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The aim of this work is to design the links-spring mechanism for balancing, in
the three positions of the operating range, a rotary disc subjected to a torque. An
energy-related approach towards the conditions of the mechanical system balance for
a discrete number of positions leads to the formulation of a task of searching for a
four-bar linkage which guides a coupler point through the prescribed positions, where,
at the same time, geometrical conditions (specifying the spring tension) and kinematic
conditions (defining the radial component of the tension change rate) are satisfied. The
finitely and infinitesimally separated position synthesis is considered, however, only a
component of the coupler point velocity is essential. A general method was proposed
for determining the four-bar mechanism geometry. Mechanism inversion was applied
in order to reduce the number of designed variables and simplify the solution method.
The system of complex algebraic equations defines the problem. Linear, symbolic
transformations and a systematic search technique are utilized to find multiple local
optimal solutions. The problem is solved using Mathematica software.

1. Introduction

The balancing of a spatial and planar linkage-spring system is of crucial impor-
tance in reducing the energy consumed by machines while performing prescribed
operating functions The balancing in a finite (discrete) number of positions is a
particular kind of linkage balancing. The aim of this work is to design (to select
the dimensions and mechanical parameters) the links-spring system for balancing,
in the three positions of the operating range, a rotary disc loaded with a torque.
An energy-related approach towards the conditions of the mechanical system bal-
ance for a discreet number of positions leads to the formulation of a task of searching
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for a mechanism which guides an operating element through the prescribed po-
sitions, where, at the same time, geometrical conditions (specifying the spring
tension) and kinematic conditions (defining the radial component of the tension
change velocity) must be satisfied. In other words, the finitely and infinitesimally
separated positions synthesis is considered. In this specific task, the rigid body
motion is represented by the three finitely separated positions associated with three
infinitesimally separated positions. However, a velocity condition (related to the
infinitesimally separated positions) is defined in a slightly different way as only a
component of the coupler point velocity is essential. The overview of the literature
indicates some drawbacks in the research on the methods enabling the designing
of mechanisms which ensure balance in the finite discrete positions.

The present paper investigates a mechanism for balancing an external load.
The linkage weight is not considered, and the external load is reduced to the torque
subjected to a member of the linkage. Most of the papers, however, deal with the bal-
ancing of the linkages weights by means of counterweights, both zero-free-length
and non-zero-free-length springs as well as auxiliary links, cables and pulleys,
cams, gear trains and devices compiling a few solutions [1]. The force/torque
balancing is closely related with the modelling of force/torque generators [1–7].

The first observation arising from the literature review is that balancing of
linkages requires additional solutions that are frequently complex with regard to
the manufacturing issues, e.g., cam mechanisms, gear trains, etc. The four-bar
linkage has an advantage in that the kinematic structure and manufacturing process
are simple. In the recent studies, we can find four-bar linkages that are mechanical
parts of statically balanced mechanisms [4, 8–13]. However, In order to produce the
gravity balanced planar mechanism, a four-bar linkage frequently requires either
additional linkages or nonlinear springs [8, 10]. In paper [4] the method used for
the design of statically balanced mechanisms is exemplified by the static balancing
of four-bar linkages with torsion springs. The use of zero-free-length springs is
not required and the linear spring can be used in either a tensile or compressive
configuration.

The second comment is that these studies deal with balancing either over the
full motion range of the system or over the finite continual range of motion. The
problem of discrete balancing at chosen positions is of less interest. The problem
is trivial when balancing at one position is considered, and one can still expect
no significant difficulty when balancing at two positions. With regard to the key
problem of our paper, one can focus attention on paper [14]. This study deals with
discrete balancing, where balancing is ensured in 12 distinct angular positions of a
robot arm.

We may also notice that the methods worked out to synthesize statically
balanced mechanisms are mainly based on the knowledge and experience of re-
searchers. The geometry of the mechanism is proposed a priori, frequently it is a
modification or development of existing, well-known mechanisms, and then the di-
mensions are determined from the equations expressing the equilibrium conditions.
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The general synthesis methods only are worked out and applied to basic linkages,
when other approaches fail to find the optimal parameters of a balanced system.
When balancing at three or more positions is required with a non-symmetrical
distribution of the balancing positions, the problem becomes difficult to solve.

The fact that the majority of geometric synthesis methods have been worked
out for a four-bar linkage encourages ones to apply this linkage to produce balanced
systems. Countless synthesis methods have been worked out. Among them, one
can distinguish the synthesis methods for solving the problems for which there exist
mechanisms that accurately realize the imposed conditions, i.e., the requirement for
a coupler point to pass through a relatively small number of positions [15–18]. The
so-called solution region synthesis methodology for the eight-precision-point path
synthesis of planar four-bar mechanisms is presented in [19]. The problem of finding
all four-bar linkages whose coupler curve passes through nine prescribed points is
undertaken in [20] using a combination of classical elimination, multihomogeneous
variables and numerical polynomial continuation.

Nevertheless, it is the problem studied in papers [21–23] that is the most similar
to the problem formulated in the present paper. Slightly simpler, but analytically
solvable, tasks are formulated there. A synthesis method with both coupler tra-
jectories and velocities (a bi-objective problem) was solved in [21]. An analytical
solution using this method was presented for straight line path generation [22].
Having given three pairs of coincident curve points, a four-bar linkage was synthe-
sized. The constraints include two separate position constraints and one velocity
constraint. Three four-bar linkages, with two symmetrical coupler curves and one
asymmetrical curve, were synthesized simultaneously for one given independent
design parameter. The synthesis of planar linkage mechanisms with approximate
velocity constraints is presented in [23]. Two precision positions with velocity
prescribed at one of the positions allows one to formulate the first closed-form
complex-number dyad solution to the ground pivot specification problem. On the
basis of this solution, approximate velocity constraints are added to design meth-
ods for two exact positions and an unlimited number of approximate positions.
The increase in the number of velocity conditions requires a numerical technique
for finding approximate solutions. The mathematical complexity of the mechanism
synthesis problems grows with the number of precision points, and the equations
cannot be effectively solved using an analytical approach. The synthesis problem
with more than nine precision points can be expressed by approximate solutions
obtained via optimization methods. Work [24] summarizes the developments made
in quantitative four-bar path and function generation. The up-to-date achievements
in computing hardware and software allow for the efficient solving of many geomet-
ric problems. The full rotation conditions, circuit and branches defects avoidance,
and the correct coupler points order are usually controlled by synthesis algorithms.
A detailed review on the mechanism synthesis methods can be concluded that the
studies focus on the developing geometric synthesis methods which contain no ad-
ditional kinematic constraints. The synthesis problem expressed simultaneously by
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kinematic and geometric conditions at selected instants is not widely reported. The
reason is that the problem is complex, and the solutions for a particular mechanism
satisfying two geometric and only one kinematic condition were found. More com-
plex problems have to be solved numerically. In point of fact, the formulation of
the purely theoretical problem gives rise to uncertainty about whether the solution
method used is effective in a particular practical problem in terms of the necessity
of satisfying many extra constraints of a technical nature, e.g., the housing size.

