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APPLICATION OF THE DYNAMIC STIFFNESS MATRIX TO THE 
IDENTIFICATION OF CRACKS IN BEAMS AND FRAMES 

The paper discusses the problem of the accuracy of the identification techniques 
detecting cracks and corroded members in vibrating beam and frame structures. The 
presence of the fatigue crack usually causes very small changes of the stiffness of the 
beam elements of the structure. To detect these changes it is necessary to apply the 
most precisely mathematical detection technique. The identification procedure based 
on the least squares technique uses finite element models (FEM) of the structure and as 
the source of information the measured dynamic response and the natural frequencies. 
The application of the Dynamic Stiffness Matrix (DSM) [I) for the representation of 
all constraints and modal equations makes it possible to present the identification 
process in a very accurate and efficient mathematical form. The methoyof d of the 
detection of structural changes used in the present paper was described in our previous 
paper (2). The Consistent Mass Matrices (CMM) and Lump Mass Matrices (LMM) 
are very often used in the identification algorithms. It is shown that application of 
simplified approaches (CMM and LMM) can result in lower accuracy and poorer 
convergence of the identification algorithms. However, the application ofCMM mass 
matrices does not introduce significant errors. The algorithms were tested on 
simulated numerical data for ten element beam frames. 

1. Introduction 

Defects, such as cracks or corrosion, change the local stiffness of the 
elements of the vibrating structure, which results in the change of the dynamic 
behaviour of the whole structure. Propagation of cracks and other failures of 
the members produce changes in the bending and axial stiffness of the 
members. Observing the change in the bending stiffness caused by the closing 
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and opening of the crack in two different configurations makes it possible 
to detect the crack. Corrosion reduces the stiffness of the member, 
and the change does not depend on the deformations of the member 
during its motion. In contrast, a crack changes the stiffness of the 
element only when it is open. When the crack is closed the changes 
introduced by the closed crack are small enough to assume that there 
is no significant change in the stiffness of the element. This observation 
can be used to differentiate cracks from corrosion. The first analysis 
of the behavior of a beam with cracks was done fifty years ago in 
the USA. In 1944 P.G. Kirmser [16) discussed the effect of the crack 
on the natural frequencies of a vibrating beam. Later W.T. Thomson 
[34) investigated the possibility of detecting cracks in slender bars. 
Although he only attempted to determine theoretically the effect of 
flexible discontinuities on flexural, longitudinal, and torsional vibration 
of slender bars, he expressed his belief in the possibility to determine 
the position and depth of a crack by carrying out experiments. Using 
ideas from Kirmser's research, he approached the problem using the 
operational method based on Laplace transformation. He was able to 
determine the influence of a slot on the natural frequency of a beam 
and found that for very small cracks the influence on the natural frequency 
is negligible. However, for deeper slots the changes increase quite rapidly. 
In 1981 HJ. Petroski [28), using the same approach as M. Hetenyi 
[11), P. Kirmser [16) and W.T Thomson [34), represented the deflection 
of a beam in his analysis using Fourier series. He related Stress Intensity 
Factor K to the deflection of a beam for static and dynamic cases. 
He demonstrated that the crack increases the overall vibration amplitude 
of the beam. 

Interest in the problem of cracked beams has increased in recent years 
since failure analysis and prediction have become an issue in engineering 
practice. Researchers have become interested in the problems related to 
eigenfrequency changes in structures due to cracks. R.D. Adams and P. 
Cawley [1] used a method based on sensitivity analysis to deduce the location 
of damage and the FEM to represent the model of the structure. A year later, in 
1984, M.M.F. Yuen [34) presented results from his research in which he 
wanted to find the relationship between damage location, damage size and the 
changes in the eigenvalues and eigenvectors of a cantilever beam subjected to 
damage. See also papers [3], [7], [8] devoted to similar problems. 

In 1990, G.-L. Qian, S.-N. Gu and J.-S. Jiang [28) published the results of 
the investigation of the dynamic behavior and crack detection of a beam with 
a crack. Calculated values were compared with the experimental data 
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obtained from the work of P. Gudmundson. The article presented by P.F. 
Rizas, N. Aspragathos and A.D. Dimarogonas [31] on identification of crack 
location and magnitude in a cantilever beam, as all previously presented 
methods, neglects damping. A different method, utilizing the relation 
between the changes in the eigenfrequencies, the local stiffness losses and the 
mode shape functions of the undamaged system, was presented in 1993 by U. 
Pabst and P. Hagedorn [25]. Rayleigh's Quotient was used as a base for the 
crack detection procedure. Being aware of the limitations of the previously 
presented methods, A. Morassi [23] used a perturbation method to evaluate 
the first order perturbation of the eigenfrequencies. Two years later, in 1995, 
W.M. Hasan [9] extended the above work to the case of a beam on an elastic 
foundation and was able to find the position and severity of a crack using the 
same approach as A. Morassi. See also papers [2], [13], [14]. 

