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COMPARISON OF THE THEORETICAL LOAD CARR YING CAPACITY 
WITH THE EXPERIMENT AL DAT A FOR SOME THIN-WALLED 
PLATES AND BEAMS WITH INTERMEDIATE STIFFENERS 

In the present paper, an analysis uf lower bound estimation of the load carrying 
capacity of structures with intermediate stiffeners is undertaken. Thin-walled 
structures with intermediate stiffeners in the elastic range, being under axial 
compression and a bending moment, are examined on the basis of the Byskov and 
Hutchinson's method [4] and the co-operation between all the walls of the 
considered structures is shown. The structures are assumed to be simply supported 
at the ends. The study is based on the numerical method 01· the transition matrix 
using Godunov's orthogonalization [2]. Instead of the finite strip method, the exact 
transition matrix method is used in this case. In the presented method for lower 
bound estimation uf the load carrying capacity of structures, it is postulated that the 
reduced local critical load should be determined taking into account the global 
pre-critical bending within the first order non-linear approximation to the theory of 
the interactive buckling of the structure. The results are compared to those obtained 
from the design code and the data reported by other authors. 
The present paper is a continuation of papers [9], [ 11], [ 19], where the interactive 

buckling of thin-walled beam-columns with central intermediate stiffeners in the 
first and the second order approximation was considered. 
The most important advantage of this method is that it enables us to describe a 

complete range of behaviour ot· thin-walled structures from all global (flexural. 
flexural-torsional, lateral, distortional and their combinations) to local stability. In 
the solution obtained, the effects of interaction of modes, the transformation of 
buckling modes with an increase in load, the shear lag phenomenon and also the 
effect of cross-sectional distortions arc included. 
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NOTATION 

Is 

J 
J 
L 

ME, ME 

MEF 

M1x, Miy, Mi,y 
Mu 
Mpl 

N 
Nix' Niy' Nixy 

Per, Per 

PEF 

P1 
PR 
Pu, PE 

cross-section area and the effective part of the cross-section 
area A, respectively, 
coefficients in non-linear equilibrium equations (4) [4], 
[ I 5], 
plate width and the effective part of the plate, respectively, 
width of the i-th wall of the structure, 
Young's modulus, 
design strength (for this application fc1=Re), 
cross-section radius of gyration, 
minimum allowable moment of inertia (adequate moment) 
with respect to the axis going through the middle surface of 
the element to be stiffened - BS 5950 Part 5, 
actual moment of inertia of the full stiffener with respect to 
the axis going through the middle surface of the element to 
be stiffened - BS 5950 Part 5, 
number of the interacting mode, 
number of the mode, 
length of the structure, 
calculational length of the beam, 
theoretical and experimental critical moment, respectively, 

theoretical and experimental limit moment, respectively, 
limit moment according to BS 5950 Part 5, 
bending moment resultants for the i-th wall, 
ultimate moment capacity, 
yield moment, 
force field, 
in-plane force resultants for the i-th wall, 

theoretical and experimental critical force, respectively, 
load carrying capacity according to BS 5950 Part 5, 
yield load, 
reduced critical force, 
theoretical and experimental load carrying capacity, 
respectively, 
reduced load carrying capacity, 
ultimate load capacity, 
conventional yield limit, 
slenderness and relative slenderness, respectively, 
thickness of the plate, 
thickness of the i-th wall of the structure, 
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u., Vi, w,

8 

As
AR 
µ 
V

crtr = <Jer I Q-1 /E -

cpp, cp 

displacement components of the middle surface of the i-th 
wall, 

displacement field, 
the section modulus of the cross section, 
effective section modulus for the whole section, 
coefficient of the reduced rigidity corresponding to the 

K-th uncoupled local buckling mode, 

curvature modifications and torsions of the middle surface 

of the i-th wall, 
ratio of the stiffener cross-section area to the web wall 
cross-section area, 

strain tensor components of the middle surface of the i-th 

wall, 

amplitude buckling mode number j, 

imperfection amplitude corresponding to Śi,
scalar load parameter, 

value of A at the bifurcation mode number j, 

maximum value of A for the imperfect structure, 

reduced critical value of the local buckling mode, 

coefficient of fixing, 
Poisson's ratio, 
dimensionless critical stress of the j-th mode, 

compressive stress, 
critical stress of the element, 
stress at the ultimate load, 
local and global instability coefficient, respectively. 

