l [ Ę ,, {]Tr u - u cos (f)u cos (f)u cos (f)u (1)

Obviously, the vector rul is invariable during the motion of the system.
Let us also assume that the plane { O..\y} is the plane of symmetry of the system
in its initial position, and that, in an arbitrary position, the characteristic points
(centres of mass, points of rotational constrains) of the body, the boom, the
arm, the bucket and the connectors lie in the same plane.
We assume that the forces acting on the system are the forces of hydraulic
cylinders Pi, P2, P3, applied at the points A23,A33,A34,A44,A4s,A63, respectively,
reaction forces of subsoil R, (j= 1, .. .4) at the points of support of the
undercarriage, A13,A14,A15,A16, and the reaction force of the ground at the
cutting edge of the bucket, A53.
It will be assumed that the position of the excavator in the global co-ordinate
system is determined by the vector q of ten generalised co-ordinates, q = [ lf/1
lf/2 lf/3 8 a /3 y xo Yo zof where lf/1, If/ 2, If/3 - angles of rotation of the axes of
undercarriage's local co-ordinate system with respect to the global system
(Brytan's angles) e =<1(Ę1, Ę2) - angle of rotation of body with respect to
undercarriage about the axis parallel to the axis ~ 1 passing through the point
A12, a= <J (f/2, rJ3) - angle of rotation of boom with respect to body about the
axis passing through the point A22, /3 = <1 ( f/2, f/4) - angle of rotation of arm
with respect to boom about the axis passing through the point A32,

y = <1( f/2, T/ 5) - angle of rotation of bucket with respect to arm about the axis
passing through the point A42, x0, y0, zo - co-ordinates of undercarriage's mass
centre, AIO.

3. Transformations of co-ordinate systems 

The matrices of rotation of co-ordinate systems, which allow for transfor­
mation of position and velocity co-ordinates from one local system to another,
play an essential role in the construction of excavator's equations of motion.
These will be denoted as follows:
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o 
ccs q,
smą;

O ] [cosą; -siną;
-siną; for i= 1, 5; ((};=siną; cos q,
cos ą; o o

[ cos ą, O siną, l 
<P2 = Q 1 O ; (2)

-smą2 Q cos ą2

~, = [~
o 

-si~"l ~, = l~ o -si~8,]cos ó, cos ó,

sin81 cos ó, O sin 82 cos ó,

where ą; - /' element of generalised co-ordinates vector, 81, 81 - rotation
angles of local systems of the connectors with respect to the arm (functions of
the generalised co-ordinate ą1).
The product of matrices of rotation is denoted as <Pu = <P; · <P;+ 1 · ... · <P1 for
i <j. The matrix <P1;, for i> 3, is the matrix of rotation of solid i-2 in a local
system with respect to the global system.
Let Alj be the point of the undercarriage with the local system co-ordinates
r\? = [~1u, 111u, (?Uf_ Then, the co-ordinates of this point in the global
system are

(3) 

where r\~ = [x0,y0, zor - vector of position of the undercarriage centre of
mass in the global system. If the co-ordinates of point Au (i= 2, ... 7) in its local
system are equal to d? = [~7u, rJ7U, (7uf, then its co-ordinates in the global
system are

.(0) _ (0) + <P ( .(i) (i)) , ;1 - ru-1J2 1u+2J , u - r;1 (4) 

Using these relationships, we can express the co-ordinates of the centres of
mass A;o (i= 2, ... 5) in the following form

.(0) _ (0) + <P (i- I) <P .U)
I i0 - r(i-1)0 l(i+I) r(i-1)2 - 1(i+2) I il (5)

For example, taking the undercarriage point A23 where the force of cylinder P1

is applied, and the centre of the body's mass A20 we have
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r<Ol _ r<OJ + m (r<2l _ ,.<2J)
23 - 12 'VJ4 23 21 

,.(OJ _ r(O) + m ,.(I) _ m r(2) 
20 - IO 'VI} 12 'VJ~ 21 

The above relationships are represented graphically in Figure 2.

a) b)

z z 

V V 

X 
X 

Fig. 2. Example graphical interpretation of relationships (5): a) undercarriage point A23 where the force of
cylinder P1 is applied, b) centre of the body's mass Aeo

