
A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G

DOI: 10.24425/ame.2022.141523 2022, Vol. 69, No. 4, pp. 749–773

Ali BELHOCINE 1, Nadica STOJANOVIC2,
Oday Ibraheem ABDULLAH3

Numerical predictions of laminar flow and free convection
heat transfer from an isothermal vertical flat plate

Received 26 March 2022, Revised 24 May 2022, Accepted 4 July 2022, Published online 14 November 2022

Keywords: free convective flow, vertical flat plate, similarity solution, boundary layer flow, dimen-
sionless temperature, Prandtl number, Runge-Kutta method

In this present work, the laminar free convection boundary layer flow of a two-
dimensional fluid over the vertical flat plate with a uniform surface temperature has
been numerically investigated in detail by the similarity solution method. The velocity
and temperature profiles were considered similar to all values and their variations
are as a function of distance from the leading edge measured along with the plate.
By taking into account this thermal boundary condition, the system of governing
partial differential equations is reduced to a system of non-linear ordinary differential
equations. The latter was solved numerically using the Runge-Kutta method of the
fourth-order, the solution of which was obtained by using the FORTRAN code on a
computer. The numerical analysis resulting from this simulation allows us to derive
some prescribed values of various material parameters involved in the problem to
which several important results were discussed in depth such as velocity, temperature,
and rate of heat transfer. The definitive comparison between the two numerical models
showed us an excellent agreement concerning the order of precision of the simulation.
Finally, we compared our numerical results with a certain model already treated,
which is in the specialized literature.
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Nomenclature

𝐶𝑝 specific heat at constant pressure, J kg−1K−1

𝐷 distance, m
𝐹 dimensionless stream function
𝐺 dimensionless temperature
Gr Grashof number
𝑔 gravitational acceleration, ms−1

𝑘 thermal conductivity, Wm−1K−1

𝐿 length, m
Nu𝑥 local Nusselt number
𝑝 pressure, kg m s−2

Pr Prandtl number
𝑞 heat transfer rate per unit area, Wm−2

𝑇 temperature, K
𝑇1 fluid temperature, K
𝑇𝑤 wall temperature, K
𝑈 dimensionless velocity
𝑢 velocity component, ms−1

𝑢𝑟 fluid velocity, ms−1

𝑉 dimensionless velocity
𝑣 velocity component, ms−1

𝑥 distance, m
𝑥 coordinate direction, m
𝑦 coordinate direction, m

Greek letters
𝛽 thermal expansion, K−1

𝛿 velocity boundary layer thickness, m
𝜂 similarity variable, m
𝜃 dimensionless temperature
𝜇 dynamic viscosity, kgm−1s−1

𝜐 kinematic viscosity, m2s−1

𝜌 density, kgm−3

𝜙 angular coordinate, deg

1. Introduction

As has been recognized, free or natural convection is a heat transfer between a
surface and a fluid moving over it, in which the motion of the fluid is wholly caused
by the presence of the buoyant forces which arise as a result of density changes
producing temperature changes in the flow. Free-convection flow is a principal
mode of heat-transfer in several engineering applications such as in the fields of
nuclear engineering, aeronautics, and gas turbines industry. Boundary layer flows
with internal heat generation past a vertical plate continues to receive consider-
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able attention because of its many practical applications in a broad spectrum of
engineering systems like geothermal reservoirs, cooling of nuclear reactors, ther-
mal insulation, combustion chamber, rocket engine, etc.Many principal previous
studies concerning laminar natural convective flows over a vertical flat plate have
been found in the literature and these problems may admit similarity solutions.
Jashim Uddin et al. [1] have numerically investigated the combined heat and mass
transfer by free convective flow along a moving vertical flat plate with thermal
convective boundary conditions using similarity solutions. In the work by Esfahani
and Bagherian [2], a similarity solution was applied to perform an analysis of un-
steady free convection flow over a vertical flat plate immersed in a power law fluid.
Boutros et al. [3] performed a numerical analysis of the problem of steady laminar
free convection from a nonisothermal vertical flat plate while applying solution
transformations. Modather et al. [4] presented an analytical study of MHD heat
and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable
plate in a porous medium. Veera Krishna and Chamkha [5] investigated the Hall
and ion slip effects on the MHD convective flow of elastico-viscous fluid through
a porous medium between two rigidly rotating parallel plates. Veera Krishnaa and
Chamkha [6] analyzed the diffusion-thermo, radiation-absorption, and Hall and ion
slip effects on MHD free convective rotating flow of nano-fluids past a semi-infinite
permeable moving plate. Veera Krishna et al. [7] investigated the Hall and ion slip
effects on the unsteady magnetohydrodynamic (MHD) free convective rotating
flow over an exponentially accelerated inclined plate through a saturated porous
medium. The implicit finite difference method is more accurate and it has been
adopted in certain works, like Chamkha [8, 9]. In the works carried out by Rasool
et al. [10], Chamkha et al. [11], the problems of flow through a porous medium over
a flat surface have been solved numerically on the basis of the method of transfor-
mations. Chamkha and Ben-Nakhi [12], Chamkha [13] conducted mathematical
modeling of a heat transfer in free and mixed convection over an inclined plate
and isothermal vertical surface in a porous medium. Wakif et al. [14] established
a numerical solution of the electro-magneto-hydrodynamic convective flow of a
viscous electrically conducting fluid over a horizontal Riga plate. Ahammad et
al. [15] presented a numerical investigation of heat transfer in a porous medium
adjacent to a vertical plate whose problem was solved using the finite difference
method. Veera Krishna et al. [16] conducted numerical investigation on the ef-
fects of thermal radiation and rotation on the unsteady MHD convective flow past
an infinite vertical moving absorbent plate using both similarity transformations
and cubic B-splines collocation method. Several authors [17–19] have performed
numerical simulations on the phenomenon of natural convection. In the work of
Zhou et al. [20], a numerical simulation was carried out to study the unsteady
natural convection flow. Talluru et al. [21] conducted an experimental study on
a natural convection boundary layer over a hot vertical plate. The same problem
of natural convection has been the subject of other numerical investigations [22–
26]. Recently, countless analytical and numerical methods have been exploited for
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the study of natural convection [27–41]. In the works carried out by Belhocine
et al. [42–46], analytical and numerical methods have proven their efficiency in
the treatment and resolution of certain thermal problems such as the method of
separation of variables, orthogonal collocation, and the Runge-Kutta method of
the fourth-order. Ostrach [47] studied the similarity solutions for the laminar free
convection flow of a fluid over a vertical flat plate.