To summarize, the design of the mechanical systems subjected to external loads
and balanced in a discrete number of positions is a challenging task. There are no
techniques for the determination of the geometric parameters of the prescribed
mechanisms for a wide range of input data. The present paper utilizes approaches
worked out in kinematics and synthesis of mechanisms for this purpose. In order
to balance the disc subjected to a torque in three arbitrarily prescribed positions,
the mechanical system composed of a four-bar linkage and spring is proposed
and the system parameters have to be determined. On the basis of the equilibrium
equations, a new combined finitely-infinitesimally separated positions synthesis
problem was formulated and the solution method was worked out. The kinematic
inversion simplifies the system description and enables formulation of the problem
by means of a reduced number of design parameters. The reduced number of
optimized parameters allows for searching for the optimal solutions by searching
through the design space and therefore a heuristic algorithm is not required.

2. Problem formulation

Let us suppose that a horizontal disc with the vertical axis of rotation O1 is
subjected to resistance torque 𝑀E. Let the torque act clockwise. The objective is to
design such a mechanical system – with the structure as simple as possible – based
on revolute pairs and a spring, that the disc is balanced in three prescribed angular
positions. The synthesized mechanism couples the disc’s angular position and the
spring tension in order that the equilibrium conditions are satisfied (Fig. 1).

Fig. 1. The scheme of the system for the purpose of structural synthesis
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Let the disc be rigidly connected to the active link of the mechanism. A spring-
coupler point D regulates the spring extension. Let ground point E be attached to
the frame and let the distance |DE| be equal to the spring extension. The force for
the free length spring is 0. The system operates in the horizontal plane and the
forces of gravity are taken into account. Assuming that moments of the friction
forces in the kinematic pairs are neglected, the problem consists in determining the
dimensions of the mechanism (which regulates the spring extension), for which the
system is in balance for a prescribed function of the torque in the three selected
positions expressed by angular positions of the disc. Let the torque have a constant
value, though the assumption of a constant torque value is not required, and in
general the method is applicable for a varying torque.

A separate issue, not discussed thoroughly in this paper, is how to ensure in
technical implementation that the distance |DE| is equal to the spring extension.
Let us mention that an additional part has to be mounted at point E. It may be a
rotating pin designed to minimise the deviation of the actual distance |DE| from the
theoretical one. Other solution is to insert the spring inside a revolute tube pivoted
at point E.

We carry out analytical considerations to determine the equilibrium equations
in the prescribed positions of the system. The constraints being ideal, the sum
of the elementary work d𝑊 done by the torque and the elementary work of the
spring force (the change in the spring potential energy d𝑈) in the vicinity of the
equilibrium position (balance position) is equal to 0 (or in other words, the sum of
the potential energy and the work of non-potential forces is locally constant). Let
𝑢 stand for spring extension. Then

d𝑊 = −𝑀E d𝜃1 − 𝑘𝑢d𝑢 = 0. (1)

To derive the formula for spring extension, one can integrate Eq. (1) over the
disc rotation from the initial angular position 𝜃1 by Δ𝜃1. The spring extension will
change from the initial (maximum) one, denoted as 𝑢max = 𝑢(𝜃1), to a certain
extension 𝑢. The change in the spring potential energy makes up for the work of
the resistance torque.

−
𝜃1+Δ𝜃1∫
𝜃1

𝑀E d𝜃1 =

𝑢∫
𝑢max

𝑘𝑢d𝑢 = −𝑀EΔ𝜃1 =

(
1
2
𝑘𝑢2 − 1

2
𝑘𝑢2

max

)
. (2)

We obtain from Eq. (2) the formula for |DE| – that is, for the spring extension
required to maintain equilibrium:

𝑢 =

√︂
𝑢2

max −
2𝑀E
𝑘

Δ𝜃1 , (3)

where Δ𝜃1 is the input link rotation measured from the initial position. The equality
|DE| = 𝑢 suffices to express equilibrium, when equilibrium for a continuous interval
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of the system positions is considered, and the discretisation of the independent
variable (input link angular position) is sufficiently dense. Notice that when a
low discrete number of balance positions is considered, the formula for spring
extension (3) itself does not suffice to ensure the equilibrium. The other condition
results directly from Eq. (1):

d𝑊 = −𝑀E d𝜃1 − 𝑘𝑢d𝑢 =

(
−𝑀E − 𝑘𝑢

d𝑢
d𝜃1

)
d𝜃1 = 0, (4)

and relates the rate of change of the spring extension with respect to the input link
angle with the input torque, spring stiffness and spring extension:

d𝑢
d𝜃1

=
−𝑀E
𝑘𝑢

. (5)

On the basis of the above reasoning, one can formulate the task of designing
a mechanism for torque balancing as a specific problem of mechanism geometric-
kinematic synthesis:

Determine the location of the frame point (denoted as E) and the mechanism
dimensions with the position of such a point (denoted as D) that the distance |DE|
and the radial component of the velocity of point D with respect to point E take
values expressed by Eqs. (3) and (5) in the prescribed input link positions.

We determine the mechanism that ensures the equilibrium for three angular
positions of the disc (input link) defined by angles 𝜃11, 𝜃12 and 𝜃13, which can
equivalently be described by two angular increments Δ𝜃12 = 𝜃12 − 𝜃11, Δ𝜃13 =

𝜃13 − 𝜃11. Then, the problem can be graphically illustrated as shown in Fig. 2.
The position of the disc at instant 𝑖 – O1A𝑖 is associated with the adequate 𝑖-th
position of point D, distance 𝑢𝑖 and radial velocity component 𝑣𝑖 = ¤𝑢𝑖 = | ¤ED𝑖 |.
The tangential velocity component is drawn as a dotted line. The geometric (3) and
kinematic (5) conditions for a single equilibrium position may be also interpreted
as follows.