The ability to locate and assess damage in flexible truss structures has 
progressed considerably in the last five years. Many local (measurement) 
approaches have been developed and evaluated previously, including X-ray, 
optical, infrared, and ultrasonic methods. Global methods (mathematical 
approaches), currently under development, use vibration response and system 
identification techniques to detect damage in flexible structures. Almost all 
approaches are based on eigenvalue and eigenvector derivatives. S.L. 
Hendriks et al. [10] presented an eigenvalue sensitivity identification 
procedure and performed a numerical simulation to obtain clustered and 
lowfrequency vibration modes, characteristic of large flexible structures. 
Mass, damping and stiffness matrices were constructed in terms of small sets 
of physical property parameters. Estimation and correction of initial 
parameters was accomplished by using firstorder eigenvalue derivatives and 
the difference between the measured and predicted frequencies. Using the 
eigenvalue sensitivity method, less information about the system is needed 
than using the eigenvector sensitivity method. The second method is expected 
to be more efficient. C. Flanigan [5] applied an eigenvector sensitivity 
approach for model refinement of a truss structure. The illustration of this 
method was presented by J.M. Rides and J.B. Kosmatka [30]. First, residual 
modal force vectors were used to locate the damage. Second, a weighted 
eigenvector sensitivity analysis was carried out to estimate the extent of the 
damage. S.W. Smith and C.A. Beattie [33] incorporated the incomplete 
measurement procedure for damage assessment but not for damage location. 

An advantage of sensitivity identification is that the damage can be 
assessed with incomplete measurements. Also, areas in a property matrix far 
from damaged areas remain unaffected by using a localized set of physical 
parameters. A disadvantage is that an inclusive set of physical parameters 
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must be defined before sensitivity analysis can be successful. Experiments
show that algorithms are often not robust with respect to errors in the modal
data, and lead to numerical difficulties with near-singular sets of equations.
R.M. Lin [ 17] proposed an improved method that employs analytical and
experimental data, both eigenvalues and eigenvectors, to calculate sensitivity
coefficients. Numerical experiments with a truss structure indicate that this
method overcomes difficulties associated with previous procedures, such as
slow convergence and ability to handle small damage. See also [14], [22].

Multiple-constraints matrix adjustment identification methods have
shown promise in determining damage location and assessment in flexible
structures. S.W. Smith and S.L. Hendrix [32] presented a detailed review of
these methods. Through the solution of the constrained optimization problem,
formulated with the matrix Forbenious norm, this approach produces adjusted
FEM property matrices that more closely match the structural properties
determined from tests of the structure. Stiffness loss in the FEM model is
established to determine damage severity and location.

For better detection of damage in a flexible structure, the hybrid approach
that combined the advantages of both eigensensitivity and matrix adjustment
techniques, was investigated by Cuiping Li and Smith S.W. [4]. The first
multiple-constraint stiffness matrix adjustment algorithms were used to
formulate the general form of the objective function to minimize the
Frobenius norm of the matrix of residual force vectors. Only an undamped
system was considered. Later physical parameter sensitivities were intro­
duced through a first-order expansion of the stiffness matrix. As a result, the
least square problem was solved to identify the set of physical property
parameters. From acceleration data obtained corresponding to all DOF,
eigenfrequencies and modal shapes were computed as input data for system
identification. An experiment conducted with a truss structure with 96 DOF
confirms the ability of the method to identify the damage location.

The experimental measurement of the dynamic system is usually pursued
through determination of the natural frequencies and modes of a structure and
comparison with the analytical system response data. Many test procedures
have been proposed [12] to determine eigenfrequencies and modal shapes of
a structure from experimental measurements.

They vary in the manner in which the structure is excited, the quantities,
which are measured, and the manner in which the experimental data are
analyzed. Most modal vibration methods are based on the assumption that
there is no mode coupling. Although some methods have been introduced to
deal with modal interference, they require advanced determination that mode
coupling will occur and their accuracy is not much better than that of other



APPLICATION OF THE DYNAMIC STIFFNES MATRIX TO THE ... 219 

methods. However; to obtain modal data one is not required to measure the 
response of the structure at all nodal degrees of freedom. The aforementioned 
methods received the most attention in the past. The direct use of dynamic 
response measurements from all degrees of freedom was also examined. This 
approach allows determining the modal characteristics of a structure more 
accurately. Also some different methods were applied to identify the dynamic 
system [8]. Statistical parameter estimation [13], [18], matrix perturbation 
theory [5], the matrix adjustment procedure [15], simultaneous expansion and 
orthogonalization of measured modes [33] or hybrid approach [4], [35] are 
just a few methods presented in the past. There is no obvious choice since all 
of them have some limitations. The monograph by M.I. Friswell and 
Mottershead [6] published in 1995 describes different methods for iden­ 
tification and model updating. However, the approach and the formulation 
applied in the present paper are not presented there. 

As mentioned before a simple and straightforward but very efficient 
approach was presented in [19], [20], [21]. This method is based on the least 
square technique and minimization of the global error functional. Using 
directly measured data from all nodal degrees of freedom the dynamic system 
was identified. It was also shown that due to the matrix formalization of all 
operations the method was able to deal with noisy data and provide very 
accurate results. This method is used in the present paper to detect the defects 
in beams and trusses (see also [26], [37] for details). 

In recent years, considerable effort has been devoted to investigation of 
the relationship between crack location, crack size and the corresponding 
changes in modal shapes and eigenfrequencies. The studies in this area have 
been mostly limited to beam elements with local cracks. There has been less 
research done to establish an effective, general method to analyse more 
complex structures, such as trusses and to detect damage from monitoring of 
vibration. Also, the previous works used changes in natural frequencies 
and/or modal shapes of locally damaged structures. 

