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COMPARISON OF THE THEORETICAL LOAD CARRYING CAPACITY
WITH THE EXPERIMENTAL DATA FOR SOME THIN-WALLED
PLATES AND BEAMS WITH INTERMEDIATE STIFFENERS

In the present paper, an analysis of lower bound estimation of the load carrying
capacity of structures with intermediate stiffeners is undertaken. Thin-walled
structures with intermediate stiffeners in the clastic range, being under axial
compression and a bending moment, are examined on the basis of the Byskov and
Hutchinson's method [4] and the co-operation between all the walls of the
considered structures is shown. The structures are assumed to be simply supported
at the ends. The study is based on the numerical method of the transition matrix
using Godunov’s orthogonalization [2]. Instead of the finite strip method, the exact
transition matrix method is used in this case. In the presented method for lower
bound estimation of the load carrying capacity of structures, it is postulated that the
reduced local critical load should be determined taking into account the global
pre-critical bending within the first order non-linear approximation to the theory of
the interactive buckling of the structure. The results are compared to those obtained
from the design code and the data reported by other authors.

The present paper is a continuation of papers [9], [11], [19], where the interactive
buckling of thin-walled beam-columns with central intermediate stiffeners in the
first and the second order approximation was considered.

The most important advantage of this method is that it cnables us to describe a
complete range of behaviour of thin-walled structures from all global (flexural.
flexural-torsional, lateral, distortional and their combinations) to local stability. In
the solution obtained, the effects of interaction of modes, the transformation of
buckling modes with an increase in load, the shear lag phenomenon and also the
effect of cross-sectional distortions arc included.
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cross-section area and the effective part of the cross-section
area A, respectively,

coefficients in non-linear equilibrium equations (4) [4],
[15],

plate width and the effective part of the plate, respectively,
width of the i-th wall of the structure,

Young’s modulus,

design strength (for this application f;=R.),

cross-section radius of gyration,

minimum allowable moment of inertia (adequate moment)
with respect to the axis going through the middle surface of
the element to be stiffened — BS 5950 Part 5,

actual moment of inertia of the full stiffener with respect to
the axis going through the middle surface of the element to
be stiffened — BS 5950 Part 5,

number of the interacting mode,

number of the mode,

length of the structure,

calculational length of the beam,

theoretical and experimental critical moment, respectively,
theoretical and experimental limit moment, respectively,

limit moment according to BS 5950 Part 5,

bending moment resultants for the i-th wall,

ultimate moment capacity,

yield moment,

force field,

in-plane force resultants for the i-th wall,

theoretical and experimental critical force, respectively,
load carrying capacity according to BS 5950 Part 5,
yield load,

reduced critical force,

theoretical and experimental load carrying capacity,
respectively,

reduced load carrying capacity,

ultimate load capacity.

conventional yield limit,

slenderness and relative slenderness, respectively,
thickness of the plate,

thickness of the i-th wall of the structure,
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Ui, Vi, Wi — displacement components of the middle surface of the i-th
wall,

U — displacement field,

Z — the section modulus of the cross section,

Z. — effective section modulus for the whole section,

TNk — coefficient of the reduced rigidity corresponding to the
K-th uncoupled local buckling mode,

Kix » Kiy , Kixy — curvature modifications and torsions of the middle surface

of the i1-th wall,

) — ratio of the stiffener cross-section area to the web wall
cross-section area,

€ix, &y, Eixy — strain tensor components of the middle surface of the i-th

wall,

i
|

amplitude buckling mode number j,

imperfection amplitude corresponding to G,

|

— scalar load parameter,

B
I

value of A at the bifurcation mode number j,

7
|

maximum value of A for the imperfect structure,

- — reduced critical value of the local buckling mode,

u — coefficient of fixing,

Y — Poisson's ratio,

o =0 103/E — dimensionless critical stress of the j-th mode,

o — compressive stress,

o — critical stress of the element,

o — stress at the ultimate load,

O, @ — local and global instability coefficient, respectively.

1. Introduction

Analysis of buckling of conservative systems belongs to the main problems
that have been studied in mechanical sciences for a number of years. The
comprehensive reviews of the literature concerning buckling can by found in
[13], [15].

Local buckling is the major feature to be taken into account in the design of
thin-walled sections. Thin-walled structures, especially plates, columns and
beams, may have many buckling modes and are able to sustain load after local
buckling. The local buckles cause reduction in the stiffness of a section and,
consequently, lower the load carrying capacity relative to a non-locally buckled
section. The determination of their load carrying capacity requires consideration
of the modal interaction of buckling modes and imperfections in the non-linear
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analysis of stability. The problem of the interaction of the global mode with the
local ones is of great significance. The concept of interactive buckling involves
the general asymptotic non-linear theory of stability. The theory is based on
asymptotic expansions of the post-buckling path and is capable of considering
simultaneous or nearly simultaneous buckling modes [4], [15].

The introduction of central intermediate stiffeners increases the flexural
rigidity of plate elements and, consequently, also the local critical stress values.
The global critical stress values for the analysed type of intermediate stiffeners
remain virtually unchanged because of small variations in the moment of inertia
of the cross-section.