The main objective of this work is to present a mathematical formulation of
the two-dimensional flow problem of free convection of the laminar boundary layer
of a fluid through an isothermal vertical flat plate.

The novelty of the work is to illustrate how similarity solutions have been
exploited in solving the free convective flow problem as well as the use of the
implicit fourth-order Runge-Kutta method (RK4) with a step size control, integra-
tion algorithm to discretize the non-linear PDEs describing the laminar boundary
layer flow and as a sequential numerical method of ODEs system. Since we fo-
cused on the analysis of the problem in the case of a free convective flow, the
properties of the fluid were supposed constant except the density that varies only
with the temperature which gives rise to the buoyancy force. The methodology
followed here deals with the possibility of the existence of similarity solutions for
this flow problem. It has been established that the similarity solution can only be
found if the variation in velocity and temperature of the plate is a function of the
distance from the leading edge measured along the plate. The partial differential
equations together with the thermal boundary condition describing the model were
all transferred to a system of non-linear ordinary differential equations which have
been considered to be solved by the Runge-Kutta technique of the fourth-order
and which were programmed in FORTRAN code. Several important results were
derived from the analysis and discussed deeply such as dimensionless temperature,
velocity, and rate of heat transfer. At the end of the contribution, we compared
our results with those found in the literature. The observation established thanks
to this comparison showed us that the two models are in a good agreement, which
automatically validates the results of our numerical simulation.

2. The characteristic velocity

We have employed for the solution of the problem suitable dimensionless
variables to express in terms of the governing equations while introducing the
appropriate characteristic velocity.

If the wall temperature is 𝑇𝑤𝑟 , then the buoyant force per unit volume in the
flow is equal to 𝛽𝑔𝜌(𝑇𝑤𝑟 − 𝑇1). The work done by the buoyant forces on the fluid
per unit volume of fluid is 𝛽𝑔𝜌(𝑇𝑤𝑟 −𝑇1)𝐷, where 𝐷 is the distance from the body.

To derive the expression for velocity, we equalize the kinetic energy from the
work done by the buoyancy forces, hence

𝛽𝑔𝜌 (𝑇𝑤𝑟 − 𝑇1) 𝐷 =
1
2
𝜌𝑢2

𝑟 . (1)
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From Eq. (1), we can get

𝑢𝑟 =
√︁

2𝛽𝑔 (𝑇𝑤𝑟 − 𝑇1) 𝐷 . (2)

Therefore, the characteristic velocity will be taken as: 𝑢𝑟 =
√︁
𝛽𝑔 (𝑇𝑤𝑟 − 𝑇1) 𝐿.

Here, 𝐿 is a reference length that characterizes the size of the surface, e.g., its
length.

3. Governing equations of fluid flow

For a steady two-dimensional flow in natural convection, the governing equa-
tions are defined as:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0, (3)

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= − 1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2

)
+ 𝛽𝑔 (𝑇 − 𝑇1) cos 𝜙 , (4)

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= − 1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

(
𝜕2𝑣

𝜕𝑥2 + 𝜕2𝑣

𝜕𝑦2

)
+ 𝛽𝑔 (𝑇 − 𝑇1) sin 𝜙 , (5)

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

(
𝑘

𝜌𝑐𝑝

) (
𝜕2𝑇

𝜕𝑥2 + 𝜕2𝑇

𝜕𝑦2

)
, (6)

where𝑇1 is the undisturbed temperature away from the surface. Due to the existence
of low velocities, dissipation is neglected in the energy equation (6).