The get high precision of the results necessary in the identification process 
it is suggested to use a dynamic stiffness matrix (DSM) in which the stiffness 
matrix of the structure is assembled directly from the differential equations of 
motion and thus internal effects of the vibrating masses. In this way there is no 
mass matrix involved. The shape functions that are used for derivation of the 
stiffness matrix are exact solutions of the differential equation of motion. 
Thus the calculated eigenvalues and natural frequencies are exact. Classical 
approach in FEM is based on the assumption that the local behaviour within 
the element determines the stiffness and mass matrices of the structure. The 
accuracy of the results strongly depends on the accuracy of the element 
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modelling. In the case of the static analysis of the frames the FEM solution is
correct. However, the exact dynamic description of the system is necessary
for the purpose of the identification.

The identification algorithm proposed here using DSM generates very
precise results which allow to identify even small changes in the bending
stiffness of the members resulting from cracks and corrosion. The method was
tested on simulated experimental data. The results obtained from DSM
approach were compared to the results obtained using CMM and LMM.
When the displacements or accelerations at all degrees of freedom are used as
measured data the calculations converge rapidly to the correct solution. The
method is working also on the incomplete set of data.

2. Identification technique 

To show that the changes of the stiffness are small we present here the
results of the calculation of the change of the stiffness of the beam

Throughout the formulation and evaluation process, it has been assumed
that:

(1) Accelerations and displacements are the measured quantities represen­
ting dynamic response of a structure.

(2) The only changes associated with occurrence of cracked and corroded
members are changes in stiffness of a structure. Therefore, changes in
mass or damping properties are not considered.

(3) The structure vibrates freely during the period of time of the analysis.

2.1 Stiffness changes in structures due to cracks and corrosion 

The loss of the axial or bending stiffness of a beam due to a transverse
crack can be examined using FEM. [1]. The equivalent flexural rigidity EI2 
for the cracked member with dimensions h x 1 x L can be represented cp as:

Elz 1=------~
sr, l _ 10h ( l _ _!_)

L ke

(1) 

where k, is a stiffness reduction coefficient presented in Figure 1. EI0 is the
stiffness of the sections without a crack. Fig. I and Eq. ( 1) can be used to find
the crack length in the analysed member if the actual stiffness is known.

We see that the crack initially changes very little the stiffness of the beam.
Crack of the depth of 10% thickness of the beam results in 2% change of the
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flexural stiffness of the beam only. It is therefore of extreme importance to be 
able to detect the stiffness changes with as high precision as possible. It is 
assumed in the paper that the crack changes the stiffness of the member only 
when it is opened. That relates the crack to the sign of the deflection 
curvature. The corrosion changes the stiffness of a member irrespective of the 
beam curvature. 
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Fig. I. Stiffness reduction coefficient for the cracked beam, t is the crack depth 

Dynamic behaviour of structures depends on a number of properties. 
These properties, such as mass, stiffness and damping characteristics of 
members can be significantly affected by changes in the structure due to 
corrosion or cracks. When dealing with changes caused by corrosion, the 
effect of the cross-section area decrease is simply predictable. A smaller 
crosssection area gives smaller flexural and axial stiffness of the element. 
Also the mass of the affected element decreases. However, this change can be 
related to the change of the bending stiffness parameter. 

Damping properties are also likely to be affected, but their actual 
influence is not exactly known, and only experimental work can provide an 
answer to this problem. Since for the loaded structure, the effect of stiffness 
and mass changes are most significant, damping changes of the beam element 
are not taken into consideration in this study. 
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When cracks appear in vibrating structures, their influence on the
behaviour of the structure is more complex. The loss of stiffness only occurs
for the Open Crack Mode. It is assumed that in the Closed Crack Mode there
are no stiffness changes of the element. This is an accurate enough
approximation of the real behaviour of very fine cracks since stress changes
induced by contact of closed surfaces of a crack are very local and relatively
small. The stiffness of the element can only decrease due to crack appearance.
The curvature of the member can be established by knowing the angular
displacement of the member at both ends. This procedure is only appropriate
if the element is vibrating in its first mode. If the structure is excited in
a controllable way, this requirement can be simply satisfied. If not, the
structure must be divided into more elements to satisfy the condition that each
member is in the first mode of vibration.

The influence of artificially generated measurement error on the accuracy
of the solution was investigated. The model system equations are considered as
constraint equations for an optimisation problem where the differences between
the measured values and the values predicted by the model are minimised.