Structures reinforced with intermediate stiffeners may show two local
minima for two different local buckling modes. The first minimum refers to the
smaller number of half-waves (local distortional mode) and the second one — to
the greater number of half-waves (local symmetric mode and local
antisymmetric mode) as compared with the structure without reinforcement. In
particular cases, the values of these minima for local buckling modes can be
almost equal.

Special attention should be paid to the fact that critical stress values referring
to the second minimum are nearly equal for both local modes. The theory
presented here enables us to carry out an analysis of all buckling modes for
intermediate stiffeners of different shapes and flexural rigidities. This can help
in their rational designing (for a more detailed analysis, see [9], [11], [19]).

In this paper, the solution has been obtained by Koiter’s asymptotic method
in the second order approximation. The determined post-buckling coefficients
allow one to find the flexural rigidity after local buckling without using
hypotheses on the effective width of plates under eccentric compression. Simple
analytical dependencies between the above mentioned coefficients and the
characteristics of the post-buckling equilibrium path are used [16].

In many scientific centres, intensive theoretical and experimental
investigations devoted to buckling of structures with boundary reinforcements,
intermediate stiffeners and the so-called mesostructures and aimed at a
comparison of these investigation results with standards in force are conducted.
Main problems, as far as theoretical issues are concerned, consist in a proper
description of all possible global and local buckling modes, as well as in a
presentation of analytical relations in a coherent form that is convenient for
application in standards. The authors of the present paper do not know any
works by other authors in which all buckling modes of thin-walled structures
with intermediate stiffeners have been described correctly. This paper belongs
to a series of publications by the authors aimed at this purpose.

2. Structural problem

The long thin-walled prismatic structures of the length L, composed of plane,
rectangular plate segments interconnected along longitudinal edges, simply
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supported at both ends, are considered. A plate model is adopted for the
structures with intermediate stiffeners. For the i-th plate component, precise
geometrical relationships are assumed in order to allow for the consideration of
both out-of-plane and in-plane bending of each plate [11]:

Eix =ix +3 (W, +v,),

_ Loy 2 )
&y =Viy +3(wi, +ui)), (H
2€ixy = Yixy = Uiy + Vix + WixWiy,

Kix =—Winxx, Ky =—Wiy, Kixy="Wixy.

The differential equilibrium equations resulting from the virtual work
principle and corresponding to expressions (1) for the i-th plate can be written
as follows:

Nix.x + Nixy_y + (Niyui_y )4)' =0
Ni,\y,x Ex Niy.y + (Nix Vi.x ).x = O,

(le Wi x ) + (Niywi.y ) ity (le_v Wi x ).y + (Nixywi.y )\ + Mix.xx + Mi)/_yy I 2M|,\y.>;)'

b .y
(2)

The solution of these equations for each plate should satisfy kinematic and
static continuity conditions at the junctions of adjacent plates and the boundary
conditions referring to the free support of the structure at its both ends, 1.e. x=0
and x=L.

The non-linear problem is solved by the Byskov and Hutchinson’s
asymptotic method [4]. The displacement fields, U, and the sectional force
fields, N, are expanded in power series in the buckling mode amplitudes, {;
(&; is the amplitude of the j-th buckling mode divided by the thickness of the
first component plate, t):

U= Xﬁfo) + gi[—ji(j) + ngk [_Ji(‘ik) s
N = KN;O) + (_}.iﬁi(j) + C_iCk Ni(’ik) + ...

(0)
i

U% N and the post-buckling fields — UU*) N The range of indices is
[1,J], where J is the number of interacting modes.

By substituting expansion (3) into equations of equilibrium (2), the junction
conditions and the boundary conditions, the boundary value problems of the
zero, first and second order can be obtained. The zero approximation describes
the pre-buckling state, while the first approximation, that is the linear problem
of stability, enables us to determine critical loads of the global and local value
and their buckling modes. The second order boundary problem describes the
post-buckling equilibrium path. For a more detailed analysis, see [11].

(3)

where the pre-buckling fields are U N the buckling mode fields are

=0.
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At the point where the load parameter A reaches its maximum value A,
(secondary bifurcation or limit point) for the imperfect structure with regard to
the imperfection of the buckling mode with the amplitude ;. the Jacobian of

the non-linear system of equations [4], [ 1], [15]:

A
ar(]_X_)cr '*'a_ier_iCk +b_iklr§i€k§l +... Zil[-%g at r=1,2,.....] J (4)

is equal to zero.

The index “r” is: | — for the global bulking mode; 2..J] — for the local
buckling modes.

The corresponding expression for the total elastic potential energy of the
structures has the following form:

IT=—-a,A2/2+a, (] — A )érz /24 a,ierjCkCr /3+ b_iklrc_igkgt_,r [4— 21,~C,—C}::7\,/>ur
(5)

where: A — load parameter, A, — critical value of A, [1, =a,A2/2 — energy
of the pre-buckling state.

Expressions for a,, a, aj, by, are calculated by known formulae [4], [11],
[15], [16]. The formulae for the postbuckling coefficients ajy depend only on

the buckling modes, whereas the coefficients by also depend on the second
order field.

Consideration of displacements and load components in the middle surface
of the walls within the first order approximation, as well as more precise
geometrical relationships made it possible to analyse the shear-lag phenomenon,
the distortions of cross-sections and all possible buckling modes including a
mixed buckling mode (e.g. flexural-distorsional or local-distorsional one — for
a more detailed analysis, see [5], [7], [111, [12], [14]).