The energy equation (6) and the continuity equation (3) are similar to those
for forced convective flow. Given the presence of buoyancy terms, the momentum
equations (4) and (5) are practically distinct from those of forced convective flows.
The angle in these buoyancy terms between the 𝑥-axis and the vertical is defined
by 𝜙 as shown in Fig. 1.

Fig. 1. Definition of the components of Buoyancy force
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4. Similarity solutions for free convective laminar boundary layer flows

4.1. Problem description

In the case of free convective flows and in order to explain the similarity
solution procedure, we initially considered a vertical flat plate subjected to a two-
dimensional flow and with a uniform surface temperature. The following Fig. 2
illustrates the situation of the physical model considered.

Fig. 2. Flow schematic diagram of the physical model

The governing equations of flow are given in accordance with the boundary
layer assumptions which have been well adopted [48]:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0, (7)

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

(
𝜇

𝜌

)
𝜕2𝑢

𝜕𝑦2 + 𝛽𝑔 (𝑇 − 𝑇1) , (8)

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

(
𝑘

𝜌𝑐𝑝

)
𝜕2𝑇

𝜕𝑦2 . (9)

We are in the case of a vertical surface, then, cos 𝜙 is equal to 1.
The model is of course subject to the following boundary conditions [48]:

At 𝑦 = 0: 𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝑤 ,

For large 𝑦 : 𝑢 → 0, 𝑇 → 𝑇1 .
(10)

4.2. Similarity analysis and numerical solution procedure

We have assumed here that the velocity and temperature profiles are similar at
all values of 𝑥.

Consequently, we can put:

𝑢

𝑢𝑟
= function

( 𝑦
𝛿

)
(11)
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and
𝑇 − 𝑇1
𝑇𝑤 − 𝑇1

= function
( 𝑦
𝛿

)
, (12)

where 𝑢𝑟 is considered the reference velocity, and 𝛿 simultaneously represents the
thickness of the thermal boundary layer and also the local velocity.

Then, if the reference length, 𝐿 is assumed to be the abscissa, 𝑥, of the leading
edge of the plate, then we have

𝛿/𝑥 = 𝑜
[
1/Gr0.25

𝑥

]
, (13)

with the Grashof number Gr𝑥 expressed as a function of 𝑥, as:

Gr𝑥 =
𝛽𝑔(𝑇𝑤 − 𝑇1)𝑥3

𝜐2 . (14)

So the local value of 𝑦/𝛿, can be estimated like this

𝜂 =
𝑦

𝑥
Gr0.25

𝑥 , (15)

where the similarity variable here is 𝜂.
According to what we assumed previously, we will have

𝑢

𝑢𝑟
= function (𝜂) , (16)

𝑇 − 𝑇1
𝑇𝑤 − 𝑇1

= function(𝜂). (17)

The characteristic velocity in the flow is given by the expression for the fol-
lowing reference velocity:

𝑢𝑟 =
√︁
𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥 . (18)

So the velocity and temperature fields will take the following forms:

𝑢√︁
𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥

= 𝐹′(𝜂) (19)

and
𝑇 − 𝑇1
𝑇𝑤 − 𝑇1

= 𝐺 (𝜂). (20)

The derived function 𝐹′ represents the velocity profile while the first relation
designates differentiation with respect to 𝜂.
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Now we introduce the following dimensionless variables

𝑈 =
𝑢√︁

𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥
=

(𝑢𝑥
𝜐

)
Gr−0.5

𝑥 ,

𝑉 =
𝑣√︁

𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥
=

( 𝑣𝑥
𝜐

)
Gr−0.5

𝑥 ,

𝜃 = (𝑇 − 𝑇1)/(𝑇𝑤 − 𝑇1) .

(21)

After the substitution of these, the continuity equation will take the following
form:

𝜕

𝜕𝑥

[
𝑈
√︁
𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥

]
+ 𝜕

𝜕𝑦

[
𝑉
√︁
𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥

]
= 0. (22)

We will then have
𝜕𝑈

𝜕𝑥
+ 𝑈

2𝑥
+ 𝜕𝑉

𝜕𝑦
= 0. (23)

By involving the similarity variable, 𝜂, this equation will transform into:

𝜕𝑈

𝜕𝜂

𝜕𝜂

𝜕𝑥
+ 𝑈

2𝑥
+ 𝜕𝑉

𝜕𝜂

𝜕𝜂

𝜕𝑦
= 0. (24)

Using Eq. (15), defining 𝜂, we can derive this

𝜕𝜂

𝜕𝑥
= − 𝑦

4𝑥2 Gr0.25
𝑥 = − 𝜂

4𝑥
, (25)

𝜕𝜂

𝜕𝑦
=

Gr0.25
𝑥

𝑥
. (26)

If we substitute these last two in Eq. (24), we get:

d𝐹′

d𝜂

(
− 𝜂

4𝑥

)
+ 𝐹′

2𝑥
+ 𝜕𝑉

𝜕𝜂

Gr0.25
𝑥

𝑥
= 0. (27)

After the simplifications and rearrangement, we arrive at

𝜕𝑉

𝜕𝜂
=

1
2Gr0.25

𝑥

[
𝜂

2
d𝐹′

d𝜂
− 𝐹′

]
. (28)

According to Eq. (10) of the boundary conditions, we have:

At 𝑦 = 0: 𝑣 = 0. (29)

The use of boundary conditions allows us to write:

At 𝜂 = 0: 𝑉 = 0. (30)
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Integrating Eq. (28) and applying the boundary conditions gives us:

𝑉 =
1

2Gr0.25
𝑥

[ ∫
𝜂

2
d𝐹′

d𝜂
d𝜂 − 𝐹

]
, (31)

which tends towards:

𝑉 =
1

2Gr0.25
𝑥

[
𝜂𝐹′

2
− 𝐹

2
− 𝐹

]
. (32)

From where
𝑉 =

1
4Gr0.25

𝑥

[𝜂𝐹′ − 3𝐹] . (33)

The integration by parts of the first term located between brackets gives us
this: ∫

𝜂

2
d𝐹′

d𝜂
d𝜂 =

∫
d

d𝜂

(𝜂
2
𝐹′

)
d𝜂 −

∫
𝐹′

2
d𝜂 . (34)

Introducing dimensionless variables into the momentum equation, allows us
to write:

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑈2

2𝑥
+𝑉 𝜕𝑈

𝜕𝑦
= 𝑣

𝜕2𝑈

𝜕𝑦2
1√︁

𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥
+ 𝜃

𝑥
. (35)

That is to say

𝑈
𝜕𝑈

𝜕𝜂

𝜕𝜂

𝜕𝑥
+ 𝑈2

2𝑥
+𝑉 𝜕𝑈

𝜕𝜂

𝜕𝜂

𝜕𝑦
= 𝑣

𝜕2𝑈

𝜕𝜂2

(
𝜕𝜂

𝜕𝑦

)
1√︁

𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥
+ 𝜃

𝑥
, (36)

whence

𝐹′𝐹′′
(
− 𝜂

4𝑥

)
+ 𝐹′2

2𝑥
+ 1

4Gr0.25
𝑥

(𝜂𝐹′ − 3𝐹) 𝐹′′ Gr0.25
𝑥

𝑥
=

𝐹′′′

𝑥
+ 𝜃

𝑥
. (37)

From where

−𝜂𝐹
′𝐹′′

4
+ 𝐹′2

2
+ 𝜂𝐹′𝐹′′

4
− 3𝐹𝐹′′

4
= 𝐹′′′ + 𝐺 . (38)

Finally, we get

𝐹′′′ + 3𝐹𝐹′′

4
− 𝐹′2

2
+ 𝐺 = 0. (39)

Writing the energy equation taking into account the constant temperatures 𝑇𝑤
and 𝑇1, gives us:

𝑈
𝜕𝜃

𝜕𝑥
+𝑉 𝜕𝜃

𝜕𝑦
=

(
𝑘

𝜌𝑐𝑝

)
𝜕2𝜃

𝜕𝑦2
1√︁

𝛽𝑔 (𝑇𝑤 − 𝑇1) 𝑥
. (40)
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So we pull

𝐹′𝐺′
(
− 𝜂

4𝑥

)
+ 1

4Gr0.25
𝑥

(𝜂𝐹′ − 3𝐹)𝐺′ Gr0.25
𝑥

𝑥
=

𝐺′′

Pr 𝑥
. (41)

The simplification gives

𝐺′′ + 3
4

Pr 𝐹𝐺′ = 0. (42)

We finally arrive at the resolution of a system of ordinary differential equations
formed simultaneously from the two equations (39) and (42) to find two functions;
in this case the velocity𝐹 and the temperature 𝐺. The resolution process will of
course involve the incorporation of the following boundary conditions:

At 𝑦 = 0: 𝑢 = 0 ⇒ 𝜂 = 0: 𝐹′ = 0,
At 𝑦 = 0: 𝑣 = 0 ⇒ 𝜂 = 0: 𝐹 = 0,
At 𝑦 = 0: 𝑇 = 𝑇𝑤 ⇒ 𝜂 = 0: 𝐺 = 1,

For large 𝑦 : 𝑢 → 0 ⇒ for large 𝜂 : 𝐹′ → 0,
For large 𝑦 : 𝑇 → 𝑇1 ⇒ for large 𝜂 : 𝐺 → 0 .

(43)

The hypothesis of the existence of similarity solutions is fully confirmed as
long as we are able to reduce the original partial differential equations describing
the thermal problem to a system of ordinary differential equations. The Prandtl
number, Pr is a remarkable parameter in Eq. (42) and for each value of it; a specific
solution is obtained for the variation of 𝐹 and 𝐺 as a function of the similarity
variable 𝜂.

Then at the wall level, we can estimate the rate of heat transfer as:

𝑞𝑤 = −𝑘 𝜕𝑇

𝜕𝑦

����
𝑦=0

= −𝑘 (𝑇𝑤 − 𝑇1)
d𝐺
d𝜂

����
𝜂=0

Gr0.25
𝑥

𝑥
(44)

which give
Nu𝑥

Gr0.25
𝑥

= −𝐺′��
𝜂=0 , (45)

where Nu𝑥 , is determined as; the local Nusselt number.
If we take into account equation (43) relating to boundary conditions, there are

thus conditions, both at 𝜂 = 0 and at large 𝜂. We cannot therefore directly integrate
the two equations (39) and (42). In order to find the variations of 𝐹 and 𝐺 with
𝜂, the procedure for the simultaneous solution of these equations consists in first
guessing the values 𝐹′′ and 𝐺′ at the large 𝜂 and then proceeding to the numerical
integration simultaneously of the equations (39) and (42).