2.2 Method 

A general dynamic system modelled using the finite element method is
presented by a matrix equation

K(w)u - F (2) 

where K is the global dynamic stiffness matrix and Fis the vector of external
forces. In this case Fis equal to zero since only free vibration is considered.
The matrix K has dimensions n x n, where n is the number of degrees of
freedom of the system. Let us assume that displacement u• or acceleration
vector a• is measured and m values for each n DOF are obtained. Two vectors
of accelerations anm and a•mn are created. The vectors predicted by the model:

The vectors of measured displacements or accelerations are:

(3)

(4) 

where m is the number of samples for each displacement or acceleration a0• 
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The values of u• and a• are affected by noise and other experimental errors. 
The matrix K is also unknown and should be found from the analysis of the 
experimental data. To find u, and K, the method of least squares has been 
applied. Let us define the global error of measurements R, in the time interval 
T, as follows: 

1 *T • 1 • 'l 'l R = 2 (u - u) (u - u ) + 2 W1 (CD - w)+ A(K(cv) u - F) + W2A1 D (cv), (5) 

where A is the vector of the Lagrangian multipliers, 

and CD, w• are calculated and measured natural frequencies of the system. W1 

and W2 are the weights for the data for CD and CD•. 
Equation D ( cv) = I K ( cv)I = O. represents here the eigenvalue equation used to 
calculate the natural frequencies of the vibrating system. This equation is 
often difficult to solve precisely due to numerical problems in the calculations 
involving the trigonometric functions. In the presented approach this equation 
is not solved directly to obtain the values of CD;. It is only checked in the 
iterations and the values of the natural frequencies are obtained as the result of 
the optimization process. Due to the effect of the defects in elements the 
matrix K, changes, these changes, however, can be defined by the changes of 
parameters p; which are related to the properties of the elements of the system. 

The stiffness matrix Ke of an element i can be presented in the form: 

Ke;= p.k., (7) 

where p; is a scalar coefficient characterising the physical properties of the 
element i and k; is the normalised stiffness matrix of the element i. This means 
that the properties of the element are characterised by one parameter only. 
This is justified when we can neglect the bending stiffness as compared to the 
axial stiffness while analysing trusses, or the axial stiffness as compared to the 
bending stiffness in the analysis of frames or beams. If the properties of an 
element are characterised by two parameters for axial and bending stiffness 
a similar formulation is still possible using the partition of the stiffness matrix 
of the element. Similarly we can define the coefficients p; for the mass and 
damping matrices. 
Minimising the error R with respect to U;j, A;i and p;, the following set of 
equations is obtained: 
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BR . , x.: (u - u) + K({JJ)A 

dR _ W ( _ *) 1 dK({JJ,Pe) T W 1 dD({JJ,Pe) 
d{JJ - l Ct) Ct) + A d{JJ U + 2A1 d{JJ 

(8a) 

(8b)

BR 
dA; = K({JJ,Pe)U - F (8c)

(8d)

dR _ [, dK({JJ,p,) T W 1 dD({JJ,p1) 1 dK({JJ,pe) T W 1 dD({JJ,pe)]T 
~ - A :i U + 2 A I :i . . . A :i U + 2 A1 :i up; up l up, U Pe UPe 

(Se)

3. Numerical solution 

The above set of nonlinear equations can be solved by means of any
iterative technique suitable for the solution of the nonlinear algebraic
equations. By solving the above set of equations, Pi values are obtained, which
gives all the parameters of the vibrating structure. In this work the
Newton-Raphson method is used to obtain the solutions. A typical problem
gives N gradient relations to be zeroed, involving variables x;,i = 1,2, ... ,N:

BF(x;) . a = Oz = 1,2, ... ,N 
X; 

(9) 

The vector of partial derivatives appearing in equation (4.11) is the Gradient
vector G and the matrix of partial derivatives is the Hessian matrix H:

(10) 

Solving the above equations, we havey

( 11)

Next the corrections are added to the solution vector,
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Xnew = Xold + ÓX; (12) 

and the process is iterated to convergence. The problem with local minima 
can be eliminated if several runs of optimisation routine with different initial 
values are performed. We can specify the following vectors of the variables: 

x: = [u w ;t A1 p], 

Gr_ [JR JR JR JR JR] 
- OU; O{JJ OA; OA1 Op; ' 

The Hesian matrix becomes: 

H11 H12 H13 o His 
H22 H23 H24 H25 

H= o o H3s 
o H4s 

n; 

where, 

a2R 
--2 = H11 = I, OU; 

o2R =Hp= oK(w,p,) ;i, 
OU;O(JJ - O(JJ ' 
a2R 

OU;OA; = H13 = K(W,pe), 

a2R 
OU;OA1 = H14 = o, 

a2R =His= [oK(w,pe) A 
OU;Op; Op1 

oK(w,pe) A]. 
ap, 

- H - w 1 T a2 K(w,p,) w 1 ;;2 D(w,p,) 
- 22 - 1 + /\, ow 2 u + 2 /\, 1 ow 2 , 

o2R _ H _ oK(w,p,) 
JwJ;t; - 23 - Jw u, 

(13) 

(14) 

(15) 
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iJ2R _ H _ W dD(w,p,)
dWdA I - 24 - 2 aw '

d2R _ H _ [ 'J d2 K(W,p1) W 'J d2 D(W,p1)
-- - 25 - A -~~- U + 2A I ------,~~- 
dWdp; dwdp1 dwdp1

W 'J a2D(w,p,)l
+ 2A1 doidp, ,

= H33 = O, 

'J d2 K(w,p,)
A -cc--cc--- U+ dtodp,

a2R
Jlf = H44 = O, 

a2R = H45 = [w2 dD(W,p1)
dA1dp; dpi

_ H _ ; T d2 K(w,p,) W 'J d2 D(w,p,)
- 55 - A :) 2 U + 2AJ :) 2 up, up, 

In the case of a bean structure the dynamic element stiffness matrix (DSM) 
[27] is given by the formula 