The calculations have confirmed that in the case when the value of the global
critical load exceeds the value of the local critical load, it is possible to reach
the limit load capacity higher than the minimum value of the local critical load
for a moderately low value of the imperfection.

Taking into account the second order approximation enables us to determine
the limit load capacity of the structure in an elastic range. An assumption of one
of the engineering” hypotheses of the load carrying capacity allows for
determination of the limit load for an elastic-plastic range [10], [16].

The relation between the post-buckling and unbending pre-buckling stiffness
of imperfect structures defines a coefficient of the reduced rigidity
corresponding to the K-th uncoupled local buckling, i.e. the single-mode local
buckling [11], [16]:

do

|
Nk = I:] +M(O.5§K +CK ):| at K=2,.] (6)
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In a special case of ideal structures (i =0) and of the symmetrical
characteristics relative of the deflections for the uncoupled local buckling mode
(akkk =0):

N -1
N = limase Nk :[1 +‘—K} (7)
2a,bkkkk
In the presented method for lower bound estimation of the load carrying
capacity, it is postulated that the reduced local critical load Ar should be
determined taking into account the global pre-critical bending ({; #0) within
the first order non-linear approximation to the theory of the interactive buckling
of the structure. In order to find lower bound estimation of the load carrying
capacity of thin-walled structures, the following assumptions, identical as in
paper [17], have been made:
e an interaction of only two modes of the global and local buckling within the
first order approximation has been taken into account, i.e. J=2;
e the local buckling precedes the global buckling, i.e. A, >, (o} <0G3%);
e local imperfections are absent, i.e. £3=0.
If we take into account the above-mentioned assumptions, Eq. (4) leads to
the following set of algebraic equations of equilibrium:
a) (1 A/ A )Q( +’dlzz§% = dlcll/kl
a (] —A A )Cz +2a120,8, =0
All coefficients with j, k, r > | are equal to zero and non-zero coefficients are
only those that have one index equal to | and an even sum of (j+k). If we
introduce the following notation:

(8)

A |
V= ——1|—, 9)
A Gi
the second equation (8B) can be written in the form of an eigenvalue problem:
(zalzz_ﬁ)gzzo, (10)
a

In the pre-buckling state, the single solution to Eq. (10) is a trivial solution
{,= 0 and only the overall deflection develops according to Eq. (8A):
A
G=ti— (1
The coupled (interactive) buckling with simultaneous overall and local
deflections becomes possible when there appears a non-zero solution £, #0 to
the set of Egs. (10). Note that the sign of 0=2a,,,/a, determines the direction of
the overall deflection according to the condition ©,;<0.
The eigenvector from Eq. (10) has been determined with accuracy up to the
constant C and it has been normalised with the condition [(£9)2]2 =1. Hence,

eq. (8A) can be written in the form:
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g & . K Ay oA
C _a|zz(§8)2|:gl KI+(1 3 ](1 Mjﬁ] (12)

As the initial post-buckling path for the first order approximation always
falls, the maximal value A=Ay corresponds to the value C=0 (the point of
intersection of the pre-buckling path (11) and the initial post-buckling path (9)).
Then, Eq. (12) assumes the following form:

,7\-R 7\4R 7\4R ]
AR AR 2R o,
[Q’ n +(1 h I " )6} 0 =g

The maximum load value Ar determined from Eq. (13) is smaller than the
critical value of the local buckling A,. The load Ar can be interpreted as an
effect of the load corresponding to the global buckling ({; #0,, #0) on the

critical value of the local load (,, #0 ). Thus, the critical load corresponding to
Ar can be called the reduced critical load value of the local buckling. For the
load Agr<A<A,, the coefficient of reduced rigidity (specified by relation (6)) is
equal to My=nk=1. Hence, it is postulated that A should substitute A,=Ax in eqs.
(6) and (7). A further procedure to determine lower bound estimation of the load
carrying capacity is analogous as in [10], [16]. This load carrying capacity can
be determined on the basis of an appropriate strength (effort) criterion. The
following criterion for stiffened constructions is assumed: “plastic stresses are
reached in the elements for the limit load higher than the critical load”. More
detailed analysis see p. 4. of the present paper.

3. Design code recommendations

3.1. Calculation according to the Winter’s formula

The Winter’s formula is commonly used in design procedures to determine
an estimate of the ultimate load carrying capacity of plates under compression
(e.g. [1], [6]). In its usual form it is expressed as:

be $<0,673

b
be 1
=2 = (5—0,22) $>0,673 (14)
b s2

R. )
where: s = [— - relative slenderness.
GC]'

The reduction made on the basis of the local mode is based on the Winter’s
rule, which is used instead of one plate to the whole cross-section. In this
method, the supporting influence of other plates is taken into account, and the
whole cross-section of the profile is reduced. This is equivalent to:
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AC GCI' cr u
= o ey, (B | H (15)
A RC Rc RL‘

The axial ultimate load capacity is expressed as:

Pi=R.A. (16)
If a similar approach is applied to members under flexure, then, by a direct
analogy with (15), the effective section modulus (Z.) is calculated as:

L - % |1-0,22, % (17)
z \R. Re

leading thus to the ultimate moment capacity:

M,=R.Z. (18)
In (17), the effective section modulus Z. does not represent effective widths of
individual elements.