1. Introduction 

Analysis of buckling of conservative systems belongs to the main problems 
that have been studied in mechanical sciences for a number of years. The 
comprehensive reviews of the literature concerning buckling can by found in 
[13], [15]. 

Local buckling is the major feature to be taken into account in the design of 
thin-walled sections. Thin-walled structures, especially plates, columns and 
beams, may have many buckling modes and are able to sustain load after local 
buckling. The local buckles cause reduction in the stiffness of a section and, 
consequently, lower the load carrying capacity relative to a non-locally buckled 
section. The determination of their load carrying capacity requires consideration 
of the modal interaction of buckling modes and imperfections in the non-linear 
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analysis of stability. The problem of the interaction of the global mode with the 
local ones is of great significance. The concept of interactive buckling involves 
the general asymptotic non-linear theory of stability. The theory is based on 
asymptotic expansions of the post-buckling path and is capable of considering 
simultaneous or nearly simultaneous buckling modes [4], [ 15]. 

The introduction of central intermediate stiffeners increases the flexural 
rigidity of plate elements and, consequently, also the local critical stress values. 
The global critical stress values for the analysed type of intermediate stiffeners 
remain virtually unchanged because of small variations in the moment of inertia 
of the cross-section. 

Structures reinforced with intermediate stiffeners may show two local 
minima for two different local buckling modes. The first minimum refers to the 
smaller number of half-waves (local distortional mode) and the second one - to 
the greater number of half-waves (local symmetric mode and local 
antisymmetric mode) as compared with the structure without reinforcement. In 
particular cases, the values of these minima for local buckling modes can be 
almost equal. 

Special attention should be paid to the fact that critical stress values referring 
to the second minimum are nearly equal for both local modes. The theory 
presented here enables us to carry out an analysis of all buckling modes for 
intermediate stiffeners of different shapes and flexural rigidities. This can help 
in their rational designing (for a more detailed analysis, see [9], [ 11 ], [ 19)). 

In this paper, the solution has been obtained by Koi ter' s asymptotic method 
in the second order approximation. The determined post-buckling coefficients 
allow one to find the flexural rigidity after local buckling without using 
hypotheses on the effective width of plates under eccentric compression. Simple 
analytical dependencies between the above mentioned coefficients and the 
characteristics of the post-buckling equilibrium path are used [ 16 ]. 

In many scientific centres, intensive theoretical and experimental 
investigations devoted to buckling of structures with boundary reinforcements, 
intermediate stiffeners and the so-called mesostructures and aimed at a 
comparison of these investigation results with standards in force are conducted. 
Main problems, as far as theoretical issues are concerned, consist in a proper 
description of all possible global and local buckling modes, as well as in a 
presentation of analytical relations in a coherent form that is convenient for 
application in standards. The authors of the present paper do not know any 
works by other authors in which all buckling modes of thin-walled structures 
with intermediate stiffeners have been described correctly. This paper belongs 
to a series of publications by the authors aimed at this purpose. 

2. Structural problem 

The long thin-walled prismatic structures of the length L, composed of plane, 
rectangular plate segments interconnected along longitudinal edges, simply 
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supported at both ends, are considered. A plate model is adopted for the
structures with intermediate stiffeners. For the i-th plate component, precise
geometrical relationships are assumed in order to allow for the consideration of
both out-of-plane and in-plane bending of each plate [ 11 ]:

tiy = Yi y + ½ (w~y + U~y ),

2£ixy = Yixy = u., + Vi.» + Wi.x Wi.y,
Kix = -W i.xx , Kiy = -Wi,yy, Kixy = -Wi.xy.