4. Equations of motion of excavator system 

The description of co-ordinates of the excavator's mechanical system points
was utilised in the construction of motion equations based on Lagrange's
equations of type II [6], [7] in the form

d ar ar av
-(-)--+-= Q
dt aą aą aą (6) 

where: T- kinetic energy of the system, V - potential energy, Q - vector of
generalised forces. In our case, equation (6) is a system of ten scalar
differential equations of second order. Assuming that kinetic energy does not
depend explicitly on time, we can represent these equations in a form more
convenient for numerical calculations
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(7) 

The total kinetic energy of system T is the sum of the kinetic energy Ti of 
translation motion of mass centres of solids in the system, and the kinetic 
energy T2 of rotary motion about the instantaneous rotation axes passing 
through the centres of masses in the system, that is T= Ti+ Ti. The energy of 
translation motion has the form 

5 

Ti = ½ I, m;Vio V;o 
i= I 

where m;, v.o (i= 1, ... 5) - mass and velocity of translation motion of mass 
centre of i" solid. 
In equation (7), the derivatives of this part of kinetic energy, expressed by the 
derivatives of translation motion velocity, are equal to: 

(8) 

(9) 

The velocities of translation motion of mass centres can be expressed as 
functions of velocity of the undercarriage mass centre and time derivatives of 
rotation matrices of the appropriate local systems: 

•(O) [ • • • ]T V;o = rw = Xo,Yo,Zo (10) 

_ • (0) _ + A, (i - I) A, i 
V;o - r;o - Vu-1)0 "¥\(i+ Il ru-1i2 - "¥\(i+2J r;1, (i= 2, ... ,5) (11) 

In expression ( 11 ), only the rotation matrices depend on the co-ordinates and 
the generalised velocities. Then, determination of the velocity derivatives 
( 10) and (11) that appear in equations (8) and (9) can be reduced to 
differentiation of the rotation matrix. 
The energy of rotary motion of the considered system has the form 
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where W; = [cv iĘ CV i'I CV i(r - angular velocity of ith solid in local co-ordina­
te system, and

-l;Ę,1
I;,,
-I;,,(

the matrix of mass moments of inertia of ith solid (invariable during
the motion).
The appropriate derivatives of kinetic energy of rotary motion are equal to:

(12)

(13)

The association between angular velocities of the solids in their local systems
and the rotation matrices is defined by the relations:

CV; = CVu+1)0 + </>;+2 T CV i- l (i = 2, ... ,5)

( 14) 

(15)

where

' T ' T ' T 'T 
cv,o = [l/11 O O] , CV10 = [O l/12 O] , CV30 = [O O l/12] , CV40 = [O O 0] , 

CVso = [a O Of, CV6o = [/3 0 Of, CV70 = [y O Of.

Similarly as in the case of kinetic energy of translational motion of mass
centres, determination of the angular velocity derivatives with respect to the
generalised co-ordinates with generalised velocities consists in differen­
tiation of the appropriate rotation matrices.
Potential energy of the system has the form
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5 

V= g L, ln;Z;o 
i= I 

where: g- acceleration of gravity, Z;o = r\8~ - co-ordinates z of mass centres 
in the global system. 
The derivative of energy with respect to the vector of generalised co­ 
-ordinates equals 

(16) 

The derivatives of these co-ordinates, appearing in equation (2), are the third 
components of the derivatives of vectors of mass centre positions with respect 
to generalised co-ordinates. 

O 1 O Ol O O 1 O 
O O O 1 

The generalised forces Q that appear in Lagrange's equation (7) result from 
the action of forces in hydraulic cylinders, the reaction forces of undercar­ 
riage outriggers, and the reaction force of the ground at the cutting edge of the 
bucket. The components of vector Qare the coefficients in the expressions for 
virtual work of the above forces on virtual translations of the generalised 
co-ordinates. The virtual work of these forces equals 

L = Pf8ri~ + Pf8r~~ + P~8r~°d + P18ri°d + P18r~~ + Pi8r~0-!, + 
4 

+ L,Ri8r\~> + Rs8r~~ 
j= l 

(17) 

where: P;, (n = 1,2,3, i = 2,3,4,6) - force of nth hydraulic cylinder acting 
on th solid, Rj- reaction force acting on j" outrigger U= 1, .. .4), R5 - reaction 
force of the ground at the bucket edge. 
In order to determine the generalised forces, it is necessary to express the 
virtual translations by variations of the generalised co-ordinates: 
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10 [a (10) a- ] .(0) _ r 10 '¾'13 (I) . _ 
ÓI lj -L, -a-+ -a- (rlj óqk, (j - 1, ... ,4), 

k=I qk qk 

(18)