In the proposed method, the design yield stress depends on the yield stress
reduced by the global mode. The aim of this is to avoid decreasing the effective
yield stress caused by high material strength, if it is not utilized because of the
global mode.

3.2. Calculation according to the Polish Code PN-90/B-03200 [18]

In the post-buckling state for each wall that forms the cross-section under
analysis, the effective width be =@,b is determined. The value of the

instability coefficient ¢, and @, is determined from the table [18] for the
calculated wall slenderness:

_ b K [fy
By =i s (19
"t s6V21s )
where K — wall support and load coefficient.
In the critical state for the wall under axial compression we have:

O

Ppfa
where: 0, — highest compressive stress in the wall under consideration.

For the obtained effective widths, the effective area A.<A 1s determined in
the case of axial compression, whereas in the case of pure bending — the
effective factor of strength W.<W. In the case of eccentric compression, the area
A. determined as under uniform compression can be assumed, and the factor W,
— determined as under pure bending conditions. Additionally, an increment in
the loading moment resulting from a change in the position of the centroid of
the effective cross-section should be accounted for.

The value of the reduction coefficient of the cross-section calculational load

=4 (20)

carrying capacity W is equal to:
a) critical state: y=@,;
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b) post-critical state: y=\y.;
We

: . A .
For axial compression: ¥, = —Ai whereas for pure bending: V. =

In the case of intermediate stiffeners, it should be assumed that their moment
of inertia with respect to the web symmetry axis equals: I, > kbt3 (stiffness

condition), where the coefficient k = 3% /%6 ,but k > 0,7%\/% and L>b.

In the post-buckling state, additionally the stiffener load carrying capacity
should be checked. The stiffener should be treated as a freely supported beam
loaded with the force whose value is equal to 2% of the compressive force in the
wall.

The total effective areais: A. = A, + Zbet , where A, — stiffener area.
The beam slenderness should satisfy the condition s<250.
The compression capacity is:
Nre = WALy (21)
if the yield phenomenon precedes the stability loss, then the coefficient y=1.

. _ — S
The beam relative slenderness under buckling is equal to: s =—, where the
g
Sp

. : f215 _ ul
comparative slenderness is s, =84 5 and the beam slenderness is s ="
d

1

For the determined beam relative slenderness s, the coefficient ¢ is read
from the table [18].
The design buckling resistance:

N= (PNRC . (22)
In the case of pure bending, the limit moment is equal to:
MR = \PWfd . (23)

For the given value of the relative slenderness under lateral buckling

s. =115 -M—R the lateral buckling coefficient @ is taken from the table ([18]),

cr
and then the calculational moment is determined:
M= (PLMR : (24)

3.3. Calculation according to BS 5950 Part 5 [3]

The effects of local bucking should be taken into account in determination of
the design strength and stiffness of cold-formed members. This may be
accomplished using effective cross-sectional properties, which are calculated on
the basis of the widths of individual elements. The ratio of the effective width b,
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to the full width b of an element under compression may be determined from the
following expression:

for (b/h)<60 and (0c/0.,)<0,123 - (b./b)=1,

for (b/h)<60 and (6¢/6.,)>0,123 - (be /b) =[1+14(yJo. /0 —0,35)4]02  (25)
where the width to thickness ratio exceeds 60, the effective design width of the
sub-element should be reduced according to the following formula:
(ber /t) =be /b=0,1(b/t—=60).

To compute the effective properties of a member having compression
sub-elements subject to the above reductions in the effective width, the area of
stiffeners, Ay, should be considered to be reduced to the effective area, A.y, as
follows:

for (b/h)<60 to A=A,

for 60<(b/h)<90 — Acir = Ay g_gle L[} De )b , (26)
b 30 b /h

for (b/h)>90 - A.=Aq(be/b).

In the above expressions A and A, refer only to the area of the stiffener alone,
irrespective of any portion of adjacent elements.

The centroid of the stiffener should be considered to be located at the
centroid of the full area of the stiffener, and the moment of inertia of the
stiffener about its own centroidal axis should be taken as that of the full section
of the stiffener.

The axial ultimate load capacity is expressed as follows:

P=R.A. (27)

This equation is only suitable for columns with very small values of the
slenderness ratio (i.e. the ratio of the column length to the cross-section radius
of gyration, L/r < 20), sometimes referred to as 'stub columns'. At low L/r ratios,
P. tends to the squash load (P.) value, and to evaluate the interaction of
buckling and yield for larger L/r ratios, the Perry-Robertson approach provided
in the design code is used.

The buckling resistance is as follows:

p. = 0,5{[& +(1+M)P: |- \/[PCS +(1+M)P:|* —4P.P: } (28)

where: P - squash load (P.= P. for short columns); Py — elastic flexural
buckling load; m - Perry coefficient [3].

If a similar approach is applied to members under flexure, the effective
section modulus (Z.) is calculated [3]. The ultimate moment capacity is
expressed as:

M,=R.Z.. (29)
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4. Comparison of the theoretical load carrying capacity with
the experimental data and design methods

In the general case, the load carrying capacity can be determined on the basis
of the appropriate strength (effort) criterion. At this point of the present work,
the following criterion of the limit load carrying capacity for stiffened
constructions is assumed: "plastic stresses are reached in the elements for the
limit load higher than the critical load".