( I )

The differential equilibrium equations resulting from the virtual work
principle and corresponding to expressions (I) for the i-th plate can be written
as follows:

Nix.x + Nixy.y + (NiyUi.y t = O,

Nixy.x + Niy,y + (Nix v.., t = O,

(Nix Wix). +(NiyWi_y) +(N;,yWi_x) +(N;,yWiy). + Mix.xx +M;y.yv +2Mixy.xy =O .
. X .y .y .X 

(2)
The solution of these equations for each plate should satisfy kinematic and

static continuity conditions at the junctions of adjacent plates and the boundary
conditions referring to the free support of the structure at its both ends, i.e. x=O
and x=L. 

The non-linear problem is solved by the Byskov and Hutchinson's
asymptotic method [4]. The displacement fields, U, and the sectional force
fields, N, are expanded in power series in the buckling mode amplitudes, Śi
( Śi is the amplitude of the j-th buckling mode divided by the thickness of the
first component plate, t1):

u= 1cu;0) + śiD!i) + śiśk u;jk) + ...

N- =AN-(0) +r·N-<il +r.r -N-rik) +
1 'cl.I 1 'c>.l'c> k 1 • • •

( 3) 

where the pre-buckling fields are D!0J, N!0l, the buckling mocie fields are

u(i) N(j) and the post-buckling fields - D(jk) N(jk) The ranze of indices is
I ' I b I ' I • b ' ' 

[I, J], where J is the number of interacting modes.
By substituting expansion (3) into equations of equilibrium (2), the junction

conditions and the boundary conditions, the boundary value problems of the
zero, first and second order can be obtained. The zero approximation describes
the pre-buckling state, while the first approximation, that is the linear problem
of stability, enables us to determine critical loads of the global and local value
and their buckling modes. The second order boundary problem describes the
post-buckling equilibrium path. For a more detailed analysis, see [ 11 ].
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At the point where the load parameter A reaches its maximum value A,
(secondary bifurcation or I i mit point) for the imperfect structure with regard to
the imperfection of the buckling mode with the amplitude C,~, the Jacobian of
the non-linear system of equations [4], [ 11 ], [ 15]:

ar (1-: )c,r + ajkrĆ,jĆ,k + bjklrĆ,jĆ,kĆ,1 + ... =a. : Ć,:". at r= 1,2, .... .J ( 4) 

is equal to zero.
The index "r" 1s: I - for the global bulking mode; 2..J - for the local

buckling modes.
The corresponding expression for the total elastic potential energy of the

structures has the following form:

n = -a o A"/ 2 + ar ( I - A/ Ar) C,1 I 2 + ajkrĆ,jĆ,k Ć,r / 3 + bjklrĆ,jĆ,k Ć,1Ć,r / 4 - arĆ,rĆ,~A/ Ar
(5) 

where: A - load parameter, Ar - critical value of A, n0 = a0A2 J2 - energy
of the pre-buckling state.

Expressions for a0, ar, aikr, biklr are calculated by known formulae [4], [ 11 ],
[ 15], [ 16 ]. The formulae for the postbuckling coefficients ajkr depend only on
the buckling modes, whereas the coefficients b,nr also depend on the second
order field.

Consideration of displacements and load components in the middle surface
of the walls within the first order approximation, as well as more precise
geometrical relationships made it possible to analyse the shear-lag phenomenon,
the distortions of cross-sections and all possible bucki ing modes including a
mixed buckling mode (e.g. flexural-distorsional or local-distorsional one - for
a more detailed analysis, see [5], [7], [I I], [12], [14]). 

The calculations have confirmed that in the case when the value of the global
critical load exceeds the value of the local critical load, it is possible to reach
the limit load capacity higher than the minimum value of the local critical load
for a moderately low value of the imperfection.