In the case of boundary conditions on 𝐹 and𝐺 at large 𝜂, the solutions obtained
will generally not satisfy these. Then, we can obtain the solution by assuming other
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values of 𝐹′′ and 𝐺′ at 𝜂 = 0 and the resulting results are exploited to derive the
values which provide solutions while satisfying the boundary conditions 𝐹′ and
𝐺 in large 𝜂. The simplest method is to guess the values 𝐹′′ and 𝐺′ at 𝜂 = 0 and
obtain the solution, then increase, firstly, the assumed value of 𝐹′′ at 𝜂 = 0 by a
small amount and get the solution, and secondly, increase the assumed value of 𝐺′

at 𝜂 = 0 by a small amount and get the solution. Improved guesses for the values
of 𝐹′′ and 𝐺′ at 𝜂 = 0 can then be deduced and the technique is repeated until
convergence of the values of 𝐹′′ and 𝐺′ at 𝜂 = 0 is obtained.

The method of the numerical procedure implemented for the resolution of the
differential equations was adapted and programmed in FORTRAN language while
using the Runge-Kutta technique of the fourth-order as a subroutine called in each
step

The program as it is configured, the results from it simply give us numerical
quantity of the Prandtl number up to the value of Pr =30.

5. Results and discussion

Table 1 gathers all the computation results from the FORTRAN code which
gives the similarity solution of two-dimensional laminar free convective boundary
layer flow over a vertical flat plate with isothermal surface temperature. The results
illustrated during this simulation are the function 𝐹 (𝜂) and its derivatives (𝐹′(𝜂)
and 𝐹′′(𝜂)) as well as the dimensionless temperature 𝜃 (𝜂) obtained by varying
each time the value of the Prandtl number (Pr = 0.7, 1, 3, 10, 30).

Fig. 3 illustrates some typical profiles of the velocity field which were obtained
using the numerical procedure implemented in this program for various Prandtl
numbers Pr. The flow spaced from the vertical surface is stationary, as long as an
extensive medium is considered here. Because of the no-slip condition, the flow
next to the surface is stationary in nature. As this figure illustrates, on each side,
the flow is distinguished in a layer adjacent to the surface with, of course, zero
vertical velocity. The temperature changes from 𝑇𝑤 to 𝑇1 which implies that the
maximum vertical speed is generated at a certain distance from the surface at which
its exact value is determined experimentally. According to this figure, we found
that the maximum dimensionless velocity decreases, and the increase in Pr also
causes the velocity gradient at the surface to decrease showing the effect of a larger
viscous force. As long as the Prandtl number decreases to low values, we see that
the thickness of the velocity boundary layer increases identically.

Fig. 4 clearly shows the evolution of the dimensionless temperature as a func-
tion of the similarity variable by playing on the variation of the Prandtl number
values. One can notice from this figure that the increase in the value of the Prandtl
number tends to a decrease in the thickness of the thermal boundary layer, and to
an increase in the absolute value of the temperature gradient at the surface. Indeed,
according to the physical significance of the Prandtl number, this result is perti-
nently expected, since this number compares the speed of thermal phenomena and
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Table 1. Computational results outputs of the numerical simulation

a) Pr = 0.7 𝜂 𝐹 d𝐹/d𝜂 d2𝐹/d𝜂2 𝐺 = 𝜃

0.000000 0.000000 0.000000 0.958222 1.000000
0.030000 0.000427 0.028298 0.928382 0.989401
0.060000 0.001689 0.055706 0.898867 0.978802
0.120000 0.006614 0.107890 0.840832 0.957607
0.180000 0.014567 0.156633 0.784168 0.936416
0.300000 0.038744 0.244133 0.675141 0.894071
0.600000 0.138533 0.408852 0.429688 0.788871
0.900000 0.277311 0.506161 0.226292 0.685990
0.990000 0.323710 0.524137 0.173836 0.655887
1.005000 0.331591 0.526682 0.165481 0.650912
2.010000 0.870945 0.492243 –0.16265 0.359019
3.000000 1.267433 0.305737 –0.18471 0.173699
4.005000 1.491734 0.152027 –0.11820 0.075239
5.010000 1.595554 0.064257 –0.060586 0.029944
6.000000 1.635738 0.022342 –0.02757 0.010510
7.005000 1.647628 0.004109 –0.01077 0.002109
7.485000 1.648548 0.000084 –0.00627 0.000046