The locations of points D and E are not known. For a chosen equilibrium
position the condition for the spring extension defines the circle centred at D and
of radius 𝑢, and the condition for infinitesimal displacement d𝑢 (derivative of 𝑢)
allows us to locate the point E on this circle. The circle centred at D1 in Fig. 2
illustrates the case for the first position 𝑢 = 𝑢1. The problem was break down into
two sub-problems geometric (for 𝑢) and kinematic (for derivative of 𝑢) in order to
utilize methods used in mechanism analysis.

We postulate the four-bar linkage (Fig. 3) composed of input link O1A rigidly
connected to the disc, output rotating link O2B and coupler ADB. The conditions of
static balancing of four-bar linkage in a single position are formulated in paper [4].
The difference is that in [4] the torsion spring are attached at the linkage’s revolute
joints and the continuous range of motion is considered. In the equilibrium a
negative stiffness function created by a nonzero-free-length spring cancels the
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Fig. 2. Graphical illustration of the synthesis
problem

Fig. 3. The scheme of the four-bar linkage
with the loaded disc

positive stiffness function of torsion springs attached at the revolute joints. The
type of stability is specified by analyzing the relation between curvature radiuses
of the spring-coupler point and spring’s equipotential circle.

2.1. Solution method

The methods developed in mechanism synthesis can be divided into two cate-
gories. The first defines the problem by means of all the design parameters that fully
describe the geometry of the mechanism, and focuses on developing and enhancing
optimisation algorithms. The other branch involves methods that aim at decreas-
ing the number of design parameters by using kinematic inversion, special error
functions, etc. These methods are frequently referred to as two-phase mechanism
synthesis. The method applied in this paper belongs to this category.

We apply complex numbers to describe the mechanism positions. The mathe-
matical formulae of the closed loop O1ADEO1 for the three prescribed positions is
not profitable. The reason is the variation of the angular orientation of ED, which
results in the necessity of introducing the angle that describes the orientation of
segment ED. This angle, useless for further analysis, makes mathematical equa-
tions more complex. Moreover, the derivative of the closed loop equations contains
Cartesian components of point D velocity, whereas the radial component only is
important. Taking into account these observations, we pursue the simplification
of the mathematical form of the closed loop equations. The concept of kinematic
inversion is used, and as a consequence segment ED becomes the immoveable
reference link. Frame O1O2 is fixed in the four-bar linkage, whereas in the auxil-
iary mechanism (obtained as a result of kinematic inversion) the motion will be
described with respect to the axis passing through points E and D. After kinematic
inversion, axis ED is the axis of the guide link for slider D. The scheme of the aux-
iliary mechanism is shown in Fig. 4. The mechanism is driven by the linear motion
of slider D along guide link DE so that |DE| = 𝑢. Link ABD is connected to slider D
and to links O1A and O2B using revolute joints. Links O1A and O2B create revolute
pairs with link EO1O2, the one that is pivoted to the frame at revolute joint E. We
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utilize also Fig. 5 for the purposes of geometric analysis. The kinematic inversion
changes the structure of the mechanism. The four-bar linkage has 3 moveable links
and 4 revolute kinematic pairs, whereas the auxiliary mechanism has 5 links and
7 kinematic pairs (6 revolute and 1 prismatic). Though, the degree of mobility for
both mechanisms equals 1.

Fig. 4. The scheme of the auxiliary mechanism Fig. 5. The angles measured from the first
equilibrium position of the mechanism

The reference position is the mechanism position associated with the first
equilibrium position described by complex numbers a, x, y, r, R and c. The following
angles are introduced, and shown in Fig. 5:

𝛼 – angular position of link O1A measured from the first position of link O1A
(the first position of link O1A is described by complex number a),

𝛾 – angular position of arms EO1 and EO2 of link O1EO2 measured from the
first position of EO1 and EO2 described by complex numbers x and y,
respectively,

𝛽 – angular position of arms AD and DB of link ADB measured from the
first position of AD and DB described by complex numbers r and R,
respectively,

𝜆 – angular position of link O2B measured from the first position of O2B
described by complex number c.

Let axis 𝑥(Re) be oriented along ED, and axis 𝑦(Im) be perpendicular to 𝑥. We
consider three mechanism positions with the spring extensions (|DE| distances)
equal to:

a) 𝑢1 =

√︂
𝑢2

max −
2𝑀E
𝑘

0 = 𝑢max , (6)

for the rotation of O1A about O1O2 (in the four-bar linkage – Fig. 3) by angle
Δ𝜃11 = 𝜃11 − 𝜃11 = 0;

b) 𝑢2 =

√︂
𝑢2

max −
2𝑀E
𝑘

Δ𝜃12 , (7)
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where Δ𝜃12 = 𝜃12 − 𝜃11;

c) 𝑢3 =

√︂
𝑢2

max −
2𝑀E
𝑘

Δ𝜃13 = 𝑢min , (8)

where Δ𝜃13 = 𝜃13 − 𝜃11.
Eq. (8) relates the minimum and maximum spring extensions. The first position

described by a, x, y, r, R and c corresponds to the solution for 𝑢 = 𝑢1.
The angle of rotation of O1A must be expressed by means of angle 𝜃1, which

in the four-bar linkage (Fig. 3) is measured from O1O2. The closed loop equations
will be formulated for the auxiliary mechanism shown in Fig. 4. Then, the angular
position of link O1A with respect to O1E in the auxiliary mechanism must be
computed and expressed by means of 𝜃1 (orΔ𝜃1), which is the independent variable
of 𝑢 and derivatives of 𝑢. We introduce angle 𝛼∗ between O1A and O1E. This angle
is the sum of 𝜃1 and a constant value denoted as 𝐶 and equal to the angle at O1 in
triangle EO1O2 with the appropriate sign. The change in 𝜃1 equals the change in 𝛼∗.
Angle 𝛾∗ is measured between ED and O1E. We compute the angle between O1A
and an arbitrary fixed immovable axis – let us take the axis parallel to ED, which
has a fixed angular orientation. As shown in Fig. 6, this angle is equal to 𝛼∗+𝛾∗−𝜋.
Hence, if O1E rotates by 𝛾 with respect to its first position, and O1A rotates by Δ𝜃1
with respect to O1E, then O1A will rotate by 𝛼 = Δ𝜃1 + 𝛾 with respect to the fixed
axis, and simultaneously with respect to its first position defined by a.