Taking into account the second order approximation enables us to determine
the limit load capacity of the structure in an elastic range. An assumption of one
of the "engineering" hypotheses of the load carrying capacity allows for
determination of the limit load for an elastic-plastic range [IO], [ 16]. 

The relation between the post-buckling and unbending pre-buckling stiffness
of imperfect structures defines a coefficient of the reduced rigidity
corresponding to the K-th uncoupled local buckling, i.e. the single-mode local
buckling [I I], [16]: 

at K = 2, .. .J (6) 
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In a special case of ideal structures (Śk = O) and of the symmetrical
characteristics relative of the deflections for the uncoupled local buckling mode
(aKKK =0):

~K = lim,_-,~ T)K = [1 + af<. ]-
1

2anbKKKK 
(7)

In the presented method for lower bound estimation of the load carrying
capacity, it is postulated that the reduced local critical load "-R should be
determined taking into account the global pre-critical bending (/;;;"FO) within
the first order non-linear approximation to the theory of the interactive buckling
of the structure. In order to find lower bound estimation of the load carrying
capacity of thin-walled structures, the following assumptions, identical as in
paper [ 17], have been made:
• an interaction of only two modes of the global and local buckling within the

first order approximation has been taken into account, i.e. 1=2; 
• the local buckling precedes the global buckling, i.e. "-1 > A-2 ( crt < 0·; );
• local imperfections are absent, i.e. ś; = O .

If we take into account the above-mentioned assumptions, Eg.
the following set of algebraic equations of equilibrium:

a1 (I - Al "-1 )/;;1 + amś~ = a1ś'(AIA1

a2 (l -AIA-2 )/;;2 + 2a122ś1Ś2 = O
All coefficients with j, k, r > I are equal to zero and non-zero coefficients are

only those that have one index equal to I and an even sum of (j+k). If we
introduce the following notation:

1'} = (!:.__I)_!_, (9)

l "'" ś1

(4) leads to

(8) 

the second equation (8B) can be written in the form of an eigenvalue problem:

(
2 a122 - 1'} li;;2 =O. (IO)

a2 )
In the pre-buckling state, the single solution to Eq. (IO) is a trivial solution

ś2 = O and only the overall deflection develops according to Eq. (SA):
Ą

Ś1 = Śt "-i -A - ( l l) 

The coupled (interactive) buckling with simultaneous overall and local
deflections becomes possible when there appears a non-zero solution Ś2 "FO to
the set of Eqs. ( I 0). Note that the sign of 1'}=2a122/a2 determines the direction of
the overall deflection according to the condition lJŚ1<0.

The eigenvector from Eq. ( I 0) has been determined with accuracy up to the
constant C and it has been normalised with the condition [(ś~)2]112 =I. Hence,
eg. (8A) can be written in the form:
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c, = a,,, ~~n' [s; ~ +li < X i < )~]
As the initial post-buckling path for the first order approximation always

falls, the maximal value A= AR corresponds to the value C=O (the point of
intersection of the pre-buckling path (11) and the initial post-buckling path (9)).
Then, Eq. (12) assumes the following form:

[ ś't ~~ + l I - ~~ )( 1- ~: )~ l =O. ( 13)

The maximum load value AR determined from Eq. ( 13) is smaller than the
critical value of the local buckling A2. The load AR can be interpreted as an
effect of the load corresponding to the global buckling ( ś'( =t- O, ś1 =t- O) on the
critical value of the local load ( ś21 =t- O). Thus, the critical load corresponding to
AR can be called the reduced critical load value of the local buckling. For the
load AR<A<A2, the coefficient of reduced rigidity (specified by relation (6)) is
equal to T)2=T1K= I. Hence, it is postulated that AR should substitute A2=AK in eqs.
(6) and (7). A further procedure to determine lower bound estimation of the load
carrying capacity is analogous as in [IO], [ 16]. This load carrying capacity can
be determined on the basis of an appropriate strength (effort) criterion. The
following criterion for stiffened constructions is assumed: "plastic stresses are
reached in the elements for the limit load higher than the critical load". More
detailed analysis seep. 4. of the present paper.