Pe 2 
K,(w) = L3 ~ 

(SCh-CSh)/;L2 SSh/;2L -(S+Sh)/;3 (Ch-C)/;2L
(SCh - SCh)I; L2 -(Ch - C)/;2 L -(S - Sh)/; L2 

(SCh + CSh)/;3 -SSh/;2 L

(SCh - CSh)I; L2 
(16) 

where .6. = 2 (1 - CCh), I;= kL, S = Sini;, C = Cosć, Sh = Sinhć,
Ch = Coshć, k is the frequency parameter, usually defined by the boundary 
conditions. The frequency is related to I; by means of equation: 

(17) 
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It is possible to differentiate analytically the above stiffness matrix and obtain 
all necessary derivatives in the equations (15). 
Using Taylor series expansion, the dynamic stiffness matrix for small i;can be 
approximated by the equation: 

K(w) = K- cv2M.

where Ke and Me are given by the following formulae: 

12 6L -12 6L 156 22L 54 -13L 

Ke=PeEI 
6L 4L2 -6L 2L2 

pAL 22L 4L2 13L -3L2 

-12 -6L 12 -6L . Me=-- -22L' L3 ' 420 54 13L 156 
6L 2L2 -6L 4L2 -13L -3L2 -22L 4L2 

(18) 

here M' is called the consistent mass matrix (CMM). 
The lumped element mass matrix (LMM) often used m dynamic finite 
element analysis is given by the equation 

1 O O O 

pAL O O O O 
Me=-- 

2 O O 1 O 
o o o o 

Equations (18) are most often used in finite element analysis. However, we 
have to note that the expansion on small i; is equivalent to requirement of 
small element length L or restricting the analysis to low frequencies. 
The derivatives of the determinant can be performed according to the 
equations provided in below. The calculation of the determinant with respect 
to the parameters can also be done analytically. 

-2WM11 -2WM12 -2WM1n 
ćJD(w) K21-W

2
M21 K22-W

2
M22 K211 - w2 M2n = aw + 

K111-W2M111 K112 - w 2 
M112 Kn" - w 2 M1111 
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K11-W
2
M11 K12-W2M12 K1n-W2M1n 

+ -2WM21 -2WM22 -2WM2,, + ...... 

K,,1-W2M,,1 K,,2 - w 2 M,,2 Kn,,-W2M,,11 

K1I-w
2
M11 K12-W

2
M12 Kin - w 2 M1,, (19) 

+ K21 -w2M21 K22-W2M22 K2,,-W2M2,, 

-2wM,,I -2wM,,2 -2wM,,,, 

It is interesting to compare results obtained from the exact dynamic
stiffness matrix (DSM), consistent mass matrix (CMM) and lumped mass
matrix (LMM). This will be presented in the next part of the paper. Consistent
or lump mass matrices are most often used in the technical applications.

4. Numerical results and analysis for a beam structure 

Example 1. The loss of bending stiffness due to transverse cracks and
corrosion was examined using a ten-element beam model fixed at both ends
(Fig. 2). The structure was analysed in two different time periods. In this case,
the structure was excited into the first mode and it was necessary to select only
two corresponding time periods. Seven elements of the tenelement beam had
smaller cross-sectional area than designed, due to corrosion. The loss of
cross-sectional areas varied between 0.5% and 3.5% of original values which
can be translated to 2% to 13% loss of flexural stiffness. Six elements, some of
them already affected by corrosion, had cracks: two on the lower surface, four
on the upper surface. The magnitude of stiffness changes varied between 2%
and 7%, which can be represented as cracks of a depth from 10% to 30 % of the
height of the beam element. The stiffness coefficient for an element affected by
corrosion and the crack was simply calculated as multiplication of those two
values. This is a correct procedure since the stiffness coefficient for a beam with
a transverse crack was calculated in comparison to a beam without a crack. Data
for system identification were generated by solving equation (2). A stiffness
matrix was assembled in every step of this iterative procedure, to make sure that
the data mimic the real behaviour of the structure. In every time-step, curvature
of each element was checked and the proper values of stiffness coefficients
were assigned. After that, the global stiffness matrix was assembled for the next
step. The sample data generated in this way were very smooth, since there was
no error of measurement included in the calculation analysis. Displacement can
be automatically computed in the case of real measurements of accelerations,
displacements can be easily implemented as initial values for the theoretical
model in the objective function.
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--~-Olm O.Olm~ 

p =7800 kg/m3 

First mode of vibration, configuration # 1 

First mode of vibration, configuration. # 2 

Element. No. 2 3 4 5 6 7 6 g 10 

li Ori&'inal 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Corroded element. 0.900 0.980 >< >< 0.970 0.980 0.960 0.940 O.B70 >< 
Cracked element. >< 0.950 0.960 0.900 >< 0.949 0.920 >< 0.970 >< 
Crack-+- corrosion >< 0.912 >< >< >< 0.930 0.863 >< 0.844 >< 

Fig. 2 

We present below the results obtained from two cases. In the first case the 
exact dynamic stiffness matrix (DSM) was used. In the second one the static 
beam stiffness matrix end consistent mass matrix (CMM) was applied. The 
weights were assumed as W1 = 1. W2= 1. Initial approximations used for [.il] 
were: [.il]= [1.], [.il1] = [1.] 