Fig. 6. Geometric illustration for determining angle 𝛼

Let us write the closed loop equations using the complex number notation
(i =

√
−1) for the first equilibrium position, shown in Fig. 5:

x + a + r − 𝑢1 = 0, (9)

for the second one obtained after rotation of O1A with respect to O1E by Δ𝜃12:

x𝑒i𝛾2 + a𝑒i(Δ𝜃12+𝛾2 ) + r𝑒i𝛽2 − 𝑢2 = 0, (10)



580 Jacek BUŚKIEWICZ

and the third one obtained after rotation of O1A with respect to O1E by Δ𝜃13:

x𝑒i𝛾3 + a𝑒i(Δ𝜃13+𝛾3 ) + r𝑒i𝛽3 − 𝑢3 = 0. (11)

For the first equilibrium position we have 𝛾1 = 𝛽1 = 𝜆1 = 0. For the subsequent
positions the links rotate by 𝛽 𝑗 , 𝛾 𝑗 , 𝜆 𝑗 . Distance 𝑢 is expressed by means of angle
𝜃1, and we differentiate Eqs. (9)–(11) with respect to 𝜃1. Measured from the first
equilibrium position, angular increment Δ𝜃1 differs from angle 𝜃1 (measured from
O1O2) by a constant value, then d (Δ𝜃1) = d𝜃1. If the general formula for the
closed loop equation in the 𝑖-th position is written as follows:

x𝑒i𝛾 𝑗 + a𝑒i(Δ𝜃1 𝑗+𝛾 𝑗 ) + r𝑒i𝛽 𝑗 − 𝑢 𝑗 = 0, 𝑗 = 1, 2, 3, (12)

the adequate derivative can be written in the form:

x𝛾′𝑗𝑖𝑒−i𝛾 𝑗 + a
(
1 + 𝛾′𝑗

)
𝑖𝑒i(Δ𝜃1 𝑗+𝛾 𝑗 ) + r𝛽′𝑗𝑖𝑒i𝛽 𝑗 − 𝑣 𝑗 = 0, 𝑗 = 1, 2, 3, (13)

where: 𝛽′𝑗 =
d𝛽
d𝜃1

(
Δ𝜃1 𝑗

)
, 𝛾′𝑗 =

d𝛾
d𝜃1

(
Δ𝜃1 𝑗

)
.

Similarly, the equations for loop EDBO2 are written. We note that the joints
A, D and B lie on the same rigid link as the joints O1, E and O2 do. On the basis
of this observation, we introduce only one extra angle 𝜆 to describe the angular
displacement of link O2B with respect to the position occupied by this link in the
first equilibrium position.

y𝑒i𝛾 𝑗 + c𝑒i𝜆 𝑗 − R𝑒i𝛽 𝑗 − 𝑢 𝑗 = 0, 𝑗 = 1, 2, 3. (14)

The general form of the derivatives can be written in the form:

y𝛾′𝑗𝑖𝑒i𝛾𝑖 + c𝜆′𝑗𝑖𝑒i𝜆 𝑗 − R𝛽′𝑗𝑖𝑒
i𝛽 𝑗 − 𝑣 𝑗 = 0, 𝑗 = 1, 2, 3, (15)

where 𝜆′𝑗 =
d𝜆
d𝜃1

(
Δ𝜃1 𝑗

)
.

Let us derive the general correspondence between the number of prescribed
geometric and kinematic conditions and the number of the unknown parameters.
Let 𝑚 denote the number of geometric equations (𝑢 𝑗), 𝑛 stand for the number of
kinematic equations (𝑣 𝑗). There is a complex (vector) equation for each 𝑢 𝑗 as well
as for each 𝑣 𝑗 . The total number of equations is 2 (number of the closed loops) ×2
(real and imaginary part of a complex equation)×(𝑚+𝑛) = 4(𝑚+𝑛). The unknowns
are: 12 components of 6 complex numbers a, x, r, c, y, R, 3𝑛 angular velocities
𝛾′𝑗 , 𝛽

′
𝑗 , 𝜆

′
𝑗 , 𝑗 = 1, . . . , 𝑛 and 3𝑚 angles 𝛼 𝑗 , 𝛽 𝑗 , 𝜆 𝑗 , 𝑗 = 1, . . . , 𝑚, where 𝛼1 = 0,

𝛽1 = 0, and 𝜆1 = 0. Then, the total number of variables equals to 12+3𝑛+3(𝑚−1).
By equalling the numbers of equations and parameters, one obtains that there are
no free choices when 𝑚 + 𝑛 = 9. When 𝑚 = 𝑛 = 3, as is the case herein, three
design parameters can be prescribed. The classical path synthesis problem without
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timing for the four-bar linkage has the finite number of the solutions for up to
nine prescribed precision points [20]. When the problem with timing is considered
(the prescribed angular positions of the active link are assigned to the precision
points), the solution exists when at most five precision points are prescribed [15].
Irrespective of whether with or without timing a synthesis problem with three free
choices is considered, only numerical methods have been worked out. In the present
paper the problem with timing, with three conditions for positions and velocities,
is dealt with. Moreover, this problem differs from the classical path synthesis
problem in that the radial distances and radial velocities – not precision points nor
absolute velocities – are prescribed. Newton iteration method is the most frequent
mathematical method utilised in order to solve nonlinear equations. Nevertheless,
the elimination methods (the techniques of numerical algebraic geometry), which
are primarily based on homotopy methods, appeared to be most effective. Recently,
polynomial continuation is being developed to deal with polynomial systems that
may have higher dimensional solution sets, such as curves, surfaces, and so on [26].
These methods, however, require specialized numerical packages [25].

To solve the problem formulated in the present paper and find the set of
approximate solutions the domain is searched through. An algorithm is proposed
and described in the next subsection, in which 6 angular design parameters are
simultaneously searched for. The finite ranges, from −𝜋 to 𝜋, encompass all the
domain, and no free choices are required, though, three of the angles can be
prescribed (free chosen).