4.1. Thin-walled plates with central intermediate stiffeners

Compressed rectangular plates with central intermediate V-stiffeners have
been analysed in detail. The dimensions of the plates under analysis, with the
length L and freely supported along the whole perimeter (Fig. 1), are the same
as in [8].

A comparison of the results obtained on the basis of the presented theory
with the experimental results shown in [8] has been made.

Fig. 1. Cross-section of the plate with a central intermediate stiffener

In Table 1, the dimensions of the plates under analysis and the mean values
of the yield limit R, are collected. The following values of the Young's modulus
and the Poisson's ratio have been assumed: E=205 GPa and v=0,3, respectively.

The results calculated by different methods are gathered in Table 2. The
theoretical Pr and experimental values Pyr of the limit loads corresponding to
Ar for {;=L/1000t are compared to the results calculated in two other
manners. The codes used were the British code BS 5950 Part 5 [3] and the
method based on the Winter’s formula. In Table 1, the results of calculations
carried out according to the Polish code PN-90/B-03200 have not been included,
as the plates under analysis do not fulfil the requirements imposed by this code
as regards slenderness that has to be higher than 250.
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Table 1.
Dimensions of the plates with a central intermediate stiffener [8]

No. Spec. no. R, L w bs Bp d t B
[MPa] [mm] | [mm] | [mm] [ [mm] [mm] [mm)] [mm]
1. SP1/0.4 949 | 80,75 5,5 7.5 2,94 0.405 169,0
2. SP2/0.4 270.0 950 | 79,30 6,0 8,5 5,68 0,404 167,1
3, SP3/0.4 ' 950 | 78,20 6,0 8,0 10,50 0,418 1644
4. SP4/0.4 950 | 79,75 6,0 8,5 12,54 0,419 168,0
5. SP1/0.57 950 | 79,50 3.5 8,5 3,43 0,570 167,5
6. SP2/0.57 950 | 80,15 6,0 8,2 5,21 0,569 168,5
T SP3/0.57 3145 952 | 80,10 6,8 6,8 6,23 0,567 167,0
8. SP4/0.57 950 | 80,50 6,5 7,0 9,30 0,567 168.0
9, SP5/0.57 950 | 80,65 6,2 8,0 12,26 0,568 1693
10. SP1/0.63 948 | 78,25 55 9,5 3,10 0,634 166.0
1. SP2/0.63 948 | 78,75 7,0 8,0 6,07 0,630 165.5
12 SP3/0.63 270,0 948 | 79.30 7,0 7.0 9,10 0,635 165,6
18 SP4/0.63 948 | 80,00 7.0 7.0 12,15 0,636 167,0
14. SP5/0.63 948 | 78,35 6,5 11,5 | 23,50 0,630 168.,0
15. SP1/0.81 948 | 78,65 6,5 10,0 2,90 0,814 167,3
16. SP2/0.81 948 | 78,70 7,0 7,0 5.92 0,796 164,4
17. SP3/0.81 3430 948 80,05 7,0 7,0 8,90 0,809 167,1
18. SP4/0.81 948 | 81,50 7,0 7,0 11,50 0,838 170,0
19. SP5/0.81 948 81,50 7,0 7,0 25,20 0,792 170,0
20. SP1A/0.8] 947 | 79,50 6,5 10,0 3,25 0,814 169.0
21. SP2A/0.81 947 | 81,00 7.0 7,0 6,15 0,819 169,0
22. SP3A/0.81 3430 948 | 80,50 7,0 7.0 9.67 0,818 168,0
23, SP4A/0.81 948 81,25 7.0 7.0 12,67 0,800 169,5
24, SP5A/0.81 948 81,85 75 7.6 25,63 0,778 171,3
25. SP6A/0.81 949 | 82,60 %) 7,5 25,30 0,815 172,7
26. SP1/1.2 948 | 78,75 6.5 10,0 5,23 1,170 167,5
27 SP2/1.2 948 | 78,85 7,0 7,0 8,92 1,170 164,7
28. SP3/1.2 262,0 948 80,75 7.5 7.5 9,47 1.198 169,0
29. SP4/1.2 948 81,25 7.3 7.5 12,58 1,198 170.0
30. SP5/1.2 948 81,50 7,5 7.8 25,25 1,198 170,5
31. SP1/1.6 948 | 81,10 7.5 7,5 4,35 1.585 169,7
32. SP2/1.6 948 | 78,45 7,6 7,0 9,34 1,601 164,5
33 SP3/1.6 181,5 948 | 78,95 7,6 7,6 11,80 1,608 165.5
34, SP4/1.6 948 | 78,35 8,0 8,0 16,48 1,603 164,7
35. SP5/1.6 947 82,05 7.9 7.9 25,00 1,600 172,0
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Table 2.
Comparison of the ultimate load of the plates according to different methods
Test results Theory results | Code BS5950 Winter’s
No. Spec. no. P: [8) Pur Per (3] formula
[N] [N] (N] [N]
1. SP1/0.4 3694 3077 — 4256
2. SP2/0.4 4637 1703 — 5282
3. SP3/0.4 6595 2017 3787 5995
4. SP4/0.4 7850 2017 3767 6147
5. SP1/0.57 12816 4927 — 10899
0. SP2/0.57 7521 4415 — 10110
7. SP3/0.57 9634 7480 — 11340
8. SP4/0.57 9456 4708 6917 11717
9. SP5/0.57 12327 4800 7015 9023
10. SP1/0.63 8455 4817 — 11239
I SP2/0.63 10680 9138 — 11834
12. SP3/0.63 132061 6727 9492 12988
13. SP4/0.63 17222 6980 11621 13536
14. SP5/0.63 20470 7609 13634 14982
15 SP1/0.81 14182 7850 — 15032
10. SP2/0.81 16243 14220 — 19141
17. SP3/0.81 21360 13750 — 23393
18. SP4/0.81 28035 15310 17622 25643
19. SP5/0.81 35244 14620 23920 26300
20. SPIA/0.81 14997 8517 — 15712
2. SP2A/0.81 18957 15130 — 20182
22, SP3A/0.81 22784 14230 16379 24066
23. SP4A/0.81 28258 13560 18356 23820
24. SP5A/0.81 31239 13940 22816 25653
25, SP6A/0.81 37825 15650 20050 27746
26. SP11.2 31150 22800 — 28824
27. SP2/1.2 38493 34530 — 34888
28. SP3/1.2 42275 37630 — 37291
29. SP4/1.2 46814 44520 S1414 -53332
30. SP5/1.2 56293 50300 56925 47954
3il. SP1/1.6 33375 34660 — 34149
32. SP2/1.6 45835 — 47877 —
33. SP3/1.6 53400 — 55266 —
34. SP4/1.6 56960 — 57408 —
35 SP5/1.6 70310 — 70915 —