Material p 
1.02 

0.98 

0.96 

0.94 

0.92 

0.9 I 
O.BB 

0.86 o 10 

Fig. 3 
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Fig. 3 presents the initial values of the parameters Pi· Fig. 4 presents the
convergence history. We see that correct values of the parameters were
obtained after the first iteration.

Table 1. presents the initial values of the stiffness coefficients corre­
sponding to the presence of the cracks and corroded members. We see that the
algorithm converged precisely to the original values. The measured value of
the frequency was introduced equal to 85.45, the algorithm converged to the
value of 79.5 for the first natural frequency.

Table I.
Identified results from DSM

Element No. Original Stiffness Coefficient Identified Stiffness Coefficient

I 0.900 0.90012538861214

2 0.960 0.95998075624026

3 0.980 0.9799807723974 I

4 I.OOO 0.99998073695179

5 0.970 0.96998075901856

6 0.930 O.9300192532971 O

7 0.960 0.96001927474133

8 0.940 0.94001924047432

9 0.870 0.87001927868609

IO I.OOO I .00006746348297

Fig. 5. presents the convergence of the error function in the case of
DSM algorithm. We can observe smooth and effective convergence
of the error to zero.
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Values of error ft.n:tion 
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Fig. 5 

In the second approach we used the static stiffness matrix of a beam 
element in consistent mass matrix (CMM). To get the convergence of the 
solution the following data for the initial approximations were used: for 
W1 = 1e·10; W2 = 1; Initial [A] approximations were [A1] = [1]; [A] = [1.0e-5]. 
We obtained the results presented in Table 2, the values of the parameters 
after the convergence. We see that the algorithm converged very precisely to 
the correct values. However, the value for the natural frequency obtained for 
the calculations was different than before. The algorithm converged to the 
value 79.32. The initial value of the natural frequency was 79.56. 

Table 2. 
Data dentified from CMM 

Element No. Original Stiffness Coefficient Identified Stiffness Coefficient From DSM 

I 0.900 0.90000122148761 

2 0.960 0.95999979600018 

3 0.980 0.97999979845674 

4 I.OOO 0.99999979520734 

5 0.970 0.96999978875268 

6 0.930 0.93000016964724 

7 0.960 0.96000017705955 

8 0.940 0.94000017954965 

9 0.870 0.87000017635979 

IO I.OOO l .00000065042170 

Fig. 6 presents the convergence history for CMM algorithm. We see that 
in this case (Fig. 6) the convergence of the stiffness parameters was reached 
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very fast. Fig. 7 presents the convergence of the global error increments. Fig
8 depicts the convergence of the global error function. It can be noticed that
the error did not converge to zero after 300 iterations.

1 O Elemert Beam'First mode of Vibration 

1.5

o.s~~-~-~--~-~
50 100 150 200 250 300

No. or ite,atior6 

Fig. 6

ccreerqerce enu, 

oo 50 100 150 200 250 300

Fig. 7
Values rJ. em:r ftrdioo 

400

350

300 

250

200

150

100

50

oo 50 100 150 200 250 300 

Fig. 8. Values of global error function for LMM

In real life measurement errors must be taken into account. If ordinary
accelerometers are used as sensors, the expected error of measurement can be
within ±5 to ±20% of the measured value. This error must be included in the
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evaluation of the identification procedure since the effectiveness of the 
method can change dramatically with the uncertainty of the solution. To 
model of the system with measurement error, data without error was used. 
Analysis of the influence of the measurement error o n the stability of the 
system identification revealed that the data with the error taken straight 
without any smoothing had difficulties in converging. 

It should be noticed here that we tested the method on a very simple 
example of the beam with only 10 elements. In this situation the benefits of 
the application of dynamic stiffiness matrix is more obvious. 

Table 3. 
Convergence Frequency and Convergence Error 

l O" Mode Initial value Frequency/Error Frequency/Error Frequency/Error 
DSM CMM LMM 

No error 3845.9396 3845.9417/0.0032 3956.7661/0.0742 3845.8372/0.0812 

-5% error 3845.9396 3845.9417/0.0032 3845.9525/0.0669 3845.9385/0.0724 

-10% error 3845.9396 3845.9417/0.0033 3845.9417/0.0669 

+5% error 3845.9396 3845.9417/0.0031 3845.9536/0.0669 

+10% error 3845.9396 3845.9417/0.0032 3845.9541/0.0669 

Example 2. In the second example a beam fixed at both ends was analysed 
in two cases. The beam was divided into 20 elements. 
The simulated measured data contained the error of 30% introduced 
to the original natural freequency. The random errors of the nodal 
displacements data were +-10%. In the second case only nodal displcements 
were used in identification. The errors of +-10% were introduced to 
the simulated exact data. 
E = 2.lell Pa; M = 7830 Kg/M3

, Length of element = O.IO m; Area 
of cross-section = 0.0001 m2

; Moment if inertia of the cross-section 
Iz = 8.30e-10 

Case I: l" mode of vibration in beam structure. 