( 12)

3. Design code recommendations 

3.1. Calculation according to the Winter's formula 

The Winter's formula is commonly used in design procedures to determine
an estimate of the ultimate load carrying capacity of plates under compression
(e.g. [I], [6]). In its usual form it is expressed as:

be-=I s:::;0,673
b

be I ( )-=- s-0,22
b s2

s > 0,673 ( 14)

where: s =~-relative slenderness.

The reduction made on the basis of the local mode is based on the Winter's
rule, which is used instead of one plate to the whole cross-section. In this
method, the supporting influence of other plates is taken into account, and the
whole cross-section of the profile is reduced. This is equivalent to:
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Ae ~er [ ~er ] Gu -= - I-On - =- 
A Re ,-- Re Re 

The axial ultimate load capacity is expressed as: 
Pu=ReAe 

If a similar approach is applied to members under flexure. then, by a 
analogy with ( 15), the effective section modulus (Ze) is calculated as: 

Ze ~er [ ~er] -= - 1-0,22 - 
Z Re Re 

leading thus to the ultimate moment capacity: 
Mu=ReZe ( 18) 

In ( 17), the effective section modulus Ze does not represent effective widths of 
individual elements. 

In the proposed method, the design yield stress depends on the yield stress 
reduced by the global mode. The aim of this is to avoid decreasing the effective 
yield stress caused by high material strength, if it is not utilized because of the 
global mode. 

( 15) 

( 16) 
direct 

( 17) 

3.2. Calculation according to the Polish Code PN-90/B-03200 [18] 

In the post-buckling state for each wall that forms the cross-section under 
analysis, the effective width be= (j)pcb is determined. The value of the 
instability coefficient <pp and (J)pe is determined from the table [ 18] for the 
calculated wal I slenderness: 

Si,=~- ~Hfi 
where K - wall support and load coefficient. 

In the critical state for the wall under axial compression we have: 

~::; I (20) 
(j)pfcl 

where: Ge - highest compressive stress in the wall under consideration. 
For the obtained effective widths, the effective area Ac<A is determined 111 

the case of axial compression, whereas in the case of pure bending - the 
effective factor of strength Wc<W. In the case of eccentric compression, the area 
Ae determined as under uniform compression can be assumed, and the factor We 
- determined as under pure bending conditions. Additionally, an increment in 
the loading moment resulting from a change in the position of the centroid of 
the effective cross-section should be accounted for. 

The value of the reduction coefficient of the cross-section calculational load 

( I 9) 

carrying capacity \l' is equal to: 
a) critical state: \l'=(J)p; 
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b) post-critical state: \j/=\j/e; 
Ae We For axial compression: \J' e = - , whereas for pure bending: \J' e = - . 
A W 

In the case of intermediate stiffeners, it should be assumed that their moment 
of inertia with respect to the web symmetry axis equals: L ~ kbt' (stiffness 

. . I f" . L~s: b Ll d condition), where t 1e coe ficient k = 3- -u , ut k ~ O, 7- - an Lc-b. 
b b b b 

In the post-buckling state, additionally the stiffener load carrying capacity 
should be checked. The stiffener should be treated as a freely supported beam 
loaded with the force whose value is equal to 2% of the compressive force in the 
wall. 

The total effective area is: Ac = A z + 2,, bet , where A2 - stiffener area. 

The beam slenderness should satisfy the condition s<250. 
The compression capacity is: 

NRc = \J' AL1 (21) 
if the yield phenomenon precedes the stability loss, then the coefficient \j/= I. 