In the case of the plates with stiffeners characterised by low flexural rigidity,
the minimum values of the critical loads have been obtained for the local
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distortional mode, whereas for stiffeners characterised by high rigidity — for
the local antisymmetric mode [9], [19]. It follows from the intermediate stiffener
rigidity. If the rigidity of the stiffener is too low, the plate is not reinforced
enough, and a stability loss in the plate and in the intermediate stiffener occurs
at significantly lower stresses.

In the analysis of the elastic post-buckling state, only approximated
estimation of the load carrying capacity can be obtained on the basis of the
simplified failure criterion.

At this point of the present work, the following criterion of the limit load
carrying capacity P, for stiffened plates is assumed: "plastic stresses are reached
in the plate for the limit load higher than the critical load P,".

In order to determine maximum stresses occurring in the plate after its local
buckling, owing to the fact that the investigated plates were compressed, only
the cross-section areas have been reduced.

Figure 2 presents the ratios of the theoretical and experimental values of
loads P,/ P, whereas Fig. 3 - the ratio of the theoretical and standard (obtained
according to BS 5950 Part 5) values of P&/ P as a function of 17 -

Lower values of the load carrying capacities Pyr than the experimental
values P [8] have been obtained for all the cases investigated. Only in one
case, the value of the failure limit load was a little lower than the theoretical
value (case 31). In four cases (32-35) the values of local critical stresses are
higher than the yield limit, and the buckling for these cases occurs in the
elasto-plastic range. Here an approach suggested in, e.g., papers [12], [14] can
by adopted.

In paper [16], a very significant influence of local imperfections upon the
post-buckling limit load, which has been neglected in the present study, has
been shown.
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Fig. 2. Ratio of the theoretical and experimental values of Pur /Pe as a function of g/ Ladeq
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Fig. 4. Comparison of the ultimate load of the plates according to the Winter’s rule

Local buckling modes corresponding to the lowest values of the critical loads
predict correctly the type of failure mechanisms in stiffened plates under

compression.

The nondimensionalized ultimate load (P/P,) or stress (6,/R.) as a function
of the dimensionless slenderness «/R./G. has been plotted in Fig. 4. The
experimental and theoretical values indicate a good agreement with the Winter’s
formula.
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4.2. Thin-walled beams with intermediate stiffeners

Next, the results of the presented theory have been compared with the
experimental results obtained for beams with intermediate stiffeners under pure
bending (Fig. 6a) [8]. Geometry of the cross-sections is shown in Fig. 6b and
Table 3.

a) X

Fig. 6. Thin-walled beam under pure bending and cross-section of the beams with a central
intermediate stiffener

A detailed comparison of the theoretical analysis results within the first order
approximation and the experimental results has been included in [10].

At this point of the paper, the following criterion has been adopted for the
load carrying capacity, Mg:

e in a plate under tension, the yield stress is attained at a limit load value
higher than the critical moment M. In a compressed plate, elastic strains
are present;

e in a compressed plate, the yield stress is attained at a limit load value lower
than the critical moment, M. In this case we are dealing with the
pre-buckling bending.