2.2. Solution algorithm

The algorithm worked out for the purposes of the method is referred to as
6DV2S (six design variables two steps). It allows one to determine the approximate
solutions of Eqs. (12)–(15) in the specified domain and for the prescribed accuracy.

The input data, preliminary computations and constraints are as follows:
• The input data are: the coefficient of the spring stiffness, the minimum spring

extension, the torque exerted on the disc, the relative angular positions of
the disc (active link) in the balance positions (equilibrium): 𝑘 , 𝑢3 = 𝑢min,
𝑀E, Δ𝜃12, Δ𝜃13. On the basis of the input data, spring extensions 𝑢1, 𝑢2 as
well as their derivatives, 𝑢′(0), 𝑢′(Δ𝜃12), and 𝑢′(Δ𝜃13) are computed from
Eqs. (3) and (5).

• 𝑎, 𝑏, 𝑐, 𝑑 are the lengths of the active link, coupler, passive link and im-
movable link, respectively. To ensure a reasonable proportion between the
maximum 𝑙max = max(𝑎, 𝑏, 𝑐, 𝑑) and minimum 𝑙min = min(𝑎, 𝑏, 𝑐, 𝑑)
dimensions, the upper limit 𝑤1 for

𝑙max
𝑙min

is prescribed.
• The acceptable value of the solution error is denoted as 𝜀.
• The error is increased by 𝑤2 when the Grashof conditions are not met.
• Two empty sets: X, E𝑅 are defined.
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The algorithm is divided into two parts.
Part I – Algorithm 6DV2S_I: The auxiliary mechanism is processed and

the approximate solutions with the method error less than 𝜀 are searched for and
written to set X.

I.1. 𝛾1, 𝛽1 and 𝜆1 are set to zero. The unknowns are the initial positions
of the links: x, a, r, y, c, R as well as the angular positions of the links in the
second and third balance positions. These angles are written in the form of a list
𝜒 = {𝛾2, 𝛽2, 𝜆2, 𝛾3, 𝛽3, 𝜆3}. We extract also a sublist 𝜒S = {𝛾2, 𝛽2, 𝛾3, 𝛽3}.

I.2. The set of linear equations (12) of complex variables is solved with respect
to: a(𝜒S), x(𝜒S), r(𝜒S).

I.3. These solutions are substituted into equations (13).
The real and imaginary parts of Eqs. (13) are set to 0 in order to determine the

rates of changes of angles with respect to 𝜃1: 𝛽′1(𝜒S) and 𝛾′1(𝜒S) (from the first of
Eqs. (13), i.e. 𝑗 = 1), 𝛽′2(𝜒S) and 𝛾′2(𝜒S) ( 𝑗 = 2), 𝛽′3(𝜒S) and 𝛾′3(𝜒S) ( 𝑗 = 3).

I.4. The solutions of Eqs. (12): a(𝜒S), x(𝜒S), r(𝜒S) are substituted into
Eqs. (14). The set of linear equations (14) of complex variables is solved with
respect to: c(𝜒), y(𝜒), R(𝜒).

I.5. The solutions of Eqs. (12)–(14): a(𝜒S), x(𝜒S), r(𝜒S), c(𝜒), y(𝜒), R(𝜒),
𝛽′1(𝜒S), 𝛾′1(𝜒S), 𝛽′2(𝜒S), 𝛾′2(𝜒S), 𝛽′3(𝜒S), 𝛾′3(𝜒S) are substituted into equations
(15), and subsequently 𝜆′𝑗 = 𝜆′𝑗 (𝜒) for each 𝑗 = 1, 2, 3 are determined, and real
and imaginary parts are extracted 𝜆′𝑗 = Re(𝜆′𝑗) + i Im(𝜆′𝑗).

I.6. For an exact solution, the rate of relative change of angle 𝜆 with respect to
𝜃1 is a real number, therefore 𝛾2, 𝛽2, 𝜆2, 𝛾3, 𝛽3, 𝜆3 are searched for that satisfy the
following set of equations:

Im
(
𝜆′𝑗

)
= 0, 𝑗 = 1, 2, 3. (16)

I.7. Three Eqs. (16) form a set of nonlinear algebraic equations, in which
the unknown angles are the arguments of trigonometric functions. That is why the
subdomain: [𝛾2S, 𝛾2E]× [𝛽2S, 𝛽2E]× [𝜆2S, 𝜆2E]× [𝛾3S, 𝛾3E]× [𝛽3S, 𝛽3E]× [𝜆3S, 𝜆3E]
of domain [−𝜋, 𝜋]6 is searched for to find approximate solutions of Eqs. (16). The
solution error is defined as

𝐸 (𝜒) = max
𝑗=1,2,3

���Im(𝜆′𝑗)
��� . (17)

With the prescribed angles intervals and angles increments Δ𝛽, Δ𝛾 and Δ𝜆,
the computations in the six loops are executed:

For 𝛾2 = 𝛾2S to 𝛾2E, with step Δ𝛾 do
𝛽2 = 𝛽2S to 𝛽2E, with step Δ𝛽 do

For 𝜆2 = 𝜆2S to 𝜆2E, with step Δ𝜆 do
For 𝛾3 = 𝛾3S to 𝛾3E, with step Δ𝛾 do

For 𝛽3 = 𝛽3S to 𝛽3E, with step Δ𝛽 do
For 𝜆3 = 𝜆3S to 𝜆3E, with step Δ𝜆 do

Compute: 𝐸 (𝜒).
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If 𝐸 ⩽ 𝜀, then list 𝜒 is added to set of the solutions: X := X ∪ 𝜒. The value of
the error for this solution is also written, in set E𝑅.

I.8. Save the results to the disc and finish part I of the algorithm.
Herein, the brief discussion on the conditions (16) is required. 𝜆′𝑗 are real

numbers for precise solutions, i.e., for the solutions that have physical meaning.
The imaginary part of 𝜆′𝑗 should be zero for precise solutions, and it will be nearly
zero for candidates for approximate solutions. Then, imaginary part of 𝜆′𝑗 is the
magnitude of the solution error. The deviation from a real number may be also a
consequence of floating point arithmetic. This means that if the last three equations
(15) cannot be precisely met for any real angular velocities 𝜆′𝑗 , the geometry
described by complex numbers a, x, r, d, c, R fails to define the mechanism being
an exact solution of the problem.