The beam relative slenderness under buckling is equal to: s = ~, where the 
Sp 

. I d . 84✓ 2 IS d I b I d . ul, comparatives en erness 1s s11 = -. - , an t 1e earns en erness 1s s = -.- . 
f d I 

For the determined beam relative slenderness s, the coefficient <p is read 
from the table [ 18]. 

The design buckling resistance: 
N= <pNRc. 

In the case of pure bending, the limit moment is equal to: 
MR= \J'WL1. 

(22) 

(23) 
For the given value of the relative slenderness under lateral buckling 

SL= l, I S✓MR , the lateral buckling coefficient (l)L is taken from the table ([ 18]), 
Mer 

and then the calculational moment is determined: 
M =<pLMR. (24) 

3.3. Calculation according to BS 5950 Part 5 [3] 

The effects of local bucking should be taken into account in determination of 
the design strength and stiffness of cold-formed members. This may be 
accomplished using effective cross-sectional properties, which are calculated on 
the basis of the widths of individual elements. The ratio of the effective width be 
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to the full width b of an element under compression may be determined from the 
following expression: 
for (b/h)<60 and ( od0cr)<O, 123 - (be/b )=I, 
for (b/h)<60 and ( <Jcl<Ycr)>O, 123 - (be/ b) =[I+ 14( .J0c I <Yer - O, 35)4 J-0.2 (25) 
where the width to thickness ratio exceeds 60, the effective design width of the 
sub-element should be reduced according to the following formula: 
(ber /t) = be /b-O,l(b/t-60). 

To compute the effective properties of a member having compression 
sub-elements subject to the above reductions in the effective width, the area of 
stiffeners, A,1, should be considered to be reduced to the effective area, Aerr, as 
follows: 

for (b/h)<60 to Aerr=A,1, 

. [ ber I ( ber J b] for60<(b/h)<90- Aen =Asi 3-2--- 1-- - , 
b 30 b h 

for (b/h)>90 - Aerr=As/beJb). 

(26) 

In the above expressions A51 and Aerr refer only to the area of the stiffener alone, 
irrespective of any portion of adjacent elements. 

The centroid of the stiffener should be considered to be located at the 
centroid of the full area of the stiffener, and the moment of inertia of the 
stiffener about its own centroida! axis should be taken as that of the full section 
of the stiffener. 

The axial ultimate load capacity is expressed as follows: 

(27) 

This equation is only suitable for columns with very small values of the 
slenderness ratio (i.e. the ratio of the column length to the cross-section radius 
of gyration, Ur< 20), sometimes referred to as 'stub columns'. At low Ur ratios, 
Pc tends to the squash load cPc,) value, and to evaluate the interaction of 
buckling and yield for larger Ur ratios, the Perry-Robertson approach provided 
in the design code is used. 

The buckling resistance is as follows: 

Pc= o,s{[Pcs +(I+ ri)PE]-✓~[8-c,-- +_(_I _+_Yj)_P_E ]-2---4-Pc--,P-E} (28) 

where: Pc, - squash load cPc,= Pc for short columns); PE - elastic flexural 
buckling load; Y] - Perry coefficient [3]. 

If a similar approach is applied to members under flexure, the effective 
section modulus (Ze) is calculated [3]. The ultimate moment capacity is 
expressed as: 

(29) 
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4. Comparison of the theoretical load carrying capacity with 
the experimental data and design methods 

In the general case, the load carrying capacity can be determined on the basis 
of the appropriate strength (effort) criterion. At this point of the present work, 
the following criterion of the limit load carrying capacity for stiffened 
constructions is assumed: "plastic stresses are reached in the elements for the 
limit load higher than the critical load". 

4.1. Thin-walled plates with central intermediate stiffeners 

Compressed rectangular plates with central intermediate V-stiffeners have 
been analysed in detail. The dimensions of the plates under analysis, with the 
length L and freely supported along the whole perimeter (Fig. I), are the same 
as in [8]. 