Such a criterion takes into account the post-buckling of plates under
compression or a lack of this buckling in the pre-buckling state in perfect
structures; it considers also a relevant mechanism of failure by means of
yielding in the plate being compressed.
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Table 3.
Dimensions of the channel beams with a central intermediate stiffener [8]
No. | Spec. R. L w bs bsp B B by t
[MPa] | [mm] [mm] | [mm)] [mm)] [mm] [mm] | [mm] [mm]
1. | LCO | 2145 1060 76,95 0,0 0,0 0,0 78.5 15,0 1,570
2. A0 76.60 0,0 0,0 0,00 77.1 15,1 0410
3. Al 71.50 5.2 11,2 4,20 76.4 173 0.405
4. A2 275.0 1060 73.10 6.5 8.1 5.56 77.4 17.5 0410
3. A3 7355 6.6 =l 9.00 76.8 16.6 0.410
6. A4 73.65 6.8 7,2 11,80 76,9 18.0 0415
T AS 73535 06,6 8,0 18,20 76,9 17,1 0,405
Bl 70,55 4,7 13.2 6,00 76,9 17.6 0,682
: B2 3740 1060 12,70 6.5 8.8 5.60 76.7 17,4 0.691
10. B3 73,10 6.5 7,8 7,10 77,1 18.5 0.698
11. B4 73,20 6,7 8,0 10,70 770 18,9 0,695
12. C0 76,90 0,0 0,0 0,00 77,4 153 0,818
13 Cl 70.75 4.5 12,7 565 77,0 17,2 0.818
14. C2 285.0 1060 72,65 5.7 95 5.45 76,7 17.7 0,821
1 3 73,85 6.9 7.3 8.70 774 17,1 0.814
16. C4 73,60 1,0 7.4 11,70 77.0 18,5 0,815
17. C5 7335 6.9 7,6 18.20 T 59 18,2 0,810
18. DI 71,25 5,5 9,5 4,55 76,5 16,2 0.759
19. D2 147 4 1060 72,50 6.5 8,0 8.95 76.4 23,3 0,761
20. 3 1215 6,2 8,2 11,35 76,2 16,8 0,762
2 D4 72.40 06,2 8,2 15,10 76,9 20 0.763
22, El 71,65 7.0 11.0 4.85 76,3 17.0 1,213
23. E2 72,30 7,0 10,0 5.10 77,8 17,0 1,207
24, E3 176.5 1060 73,55 740 7.0 8.20 79.0 18.0 1,267
25. E4 73.20 7.0 8.1 9,00 77,2 14,5 1,200
26. ES 73,80 Bl Tal 12.00 76,7 17,0 1,209
27 E6 73,50 7.5 T 18,80 78,7 17,5 1,202
28. Fl 70,25 5.2 13,0 5,10 76,0 177 1,519
29. F2 70,90 5.5 12,0 6,00 5.5 17,8 1,528
30. F3 214.,5 1060 71.75 6,2 10,0 9.70 6.3 17,0 1.528
3., F4 71,50 6.5 10.5 1255 76.3 18,5 1,514
32. F5 71,63 7.0 9,75 18.25 77.6 18.5 1,525

However, in order to determine maximum stresses in the plate after the local
buckling of the beam, one must find not only the reduced flexural stiffness but
also the position of the effective stiffness centre of the cross-section.

The above-mentioned thin-walled beams are considered as calculation
examples. Generally speaking, one has to find the effective width of a plate
under compression and of webs subject to bending. In this paper, only the width
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of a compressed flange is reduced so as to obtain an actual decrease in flexural
stiffness of the cross-section after buckling. The effective width of the
compressed plate is derived from the condition saying that the moment of inertia
of the effective cross-section corresponds to the expression for the coefficient of
reduced flexural stiffness, 1 (6).

Table. 4.
Comparison of the ultimate moment of the channel beams according to different method

No. | Spec. no. | Testresults | Theory results | Code BS5950 Code Winter’s

Me [8] Mg Mer [3] PN-90/B-03200 formula
[Nm] [Nm] [Nm] (Nm) [Nm]
I LCO 32231 2257 — 1699,0 27164
2z A0 339,0 575,1 — 5220 335,1
3. Al 350.8 468.,0 e 546,6 3362
4. A2 3757 612,5 — 571.8 435.6
5. A3 349,6 5914 502,7 5545 4242
6. A4 3189 619,6 464,7 5825 444.6
s AS 306,4 587,6 440,7 553,5 521,0
8. Bl 1177.8 1126,9 — 12984 1255,7
9 B2 12500 1286,8 - 1310,6 1331,0
10 B3 1291.4 1443,0 — 1376,0 13777
11 B4 12733 14449 13727 1378,6 1374,6
12 Co 1232,7 1202.,8 — 1147,0 815,2
13 Cl 1395.0 1021.8 — 1211,5 1323.6
14. C2 1489,6 12297 — 12297 1164,5
15. 3 1463.0 1308.5 13739 1308,5 1687.2
16 C4 1380,2 1328,9 1262.5 1328.9 1543,1
17 €3 13772 13113 1245.7 13113 1517.6
18 DI 889.,2 840.,8 — 840,8 986,3
19 D2 1023,4 1044,7 1253.,6 10447 9348
20 D3 9242 913,5 1096.2 913,5 858,1
21 D4 8773 810.,8 1013,5 810,8 767,71
22. El 1909,0 1755,6 — 1755,6 1749 4
23 E2 1904.9 1802.9 —_ 1802,9 1802,9
24 E3 2045,1 1877,5 2065,3 1877.5 1877,5
25 E4 1930,8 1698,3 1953,1 1698,3 1698,3
26 ES 1980,8 1765,7 2030,6 1765,7 1765.7
27, EG6 1980,8 1836,7 2020,4 1836.7 1836,7
28. Fl 2712,1 2673.4 — 2673.4 2617,0
29, F2 29183 2671.6 — 2671.,6 2671,6
30. 3 29242 2679.7 — 2679,7 26797
31 F4 2687.6 25852 2714.5 2585.2 2585.2
32 F5 2829,5 27978 2937, 2797.8 27978
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The plate model that has been assumed in the calculations allows one to take
into account an influence of global imperfections on the values of reduced local
critical loads of the beams under compression, which is impossible in the case
the beam model is assumed. In papers [10], [16], a method for lower bound
estimation of the load carrying capacity has been discussed in detail. In [10],
higher values were obtained for the theoretical limit load carrying capacity than
for the experimental limit load carrying capacity. Hence, the second order
approximation provides a better estimation of the load carrying capacity of
beams under bending.