We note also that the list of six angular parameters 𝜒 only is a complete
representation of the auxiliary mechanism, and in consequence, of the four-bar
linkage with point E. One can reproduce the four-bar linkage (with point E) on
the basis of these angles, which is realized by the second part of the algorithm.
A solution 𝜒 from set X is evaluated in terms of the subsequent criteria (constraints).
It should be emphasized that these criteria can be defined at the further stage of the
analysis and can also be modified and adjusted to the current needs.

Part II – Algorithm 6DV2S_II: Processing of set X. Determination of the
four-bar linkage geometry and verification of geometric constraints.

II.1. Select a solution 𝜒 𝑗 ∈ X, 𝑗 = 1, . . . , 𝑁 , where 𝑁 is the number of solutions
with error 𝐸 𝑗 (17) less than 𝜀. The angles from 𝜒 𝑗 are substituted into equations
for a(𝜒S), x(𝜒S), r(𝜒S), c(𝜒), y(𝜒), R(𝜒) determined in steps (I.2) and (I.4). The
numbers x, a, r, y, c, R represent the position of the four-bar linkage corresponding
to the spring extension 𝑢 = 𝑢1. This position defines fully the mechanism. In
order not to transform the solutions, the coordinate systems for the four bar linkage
(Fig. 7) and auxiliary mechanism (Fig. 5) are parallel to each other with abscissa
axis parallel to segment ED1 and the ordinate axis perpendicular to ED1. The only
difference is that the origin is at point O1 (Fig. 7), not at point E (Fig. 5).

Fig. 7. The geometrical illustration for determination
of the four-bar linkage in the first equilibrium

position from auxiliary mechanism
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Having obtained the auxiliary mechanism, the dimensions and joints coordi-
nates of the four-bar linkage are determined:

• the coordinates of ground pivots O1, O2 and of point E:

O1(0, 0), O2 (Re(y − x), Im(y − x)) , E (−Re(x), −Im(x)) . (18)

• the lengths of: ground link, arm AB of the coupler, input link O1A and output
link O2B, respectively:

𝑑 = |y − x| , 𝑏 = |r + R| , 𝑎 = |a| , 𝑐 = |c| . (19)

Angle 𝜃1, that defines the angular positions of link O1A, is measured anti-
clockwise from the immovable segment O1O2. The angular position of the active
link for 𝑢 = 𝑢1: 𝜃11 is computed as the angle between vectors defined by complex
numbers a and d = 𝑦 − 𝑥:

𝜃11 = ± arccos
(Re(a) Re(d) + Im(a) Im(d)

|a| |d|

)
. (20)

One has to verify both signs to choose a proper one. Angle 𝜙 is measured
anticlockwise between arms AB and AD of the coupler, and it is the angle between
vectors defined by complex numbers b and r. It must be manually specified which
of the two four-bar linkage configurations realizes the desired motions.

II.2. The verification of geometric constraints.
II.2.A. Verification whether all the prescribed equilibrium positions are real-

ized by the same four-bar linkage configuration (rejection of the cases with branch
defects). The sign of the vector product (AB×AO2) must be the same for all three
balance positions. When this condition is not met, the solution is rejected (removed
from set X), and the algorithm returns to step II.I.

II.2.B. If
𝑙max
𝑙min

⩾ 𝑤1, then increase the solution error 𝐸 𝑗 := 𝐸 𝑗 + 𝜇𝑤1. By
comparing the orders of magnitude for error 𝐸 (17) and 𝑤1, it was taken that
𝜇 = 10−4 (the value was established after performing preliminary simulations).

II.2.C. Grashof conditions are checked. If 2(𝑙max + 𝑙min) > 𝑎 + 𝑏 + 𝑐 + 𝑑 or
(2(𝑙max + 𝑙min) < 𝑎 + 𝑏 + 𝑐 + 𝑑 and (𝑙min = 𝑏 or 𝑙min = 𝑐)), then 𝐸 𝑗 := 𝐸 𝑗 + 𝑤2.

In general, it is not necessary for the active link to make a full revolution.
Therefore, if the Grashof conditions are not imposed, one needs to verify whether
a continuous active link rotation through angular positions 𝜃11, 𝜃12 and 𝜃13 is
possible.

II.3. Determination of the direct error of balancing. The error (17) is not a
direct measure of the balancing inaccuracy at the prescribed positions. To define
the direct value of the error, the balancing torque acting on the disc, produced by
the spring extended by |DE| = 𝑢(𝜃1), is computed:

𝑀𝑡 = − d
d𝜃1

(
1
2
𝑘𝑢 (𝜃1)2

)
. (21)
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This torque is to balance the external torque 𝑀E. Therefore, the direct error of
the method is expressed as the average value of the unbalanced torques in the three
prescribed positions:

Δ𝑀 =

3∑︁
𝑖=1

|𝑀E − 𝑀𝑡 (𝜃1𝑖) |
3

. (22)

II.4. If the solution is not satisfactory, repeat steps II.1–II.3 for a subsequent
solution 𝜒 ∈ X. The evaluation of the solution fitness is based on the subjective
estimation.

Due to the kinematic inversion, this technique does not require the determi-
nation of radial components of the relative velocity of point D with respect to
point E. The proposed algorithm simplifies the formulation of the objective func-
tion, which does not contain two physically different quantities (distance 𝑢 and
velocity d𝑢/d𝜃1). Let us recall that even though the optimization consists in the
minimization of the two terms: the deviation of distance |DE| from the prescribed
value 𝑢: |DE| – 𝑢, and the deviation of the obtained value of the radial component
of point D velocity in the relative motion with respect to E from the prescribed
value, the solution fitness is expressed by the deviation of the angular velocity of a
mechanism link from a real number.

Computations are performed in Mathematica 10. The software makes it possi-
ble to carry out symbolic transformations of complex linear equations up to step I.6.
The last equations (16) are non-linear trigonometric equations. That is why the do-
main is discretised and the values of error (17) in the nodes of the domain are
computed using the systematic search method. In general, the number of solutions
may be infinite. The number is finite when the problem is to find the solutions
meeting geometric constraints, e.g., the magnitude of the links, transmission angle
range, etc. The efficiency of the method has been discussed on the basis of many
algorithm runs for various parameters values.

3. Numerical solutions

For all the cases it is assumed that:
• The external torque 𝑀E = 156.96 Nm.
• The permitted ratio of the maximum and minimum link length 𝑤1 = 10. If
𝑤1 is greater than 10, the solution is rejected.