In this case, 30% error of frequency and ±10% error of displacements 
were introduced into the initial data. Only displacements (uy) were used at 
every node and rotations were not used. 
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Fig. 9. The figure presents the convergence of the global error for three different algorithms using
DSM CSM and LMM 
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Fig. IO. Presents the convergence history, a) application of DSM, b) CMM, c) LMM 
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Table 4. 
1st mode of vibration in beam structure 

DSM CMM LMM 

Original Identified Identified Identified 

No. of element 
scalar scalar Error scalar Error scalar Error 

Coefficient Coefficient % Coefficient % Coefficient % 
Parameter Parameter Parameter Parameter 

I 0.9000 0.9000 0.9000 0.9000 

2 0.9000 0.9000 0.9000 0.9000 

3 0.9600 0.9600 0.9600 0.9600 

4 0.9600 0.9600 0.9600 0.9600 

5 0.9800 0.9800 0.9800 0.9800 

6 0.9800 0.9800 0.9800 0.9800 

7 1.0000 1.0000 1.0000 1.0000 

8 1.0000 1.0000 1.0000 1.0000 

9 0.9700 0.9700 0.9700 0.9700 

10 0.9700 0.9700 0.9700 0.9700 

Il 0.9300 0.9300 0.9300 0.9300 

12 0.9300 0.9300 0.9300 0.9300 

13 0.9600 0.9600 0.9600 0.9600 

14 0.9600 0.9600 0.9600 0.9600 

15 0.9400 0.9400 0.9400 0.9400 

16 0.9400 09400 0.9400 0.9400 

17 0.8700 0.8700 0.8700 0.8700 

18 0.8700 0.8700 0.8700 0.8700 

19 1.0000 1.0000 1.0000 1.0000 

20 1.0000 1.0000 1.0000 1.0000 

Frequency 82.08 82.9621 0.67 83.9591 2.26 96.4341 17.49 

Convergence 
error 0.67 1.38 1.79 

Case 2: 10th mode of vibration in beam structure 

In this case, 30% error of frequency and± 10% random error of displacements 
using were introduced. Displacements (u.) at every next node were used and 
rotations were not used. 
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a) DMM, b) CCM, c) LMM 



APPLICATION OF THE DYNAMIC STIFFNES MATRIX TO THE ... 237 

Table 5. 
I o- mode of vibration in beam structure 

DSM CMM LMM 

Original Identified Identified Identified 

No. of element 
scalar scalar Error scalar Error scalar Error 

Coefficient Coefficient % Coefficient % Coefficient % 
Parameter Parameter Parameter Parameter 

I 0.9000 0.9000 o 0.9000 o 0.9038 0.42 

2 0.9000 0.9000 o 0.9000 o 0.9045 O.SO 

3 0.9600 0.9600 o 0.9600 o 0.9617 0.18 

4 0.9600 0.9600 o 0.9600 o 0.9650 0.52 

5 0.9800 0.9800 o 0.9800 o 0.9816 0.16 

6 0.9800 0.9800 o 0.9800 o 0.9849 O.SO 

7 1.0000 1.0000 o 1.0000 o 1.0016 0.16 

8 1.0000 1.0000 o 1.0000 o 1.0048 O.IS 

9 0.9700 0.9700 o 0.9700 o 0.9717 O.IS 

10 0.9700 0.9700 o 0.9700 o 0.9750 0.52 

Il 0.9300 0.9300 o 0.9300 o 0.9318 0.19 

12 0.9300 0.9300 o 0.9300 o 0.9346 0.49 

13 0.9600 0.9600 o 09600 o 0.9629 0.30 

14 0.9600 0.9600 o 0.9600 o 0.9630 0.31 

15 0.9400 0.9400 o 0.9400 o 0.9403 0.03 

16 0.9400 0.9400 o 0.9400 o 0.9401 O.Ol 

17 0.8700 0.8700 o 0.8700 o 0.8704 O.OS 

18 0.8700 0.8700 o 0.8700 o 0.8701 O.Ol 

19 l.0000 1.0000 o 1.0000 o 1.0003 0.03 

20 1.0000 1.0000 o l.0000 o 1.0003 0.03 

27.9 
Frequency 3845.9397 3850.5133 0.12 4922.6193 7 4165.0085 8.30 

Convergence 
error 11.43 70.74 4.20 

Example 3. The frame presented in Fig. 9 was analysed in two cases. In 
the first mode of vibrations and in the 10th mode. 
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Fig. 13. 9 elements frame 

Case 1: I" mode of vibration of frame structure. 

In this case, 30% error of frequency and± 10% random error of displacements 
were introduced using the random function. Displacements (u, and Uy) at 
every next node were used and rotations were not used. 

9 Element Frame/1st mode of vibration 
300.---~--.--~--.--~-~ 

250 

g 200 ., 
1l 
a3 150 
e> ~ 
8 100 

50 

50 100 150 
No. of iterations 

200 250 300 

Fig. 14. Comparison of the convergence error for three algorithms 

The results of the identification are presented in Table 6. 