Table 4 includes a comparison of the results Mg and the experimental Mg
[8] values of the limit loads to the results calculated in three other manners. The
codes used were the Polish Code PN-90/B-03200 [18], the British Code
BS 5950 Part 5 [3] and the method based on the Winter’s formula. In all the
analysed cases, a good agreement is found between the presented lower bound
estimation of the load carrying capacity Mg and the experimental results M .

Figures 7 and 8 show the ratios of the theoretical and experimental values of
loads Mg /Mg and the ratio of the theoretical and standard (obtained according
to BS 5950, Part 5) values of Mg/ Mgr as a function of I/ Lideq-

The nondimensionalized ultimate moments (M/M,,)) or stresses (G,/R.) as a
function of the dimensionless slenderness /R. /0. have been plotted in Fig. 9.
The experimental and theoretical values indicate a good agreement with the
Winter’s formula. Figure 9 shows that the correlation of all the results becomes
better when the dimensionless slenderness becomes smaller. For higher
dimensionless slenderness, the theory and test results do not agree so well with
the Winter’s formula, although the agreement is still fair.
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Fig. 7. Ratio of the theoretical and experimental values of Mg / Mg as a function of Is/ Ladeq
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Fig. 9. Comparison of the ultimate moment of the channel beams according to the Winter’s rule

Figure 10 shows the comparisons between the theoretical ultimate moment
and those determined using the British Code BS 5950 Part 5, the Polish Code
PN-90/B-00320 and the method based on the Winter’s formula, respectively.
Figure 10 indicates that for the channel beams, the test results are in a fairly
reasonable agreement with the ultimate moment predictions of all three codes.
All specifications are similar in their approach to calculating the ultimate
moment capacity. The main differences between the specification results arise
from the application of the imperfection factor and the modulus of elasticity
values used in the calculations.
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Fig. 10. Comparison of the ultimate moment of the channel beams according to different methods
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5. Conclusions

The interactive buckling analysis of thin-walled structures with an
intermediate stiffener under axial compression or/and a constant bending
moment, carried out by means of the transition matrix method, has been
presented. All global and local modes are described by means of the plate
theory. The presented analysis provides correct lower bound estimation of the
load carrying capacity of thin-walled structures with intermediate stiffeners
under compression or bending and it predicts correctly failure mechanisms,
which is impossible if the beam model 1s assumed. A good agreement of the
theory presented here with the results of investigations carried out by other
authors and with numerous cases of standards in force has been obtained. The
next publication by the authors that is now being prepared to be printed, will be
devoted to significant differences occurring in some cases between the results of
the presented theory and standards. A comparison of the results obtained when
the effect of global bending on local buckling is taken into account allows one
to state that lower bound estimation of the load carrying capacity of beams
under bending produces lower values than those obtained for one-mode
buckling [10]. In [10] higher values of the theoretical load carrying capacity
than of the experimental ones have been obtained. Thus, the method being
proposed gives, in this case, more correct evaluation of the load carrying
capacity for the thin-walled structures under analysis. The presented method of
calculations allows for taking into account an effect of local pre-buckling and an
influence of local initial imperfections on the coefficient of reduced rigidity
[16].

In the case the global stresses exceed the minimum local stress, it is possible
to attain the load carrying capacity higher than the minimum local stress value
for sufficiently small imperfections.

Intermediate stiffeners are found to exert a strong influence on local buckling
modes.

Manuscript received by Editorial Board, October 24, 2000;
final version, December 05, 2000.
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Poréwnanie teoretycznych i eksperymentalnych obcigzen granicznych dla wybranych
dzwigarow i plyt cienkos$ciennych z zebrami

Streszczenie

W prezentowanej pracy wyznaczono leoretyczne wartosci nosnosci  graniczne] dla
cienkosciennych dzwigardow i plyt z centralnymi. wzdluznymi zebrami posrednimi obcigzonych
osiowa silg Sciskajaca 1 stalym momentem gnacym. Nieliniowe zagadnienic statecznosci
rozwigzano stosujac teori¢ Byskova i Hutchinsona [4] wykorzystujac w obliczeniach numeryczng
metod¢ macierzy przejscia. W prezentowanej metodzie oszacowania wspolezynnikow redukeji
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sztywnosci  wzdluznej postuluje si¢  wyznaczenic  zredukowanego lokalnego obcigzenia
krytycznego z uwzglednicniem globalnego dokrytycznego zginania w ramach pierwszego
nieliniowego rz¢du przyblizenia teorii interakcyjnego wyboczenia konstrukeji. Otrzymane wyniki
poréwnano z wynikami opublikowanymi przez innych autordw oraz z wartosciami obliczonymi
wg obowiazujacych norm.