• Parameter 𝑤2 = 0 (the Grashof conditions are not imposed).
The algorithm was run for various spring stiffness coefficients, minimum spring

extensions and the angular increments corresponding to the input link (disc) rota-
tions from the first to second balance positions – Δ𝜃12, and from the first to third
balance positions – Δ𝜃13.

The chosen solutions for five cases, with the input data given in Table 1, are
presented. The most compact form of the illustrative results for each case is given in
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Table 2, since the mechanism geometries can be easily determined by substituting
these numbers into Eqs. (18)–(19).

Table 1. Input data for the numerical solutions

Case 𝑘 [N/m] 𝑢min = 𝑢3 [m] Δ𝜃12 Δ𝜃13

I.1.A 5 · 103 0.2 3𝜋/8 3𝜋/4
II.1.A 104 0.05 𝜋/4 7𝜋/8
III.1.A

0.1
𝜋/5 𝜋/2

III.1.B 4 · 104 𝜋/2 3𝜋/2
III.2.A 0.15 𝜋/3 2𝜋/3

Table 2. The exemplary solutions

Case Solution

I.1.A a = 0.01569 + 0.270248i, R = 0.144847 + 0.1106i, r = −0.42755 − 0.32508i,
x = 0.84537 + 0.05483i, c = 1.36195 − 1.20043i, y = −0.78359 + 1.31103i

II.1.A a = 0.14462 + 0.12835i, R = −0.08795 − 0.25607i, r = 0.12784 − 0.14961i,
x = 0.02552 + 0.02125i, c = 0.34393 − 0.16205i, y = −0.13389 − 0.09402i.

III.1.A a = −0.014299 − 0.011599i, R = −0.00882 + 0.16443i, r = 0.081876 − 0.16389i,
x = 0.081847 + 0.17549i, c = −0.12141 − 0.04614i, y = 0.262013 + 0.210572i.

III.1.B a = 0.012477 − 0.0766896i, R = 0.0862681 + 0.445733i, r = 0.120286 + 0.199395i,
x = 0.0839926 − 0.122705i, c = 0.384869 + 0.798724i, y = −0.081846 − 0.352991i.

III.2.A a = 0.049708 − 0.00697i, R = −0.016777 + 0.030879i, r = 0.000159 + 0.035569i,
x = 0.147457 − 0.0286i, c = −0.134069 − 0.154618i, y = 0.314616 + 0.185497i.

Case I.1.A
On this basis of the input data (Table 1) the following parameters are computed

from Eqs. (3) and (5) (the linear dimensions are expressed in [m], velocities are in
[m/rad], angles are in [rad]): 𝑢max = 𝑢1 = 0.43351, 𝑢2 = 0.33759, 𝑢min = 𝑢3 = 0.2,
𝑣1 = 𝑢′1 = −0.07241, 𝑣2 = 𝑢′2 = −0.09299, 𝑣3 = 𝑢′3 = −0.15696.

As a result of the execution of algorithm 6DV2S_I – processing of the aux-
iliary mechanism – the set of solutions was obtained, and the solutions were
verified to reject the ones with branch defects. The exemplary solution is pre-
sented: 𝛽2 = 0.94984, 𝛽3 = 0.43197, 𝛾2 = 0.75104, 𝛾3 = 1.00138, 𝜆2 = 0.58905,
𝜆3 = 0.785392.

Having run part II of the algorithm – determination of the four-bar linkage – one
gets a, r, R, x, c, y (Table 2), and further: 𝑎 = 0.2707, 𝑏 = 0.35486, 𝑐 = 1.81547, 𝑑 =

2.05708, 𝑟 = 0.5371, 𝜃11 = −0.97188, 𝜙 = 0.00106, O1(0, 0), O2(−1.629, 1.256),
𝐸 (−0.845,−0.055). The average torque error (22) is Δ𝑀 = 2.091 Nm and method
error 𝐸 = 7.88835 · 10−4 (the maximum value of the imaginary part of the rate
of change of 𝜆 in function of 𝜃1 in the balance positions is equal to 𝐸 , which is
about 1% of the real part). The scheme of the mechanism with the coupler point D
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trajectory is presented in Fig. 8, with points D1, D2 and D3, such that |D𝑖E| ≈ 𝑢𝑖.
The resultant torque 𝑀 is presented in Fig. 9. The prescribed equilibrium positions
are marked with dots. The spring extension and the rate of spring extension with
respect to the active link angle are shown in Figs 10 and 11. The dots stand for the
values that guarantee the exactly balanced mechanism in the prescribed positions.
The dotted lines in Figs 10 and 11 are the theoretical functions for the spring
extension and the rate of the spring extension that guarantee continuous balancing
when passing from the first position to the last one.

Fig. 8. The mechanism in case I.A.1 Fig. 9. The resultant torque on the input link
in case I.A.1 with the prescribed balance

positions (dots)

Fig. 10. The spring extension in case I.A.1 with
the extensions required for balancing (dots)

Fig. 11. The rate of the spring extension in case
I.A.1 with the rate required for balancing (dots)

We can notice that the three equilibrium positions are stable. We aim at mini-
mizing the resultant torque 𝑀 , i.e., the difference between the theoretical balancing
torque produced by the spring (21) and the external, input torque in the prescribed
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positions 𝑀 = 𝑀E − 𝑀𝑡 (𝜃1). As can be seen in Fig. 9, the resultant torque di-
rection changes in the vicinity of the equilibrium positions. On the left hand side
of a required equilibrium position, the resultant torque is negative (the clockwise
external torque is less than the anticlockwise torque produced by the spring), then
acts anticlockwise and rotates the disc anticlockwise (to the right hand side of the
abscissa axis) to the equilibrium position. On the right hand side of an equilibrium
position, the resultant torque is positive (the clockwise external torque is greater
than the anticlockwise torque produced by the spring), then acts clockwise and ro-
tates the disc clockwise (to the left hand side of the abscissa axis) to the equilibrium
position. The stable equilibrium positions are separated by unstable equilibrium
positions, as six equilibrium positions occur in the allowed range of motion.