b) Pr = 1 𝜂 𝐹 d𝐹/d𝜂 d2𝐹/d𝜂2 𝐺 = 𝜃

0.000000 0.000000 0.000000 0.907472 1.000000
0.030000 0.000404 0.026776 0.877654 0.987974
0.060000 0.001598 0.052663 0.848201 0.975948
0.120000 0.006249 0.101814 0.790418 0.951898
0.180000 0.013747 0.147544 0.734166 0.927855
0.300000 0.036476 0.229114 0.626424 0.879824
0.600000 0.129639 0.379981 0.386588 0.760755
0.900000 0.257933 0.465553 0.191516 0.645177
0.990000 0.300540 0.480527 0.141927 0.611637
1.005000 0.307763 0.482597 0.134062 0.606110
2.010000 0.792700 0.433639 –0.16120 0.294568
3.000000 1.135384 0.258312 –0.16703 0.120571
4.005000 1.321415 0.123241 –0.10060 0.043239
5.010000 1.404281 0.050348 –0.04884 0.014265
6.000000 1.435495 0.017225 –0.02131 0.004229
7.005000 1.444688 0.003224 –0.008315 0.000735
7.485000 1.445416 0.000068 –0.00506 0.00001
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Table 1 [cont.]

c) Pr = 3 𝜂 𝐹 d𝐹/d𝜂 d2𝐹/d𝜂2 𝐺 = 𝜃

0.000000 0.000000 0.000000 0.750420 1.000000
0.030000 0.000333 0.022065 0.720680 0.982710
0.060000 0.001315 0.043246 0.691462 0.965421
0.120000 0.005120 0.083018 0.634610 0.930850
0.180000 0.011210 0.119442 0.579891 0.896303
0.300000 0.029466 0.182766 0.476959 0.827406
0.600000 0.102271 0.291671 0.258358 0.658609
0.900000 0.198743 0.343303 0.094841 0.501223
0.990000 0.229971 0.350059 0.056050 0.457521
1.005000 0.235228 0.350855 0.050023 0.450426
2.010000 0.566211 0.278395 –0.13194 0.120970
3.000000 0.778396 0.155236 –0.10472 0.021783
4.005000 0.890041 0.074910 –0.05754 0.002970
5.010000 0.941896 0.033106 –0.02865 0.000356
6.000000 0.963440 0.012810 –0.01403 0.000040
7.005000 0.970677 0.002801 –0.00676 0.000003
7.485000 0.971327 0.000064 –0.00476 0.000000

d) Pr = 10 𝜂 𝐹 d𝐹/d𝜂 d2𝐹/d𝜂2 𝐺 = 𝜃

0.000000 0.000000 0.000000 0.592177 1.000000
0.030000 0.000262 0.017319 0.562549 0.975221
0.060000 0.001030 0.033760 0.533667 0.950444
0.120000 0.003983 0.064100 0.478148 0.900915
0.180000 0.008658 0.091198 0.425636 0.851477
0.300000 0.022428 0.136395 0.329660 0.753323
0.600000 0.075088 0.205277 0.141710 0.519991
0.900000 0.141017 0.228272 0.021986 0.323021
0.990000 0.161615 0.229110 –0.00257 0.273921
1.005000 0.165052 0.229044 –0.00622 0.266229
2.010000 0.368975 0.166113 –0.07814 0.021041
3.000000 0.498698 0.100083 –0.05403 0.000639
4.005000 0.575785 0.056733 –0.03366 0.000010
5.010000 0.618238 0.029912 –0.02072 0.000000
6.000000 0.639145 0.013626 –0.01280 0.000000
7.005000 0.647309 0.003446 –0.00785 0.000000
7.485000 0.648125 0.000084 –0.00622 0.000000
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Table 1 [cont.]

e) Pr = 30 𝜂 𝐹 d𝐹/d𝜂 d2𝐹/d𝜂2 𝐺 = 𝜃

0.000000 0.000000 0.000000 0.467453 1.000000
0.030000 0.000206 0.013579 0.437958 0.966347
0.060000 0.000806 0.026288 0.409474 0.932700
0.120000 0.003087 0.049218 0.355543 0.865483
0.180000 0.006650 0.069034 0.305660 0.798556
0.300000 0.016915 0.100291 0.217954 0.666926
0.600000 0.054177 0.140501 0.065138 0.372451
0.900000 0.097886 0.147147 –0.01034 0.167114
0.990000 0.111070 0.145647 –0.02236 0.125544
1.005000 0.113252 0.145299 –0.02400 0.119452
2.010000 0.239589 0.104334 –0.04065 0.001182
3.000000 0.324821 0.069656 –0.02977 0.000001
4.005000 0.381309 0.044159 –0.02139 –0.00000
5.010000 0.415992 0.025880 –0.01531 –0.00000
6.000000 0.434872 0.012973 –0.01100 –0.00000
7.005000 0.442927 0.003581 –0.00786 –0.00000
7.485000 0.443786 0.000091 –0.00670 –0.00000

Fig. 3. Dimensionless velocity profiles for different values of the Prandtl number

hydrodynamic phenomena in a fluid. In other words, it indicates the comparison
between momentum and thermal diffusion. The magnification of the Prandtl num-
ber values indicates the presence of increasing viscous effects. Due to the nature
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of the coupling of the velocity and temperature fields in natural convection, the
velocity boundary layer cannot be thinner than the thermal boundary layer. It is
also exciting to note that the results show the coupling between the velocity and
temperature fields, as asserted by the existence of flow wherever a temperature
difference exists, such as low Pr profiles.