Case 2: 10th mode of vibration in frame structure. In this case, 30% error of 
frequency and ±10% error of displacements were introduced. Displacements 
(u, and uy) at every next node were used and rotations were not used. 
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Fig. 15. The history of the convergence of the stiffness coefficients for different algorithms. 
a) DSM, b) CSM and c) LMM 
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Fig. 16. Comparison of the convergence error for different algorithms 
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Table 6.
1st mode of vibrations of frame structure

DSM CMM LMM

Original Identified Identified Identified
scalar scalar E1TOr scalar Error scalar Error

No. of element Coefficient Coefficient % Coefficient % Coefficient %
Parameter Parameter Parameter Parameter

I 0.9000 09000 0.00 0.9161 1.79 0.8776 -2.49

2 0.9600 0.9600 0.00 0.9606 0.06 I.O I 52 5.75

3 0.9800 O 9799 -O.Ol 0.9735 -0.66 0.9543 -2.62

4 0.9850 0.9849 -O.Ol 0.9841 -0.09 0.9849 -O.Ol

5 0.9350 0.9350 0.00 0.9363 0.14 0.9346 -0.04

6 0.9550 0.9549 -O.Ol 0.9540 -O.IO 0.9489 -0.64

7 0.9300 0.9299 -O.Ol 0.9369 0.74 0.9562 2.82

8 0.8350 0.8350 0.00 0.8349 -O.Ol 0.7703 -7.75

9 0.9400 0.9400 0.00 0.9226 1.85 0.9672 2.89

Frequency 13.04 13.1490 1.23 16.6869 27.22 13.9459 6.95

Convergence
error 0.19 0.66 0.85

Table 7.
Results for the 10th mode of vibration of the frame structure. We see the big error of the frequency from

CMM and LMM

DSM CMM LMM 
Original Identified Identified Identified

scalar scalar Error scalar Error scalar Error
No. of element Coefficient Coefficient % Coefficient % Coefficient % 

Parameter Parameter Parameter Parameter

Cras-
I 0.9000 0.8999 -O.Ol 1.0296 hed 0.9157 1.74

2 0.9600 0.9596 -0.04 1.0856 0.9623 0.24

3 0.9800 0.9798 -0.02 1.1528 0.9728 -0.73

4 0.9850 0.9851 O.Ol I. I 135 0.9846 -0.04

5 0.9350 0.9351 O.Ol 1.0620 0.9358 O.OS

6 0.9550 0.9550 0.00 1.0931 0.9544 -0.06

7 0.9300 0.9299 -O.Ol 1.1002 0.9378 0.84

8 0.8350 0.8345 -0.06 0.9734 0.8328 -0.26

9 0.9400 0.9398 -0.02 1.1371 0.9227 -1.84

Frequency 503.60 504.0761 0.09 631.1444 25.4 645.1248 28.10
Convergence
error 1.681 15.38 8.79
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Fig. 17. Comparison of the convergence history for the stiffness parameters. 
a) DSM, b) CMM, c) LMM 

9. Conclusions 

We observe that both application of the dynamic stiffness matrix (DSM) 
and the consistent mass matrix (CMM) generated correct results as regards 
the stiffness parameters. Using the first mode of the vibrations in the 
identification process we did not observe the significant difference in the 
results of the identification. The parameters p were calculated with very high 
precision in both cases. The error was less then O.O 1 %, which is a much better 
result that reported in the previous paper [26], [37 J. This result was obtained 
by inclusion of the natural frequencies into identification process and 
assumption of the harmonic motion. However, for the tenth mode of the 
vibrations the differences are much larger. For example in one case, the 
algorithm based on the consistent mass matrix (CMM) did not converge when 
the DSM gave good convergence. We observed in general the superior 
behaviour of the approach based on DSM. The convergence of the results was 
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clmuch faster, stable and better in the case of incorrect initial data. The values 
of the natural frequencies obtained from the iteration process using dynamic 
stiffness matrix were much more accurate than using consistent mass matrix 
or lump mass matrix. 

Manuscript received by Editorial Board, January 22, 2004; 
final version, June 28, 2004. 
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Zastosowanie dynamicznej macierzy sztywności do identyfikacji
pęknięć w belkach i ramach

Streszczenie

W artykule przedyskutowano problem dokładności wibracyjnych technik identyfikacji, stoso­
wanych przy wykrywaniu pęknięć i skorodowanych członów konstrukcji belkowych i ramowych.
Obecność pęknięć zmęczeniowych powoduje zwykle bardzo male zmiany sztywności elementów
belkowych konstrukcji. W celu wykrycia tych zmian niezbędne jest zastosowanie najbardziej
precyzyjnych metod matematycznych. W procedurze identyfikacji, opartej na metodzie najmniej­
szych kwadratów, stosuje się modele elementów skończonych (FEM) danej konstrukcji, a jako
źródło informacji wykorzystuje się zmierzoną odpowiedź dynamiczną i częstotliwości drgań
własnych. Zastosowanie Dynamicznej Macierzy Sztywności (DSM) [I] do reprezentacji wszystkich
więzów i równań modalnych pozwala na przedstawienie procesu identyfikacji w bardzo dokładnej
i efektywnej formie matematycznej. Metoda detekcji zmian strukturalnych, użyta w przedstawionej
pracy, była opisana w poprzedniej publikacji autorów [2]. W algorytmach identyfikacji bardzo
często używa się Macierzy Zgodnych Mas (CMM) i Macierzy Mas Skupionych (LMM). Jak
wykazano, zastosowanie podejścia uproszczonego (CMM i LMM), może prowadzić do malej
dokładności i słabej zbieżności algorytmów identyfikacji. Niemniej, zastosowanie macierzy mas
typu CMM nie wprowadza istotnych błędów. Algorytmy były testowane na symulowanych danych
numerycznych dla dziesięcioelementowych ram belkowych.