Case II.1.A
On this basis the input data, the following parameters are computed: 𝑢max =

𝑢1 = 0.297982, 𝑢2 = 0.2532549, 𝑢min = 𝑢3 = 0.05, 𝑢′1 = −0.05267, 𝑢′2 = −0.062,
𝑢′3 = −0.31392. As a result of the execution of algorithm 6DV2S_I the set of
solutions was obtained, and an exemplary solution is defined by: 𝛽2 = −0.11562,
𝛽3 = 0.14, 𝛾2 = −0.54978, 𝛾3 = −1.18956, 𝜆2 = −0.2227, 𝜆3 = −0.7654.
Having run part II of the algorithm (Table 2), one obtains: 𝑎 = 0.19337, 𝑏 =

0.40764, 𝑐 = 0.38019, 𝑑 = 0.19673, 𝑟 = 0.19679, 𝜃11 = −3.04182, 𝜙 = 0.60907,
O2(−0.159,−0.115), 𝐸 (−0.0255,−0.021), Δ𝑀 = 0.6813 Nm, 𝐸 = 18.80181 ·
10−4. The solutions are presented in Figs 12, 13.

Fig. 12. The mechanism in case II.1.A Fig. 13. The resultant torque on the input link
in case II.1.A with the prescribed balanced

positions

Case III.1.A
The exemplary solution, for which Δ𝑀 = 2.6728 Nm and 𝐸 = 9.16 · 10−4, is

presented in Figs 14, 15. It is visible that, as opposed to the previous solutions, the
mechanism meets the Grashof conditions.
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Fig. 14. The mechanism in case III.1.A Fig. 15. The resultant torque on the input link
in case III.1.A with the prescribed balanced

positions

Case III.1.B
Compared to case III.I.A, the angular increments only were changed (in-

creased). The solution, with Δ𝑀 = 2.073 Nm, and 𝐸 = 55.945 · 10−4, is presented
in Figs 16, 17.

Fig. 16. The mechanism in case III.1.B Fig. 17. The resultant torque on the input link
in case III.1.B with the prescribed balanced

positions

Case III.2.A
In this case the spring stiffness is equal to that in cases III.x.x, 𝑢min and

the angular increments were changed. The exemplary solution, for which Δ𝑀 =

1.128 Nm, and 𝐸 = 36.658 · 10−4, is presented in Figs 18, 19. We can conclude
that the mechanism size limitations significantly affect the error value. One can



590 Jacek BUŚKIEWICZ

observe a tendency that the mechanisms having very small method errors (and
simultaneously holding the Grashof conditions) are characterized by a high ratio
of the maximum dimension to the minimum one.

Fig. 18. The mechanism in case III.2.A in the
third balanced position

Fig. 19. The resultant torque on the input link
in case III.2.A with the prescribed balanced

positions

The resultant torques obtained using the energetic approach were compared
to the torques obtained using the classical equilibrium equations written for all
the links. Such an approach is presented in paper [27] to balance a system over a
continuous range of motion. The results are identical.

Supplementary materials are available as the data stored in repository Mende-
ley Data [28]. SolutionData.doc contains the exemplary solutions of algorithm
6DV2S_I. The notebook 4Bar3Points_6DV2S_II_A.nb created in Wolfram Math-
ematica 8.0 is the code of algorithm 6DV2S_II for determining the mechanism
dimensions from the output data of algorithm 6DV2S_I and for the results visu-
alization. The zip file SupplFigs contains the figures of the spring extensions and
the rates of the spring extensions for all the cases except for I.A.1. The name of the
figure addresses the adequate case.

4. Conclusions

For the purpose of torque balancing in the three prescribed angular positions,
the four-bar linkage with a spring was proposed, and the new problem of the mech-
anism synthesis was formulated. A general method was developed for determining
the four-bar linkage with the defined three conditions concerning the position of
coupler point and three conditions concerning the velocity components of this
point. The method description is based on the linear algebraic equations and, not
earlier than in the last step, it is required to apply a numerical technique in order to
find the approximate solutions.



Kinematic synthesis of the mechanism for static balancing of an input torque in three . . . 591

The presented approach, in particular, has the following advantages:
• A new problem of discrete position balancing of linkages is considered

and the solution method is worked out for the balancing system composed
of the four-bar linkage and spring. The method works for three prescribed
positions. After slight modification, the method can be applied to balance
both a torque and input force acting on any member of the system.

• Kinematic inversion provided the simpler form of the equations for radial
component of the spring-coupler point. There is no derivative term resulting
from the motion direction change of ED (rotary lifting motion) in the four-bar
linkage.

• The set of virtual solutions is obtained from which the user may select those
satisfying the additional constraints. Double step approach allows one to
determine the sets of solutions that can be processed in terms of different
constraints.

• A solution defines the initial mechanism position, which reduces the num-
ber of designed variables. By means of six angles: 𝜒 = {𝛾2, 𝛽2, 𝜆2, 𝛾3,
𝛽3, 𝜆3} the four-bar linkage and the coordinates of ground point E were
described. Hence, the number of variables needed for recording the solu-
tion is minimized and it is 6 instead of 8. Algorithm 6DV2S_II presents
the procedure of determining, firstly: x, a, r, y, c, R, and secondly, the six
dimensions: 𝑎, 𝑏, 𝑐, 𝑑, 𝑟, 𝑥𝐸 and two angles: 𝜙 and 𝛿. Angles 𝜒 together
with {𝛾1, 𝛽1, 𝜆1} = {0, 0, 0} define, at the same time, unequivocally the three
equilibrium positions.

One can indicate some drawbacks of the developed approach. Searching in
a large set with the high density may be time-consuming. The limitation of the
number of design variables sometimes may lead to unacceptable results. On the
other hand, it is possible to apply an evolutionary algorithm in order to improve
the solutions or to apply this algorithm directly as a method of determining the
design variables. Notwithstanding the minor errors of the kinematic synthesis,
there may be a high torque gradient at a equilibrium position. The problems of
the solutions sensitivity to errors related to the imperfections of manufacturing
(dimension deviations) and assembly as well as joint clearance require a separate
and comprehensive research field supported with a plenty of analyses.

A. Appendix

Fig. A1 shows the geometrical construction of the first equilibrium position of
the mechanism for case I.1.A. As shown in Fig. 5, complex numbers a, c, R, r, x
and y computed by the algorithm represent the vectors. As a result the mechanism
presented in Fig. 8 is obtained.
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Fig. A1. The construction of the mechanism in the first equilibrium position (case I.1.A)
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