Fig. 4. Dimensionless temperature profiles for different values of the Prandtl number

In Fig. 5, we have plotted the dimensionless temperature profile 𝜃 in three-
dimensions 3D according to the𝑥 coordinate as similarity variable 𝜂 and the 𝑦

Fig. 5. 3D plot of dimensionless temperature contours as a function
of similarity variable and the velocity profile
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coordinate as velocity. Commonly, at the surface of the plate, the fluid has a
maximum temperature, which decreases exponentially to zero far from the plate
satisfying the boundary condition.

The effect of various values of the Prandtl number on function profiles 𝐹 (𝜂) in
the boundary layer is depicted in Fig. 6. It is observed in Fig. 6, that the variation
of the function starts from a zero value at the plate surface and increases to the
free stream value far away from the plate surface satisfying the far-field boundary
condition.

Fig. 6. Plot of the function 𝐹 versus 𝜂 in free laminar convective flow
over the vertical plate for various values of the Prandtl number

Increasing Pr means that the viscous force increases and thermal diffusivity
reduces, which causes a reduction in the velocity and temperature, as expected. It is
also noticed that the time is taken to reach steady-state flow increases and thermal
boundary layer thickness reduces with increasing Pr. Further, it is clearly seen from
Fig. 6 that the momentum boundary layer thickness increases with the increase of
Pr from unity.

As shown in Fig. 7, we plotted the evolution of the three functions (𝐹, 𝐹′

and 𝐹′′) obtained using computer code for the same value of the Prandtl number
Pr= 0.7. It is noted that the curves of the last two functions follow the same behavior
of the velocity and temperature fields.

Fig. 8 depicts the variation of the function d2𝐹/d𝜂2 with respect to 𝜂 for differ-
ent values of the Prandtl number. Generally, the fluid velocity increases gradually
away from the plate, attains its peak value within the boundary layer, and then de-
creases to the free stream zero value satisfying the boundary conditions. The fluid
temperature is highest near the plate surface and decreases exponentially to zero
value far away from the plate. At a certain distance from the plate boundary, a very
thin layer is formed which is streamlined in shape. This may imply a steep gradient
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Fig. 7. The graphical representations of 𝐹 and its derivatives at Pr = 0.7

of shearing stress. The variation in the layout or the inflection points noticed with
the shape of the curves are due to the presence of the buoyant forces acting on the
fluid as it flows over the surface.

Fig. 8. Variation of the function d2𝐹/d𝜂2 with respect to 𝜂 for different values of Prandtl number

In Fig. 9, we have plotted the velocity profiles d𝐹/d𝜂 according to the axial
variation of the function 𝐹 (𝜂). We can see that the shapes of the speed curves are
well organized and almost elliptical in shape. We also distinguish that the increase
in the Prandtl numbers Pr leads to the decrease of 𝐹′(𝜂) for the boundary conditions
on the plate.
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Fig. 9. Variation of the velocity function d𝐹/d𝜂 with 𝐹 for different values of Pr

Fig. 10 obviously illustrates the behavior of the temperature profiles in the
boundary layer as a function of the variation of the flow velocity. The thickness of the
boundary layer increases in the flow direction. On the surface, the fluid temperature
is equal to the plate temperature and gradually decreases to the temperature of the
surrounding fluid at a distance sufficiently far from the surface.

Fig. 10. Temperature profiles versus velocity for various values of Pr

Table 2 shows the values of function 𝐴 for different values of the Prandtl
number.
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Table 2. Values of 𝐴 for different values of the Prandtl number
Pr 𝐴 = −𝐺′ |𝜂=0 −𝐺′ |𝜂=0/Pr0.25

0.01 0.0570 0.1802
0.03 0.0962 0.2312
0.09 0.1549 0.28287
0.72 0.3568 0.3873

1 0.4010 0.4010
2 0.5066 0.4260
5 0.6746 0.4511
10 0.8259 0.4644
100 1.549 0.4898
1000 2.807 0.4992

The values of 𝐺 were estimated approximately according to the following
equation:

Nu𝑥

Gr0.25
𝑥

= −𝐺′��
𝜂=0 =

[
0.316 Pr5/4

2.44 + 4.88 Pr1/2 +4.95 Pr

]1/4

. (46)

For a plate of length 𝐿, the average heat transfer rate is obtained by:

𝑞𝑤 =
1
𝐿

𝐿∫
0

𝑞𝑤 d𝑥. (47)

Using the Eq. (45), we get

𝑞𝑤 =
1
𝐿

𝐿∫
0

[
−𝑘 (𝑇𝑤 − 𝑇1)𝐺′��

𝜂=0
Gr0.25

𝑥

𝑥
d𝑥

]
, (48)

𝑞𝑤𝐿

(𝑇𝑤 − 𝑇1) 𝑘
= 𝐺′��

𝜂=0
4
3

Gr0.25
𝐿 , (49)

where Gr𝐿 is the Grashof number as a function of plate length, 𝐿. The average
Nusselt number for the entire plate, Nu𝐿 can be expressed by the following formula:

Nu𝐿

Gr0.25
𝐿

=
4
3
𝐺′��

𝜂=0 . (50)

6. Validation of the numerical approach

In order to validate our numerical model, we carried out deep bibliographic
research which was related to the subject of the contribution, and we came across
the literature on the numerical results of a simulation which was conducted by
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Ostrach [47]. Table 3 groups separately the numerical results of our model and
those obtained by the said authors. We were able to demonstrate clearly how our
numerical results are in excellent agreement with previous results, those that exist
in the literature.