Determination of the equations of motion is completed after obtaining
appropriate derivatives of the rotation matrices <P; and <Pu (i= 1, ... 6). The
consecutive steps of this operation constitute the following algorithm:
1. Determination of the first and the second derivative of rotation matrices

F; with respect to these generalised co-ordinates that the matrix depends
on, that is

for i= 1, ... ,9

2. Determination of double derivatives of rotation matrices <Pli with respect
to generalised co-ordinates and time

where we assume that <Pu=E for i>! and <P;;=<P;. 
The above relationship results from differentiation of matrix <P11 with
respect to time
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The derivative of the above function with respect to the generalised velocity is 
equal to the matrix coefficient appropriate for this generalised velocity 
3. Determination of time derivatives of rotation matrices <P1; 

4. Determination of mixed derivatives of rotation matrices <P,; with respect 
to time, generalised co-ordinates and velocities. 

for l < k 

Justification of the above relationships is similar to that in the step 2 of the 
algorithm. 
5. Determination of mixed derivatives of rotation matrices <Pi; with respect 

to time and generalised co-ordinates. 

It must be noticed that the first step of the algorithm consists only in simple, 
analytical differentiation of the matrices. The remaining steps can be reduced 
to multiplication of matrices, which can be easily performed numerically. 
The full algorithm of determining motion equations of an excavator consists 
of the following steps: 

1. For the given geometrical parameters of the excavator, determine the 
positions of the characteristic points in the generalised co-ordinates, 
according to formulae (1). 

2. For the given generalised co-ordinates, determine the rotation matrices 
<1>; and <Pu, (iJ = l, ... 7) according to formulae (2). 

3. Following the steps of the previously described algorithm, determine 
the derivatives of the rotation matrices. 

4. Determine the velocities of translational motion of mass centres using 
formulae (IO) and (l 1), and the velocities of rotary motion of the solids 
by means of formulae (14) and (15). 

5. Determine the derivatives of kinetic energy of translational and rotary 
motion from the derived formulae (10), (11), (14) and (15). 
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6. Determine the derivatives of kinetic energy of translational and rotary
motion from the formulae (8), (9), (11) and (13).

7. Determine the derivatives of potential energy with respect to the
generalised co-ordinates using formula (16).

8. Determine the generalised forces as the coefficients of appropriate
virtual translations by substituting expression (18) into equation (17).

Finally, substitute the obtained expressions into equation (7)

5. Conclusion 

The procedure of analytical (or symbolic) determination of motion equations
in the Lagrange's form is associated with multiple derivations of the
derivatives of kinetic and potential energy functions. Nowadays, when
computational power of contemporary computers increases dramatically, this
method might be effective even in the cases of systems having a great number
of degrees of freedom. However, the proposed algorithm seems conceptually
more simple, and is directly oriented at computer implementation. The
presented concept of constructing the motion equations makes it possible to
significantly simplify the process of determining the equations of motion, and
still preserves maximum accuracy of calculations. This is due to the fact that
the application of the generalised co-ordinates guarantees permanent fulfil­
ment of constrains conditions. In the proposed algorithm, the main com­
putational effort is associated with determination of the derivatives of rotation
matrices in the local systems. This task, however, can be accomplished by
a simple multiplication of appropriate matrices.
The presented method of constructing an excavator's equations of motion has
a general character, and can be well applied to a variety of similar types of
mechanical systems.

Manuscript received by Editorial Board, June 18, 2003;
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Algorytm budowy równań ruchu układu dynamicznego koparki jednonaczyniowej

Streszczenie

W pracy sformułowano algorytm budowy równań ruchu modelu koparki jednonaczyniowej
podsiębiernej w zmiennych uogólnionych Lagrange'a. W modelu przyjmuje się, że koparka jest
układem bryi sztywnych połączonych więzami obrotowymi o dziesięciu stopniach swobody. Istota
algorytmu polega na sprowadzeniu procedury budowy równań ruchu układu do procesu mnożenia
odpowiednich macierzy bez konieczności analitycznego lub numerycznego wyznaczania kolejnych
pochodnych energii kinetycznej i potencjalnej układu względem współrzędnych i prędkości
uogólnionych. Tak sformułowany algorytm może stanowić podstawę budowy programu numerycz­
nego do analizy dynamiki układu koparki. Przedstawiona metoda generacji równań Lagrange'a
może być uogólniona i stosowana do szerszej klasy układów wieloczłonowych.