Table 3. Comparison of values of 𝜃 obtained by the present similarity method with previously
published results

𝜂 𝜃 (𝜂) present work) 𝜃 (𝜂) similarity analysis
by Ostrach [47]

0 1.0000 1.0000
0.2 0.8858 0.8867
0.4 0.7725 0.7742
0.9 0.5102 0.5109
1.5 0.2656 0.2684
4.4 0.0037 0.0038
5.5 0.00059 0.0006
6.25 0.0000 0.0000

We have validated our results by comparing the dimensionless temperature
profile (𝜃) for Pr = 1 with the numerical results obtained by Ostrach [47] in Fig. 11.
It is also noted that the two graphs of the dimensionless temperature (𝜃) are perfectly
confused; consequently, we can say here that there is an excellent concordance
between the results of the present investigation and those of the previous works.

Fig. 11. The comparison of numerical results obtained in the present work
and Ostrach’s results for 𝜃 (𝜂)
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7. Conclusion

In this research work , a problem of natural convection heat transfer from
an isothermal vertical flat heated plate has been investigated numerically by the
technique of similarity solutions. The analysis was carried out with an assumed
stable and laminar two-dimensional flow and the properties of the fluid (except the
density) were taken as constants. Other helping assumptions have been considered
here such as; the neglect of viscous dissipation effects and, no heat source was con-
sidered in the flow. Therefore, the problem was considerably simplified, although
the complications due to the coupled partial differential equations remained. The
computational strategy was focused on exploiting an important method for solving
boundary layer flow over a heated vertical surface, it was the similarity vari-
able method. The non-linear governing equations describing the physical model
have been reduced to a system of ordinary differential equations (ODE) through
well-defined similarity transformations. The obtained system of nonlinear ordinary
differential equations satisfying all the boundary conditions was solved numeri-
cally and simultaneously using the Runge-Kutta of order 4. The approach of the
investigation allowed us to program in the FORTRAN language, all these equations
to find the numerical solution to the thermal problem for Prandtl number values up
to about 30. The initial guessed values must be altered to obtain solutions at higher
values of the Prandtl number.

To illustrate the effectiveness of the proposed procedure, several important
thermal results have also been tabulated and presented in graphical forms and
then discussed in depth -These included: dimensionless velocity and temperature
profiles in the natural convective boundary layer on a vertical plate, the variation
of the function 𝐹 and its derivatives, the effect of the Prandtl number, the rate heat
transfer and the local Nusselt number expressions with Grashof number, and the
mean heat transfer for the entire plate.

From the thermal analysis of the numerical results, we were able to draw the
following conclusions

• The increase in values of the Prandtl number Pr leads to a decrease in the
thickness of the thermal boundary layer.

• The increase in values of the Prandtl number Pr leads to an increase in
the absolute value of the temperature gradient at the surface and, this was
expected given the nature and physical meaning of the Prandtl number, which
gives the comparison between momentum and thermal diffusion.

• The increase in the values of the Prandtl number Pr indicates the increase in
the viscous effects.

• With increasing Pr, the velocity gradient at the surface and the maximum
dimensionless velocity are also decreased due to the existence of the effect
of larger viscous forces.

• The location of the dimensionless temperature maximum value has a ten-
dency to shift right to higher 𝜂 as Pr is decreased.
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• The thickness of the velocity boundary layer also has a tendency to increase
when Pr is decreased to lower values.

• The numerical model treated was perfectly validated and it was found in
good agreement with the investigations in the old research works.

• It is also noteworthy that the numerical results of this simulation show the
coupling between the velocity and temperature fields, as evidenced by the
regularity of flow wherever there is a temperature difference, such as the
profiles with low values of Prandtl number Pr.

From the numerical results obtained, we can confirm that some properties
related to the Prandtl number are verified. The effect of the Prandtl number, Pr,
on the thickness of the thermal boundary layer has been effectively tested. The
buoyancy force and the Prandtl number significantly increase the surface shear
stress and the surface heat transfer. Also for small values of the Prandtl number and
for streamwise distances, the surface shear stress changes very significantly. The
influence of Pr on the local skin-friction and the local Nusselt number increases
along the surface from a certain distance from the plate. At this stage, we do not
have any comparison with experimental data due to the absence of such data. Thus,
this work bears fruit presenting a fundamental aspect which deals with the problem
of natural convection in a vertical plate and heat transfer correlations which can be
used for severely practical industrial applications.

It is hoped that the current results will be useful for understanding more
complex problems dealing with mixed convection and will stimulate interest in
experimental work.
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