A comparison of the results obtained on the basis of the presented theory 
with the experimental results shown in [8] has been made. 

w b,. 
I -l I 

~t I t I w 
I 

b, 

B 

Fig. I. Cross-section of the plate with a central intermediate stiffener 

In Table I, the dimensions of the plates under analysis and the mean values 
of the yield limit Re are collected. The following values of the Young's modulus 
and the Poisson's ratio have been assumed: E=205 GPa and v=0,3, respectively. 

The results calculated by different methods are gathered in Table 2. The 
theoretical PR and experimental values PuR of the limit loads corresponding to 
AR for (! = L / 1 000t are compared to the results calculated in two other 
manners. The codes used were the British code BS 5950 Part 5 [3] and the 
method based on the Winter's formula. In Table 1, the results of calculations 
carried out according to the Polish code PN-90/B-03200 have not been included, 
as the plates under analysis do not fulfil the requirements imposed by this code 
as regards slenderness that has to be higher than 250. 
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Table I. 
Dimensions of the plates with a central intermediate stiffener [81 

No. Spec. no. Re L w bs bsp d t B 

[MPa] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

I. SPl/0.4 949 80.75 5,5 7,5 2.94 0.405 169,0 

2. SP2/0.4 950 79,30 6,0 8,5 5,68 0,404 167,1 
3. SP3/0.4 

270,0 
950 78,20 6,0 8,0 10,50 0,418 164,4 

4. SP4/0.4 950 79,75 6,0 8.5 12,54 0,419 168,0 

5. SPl/0.57 950 79,50 5,5 8,5 3,43 0,570 167,5 

6. SP2/0.57 950 80,15 6,0 8,2 5,21 0,569 168,5 

7. SP3/0.57 314,5 952 80,10 6,8 6,8 6,23 0,567 167,0 

8. SP4/0.57 950 80,50 6,5 7,0 9,30 0,567 168,0 

9. SP5/0.57 950 80,65 6,2 8,0 12,26 0,568 169,3 

IO. SP 1/0.63 948 78,25 5,5 9,5 3.10 0.634 166.0 

I I. SP2/0.63 948 78,75 7,0 8,0 6,07 0,630 165,5 

12. SP3/0.63 270,0 948 79.30 7,0 7,0 9,10 0,635 165,6 

13. SP4/0.63 948 80,00 7.0 7.0 12.15 0,636 167,0 

14. SP5/0.63 948 78,35 6,5 l 1,5 23,50 0,630 168,0 

15. SPl/0.81 948 78,65 6,5 IO.O 2,90 0,814 167,3 

16. SP2/0.8 I 948 78,70 7,0 7,0 5.92 0,796 164,4 

17. SP3/0.8 I 343,0 948 80,05 7,0 7,0 8,90 0,809 167,1 

18. SP4/0.81 948 81,50 7,0 7,0 11,50 0,838 170,0 

19. SP5/0.8 I 948 81,50 7,0 7,0 25,20 0,792 170,0 

20. SP! A/0.81 947 79,50 6,5 IO.O 3,25 0.814 169,0 

21. SP2A/0.8 I 947 81,00 7,0 7,0 6,15 0,819 169,0 

22. SP3A/0 81 343,0 948 80,50 7,0 7,0 9.67 0,818 168,0 

23. SP4A/0.8 I 948 81,25 7,0 7.0 12,67 0,800 169,5 

24. SP5A/0 81 948 81,85 7,5 7.6 25,63 0,778 171,3 

25. SP6A/0.8 I 949 82,60 7,5 7,5 25,30 0,815 172,7 

26. SPl/1.2 948 78,75 6.5 10,0 5,23 1,170 167,5 

27. SP2/l .2 948 78,85 7,0 7,0 8,92 1,170 164,7 

28. SP3/l.2 262,0 948 80,75 7,5 7,5 9,47 1.198 169,0 

29. SP4/l .2 948 81,25 7,5 7,5 12,58 1,198 170.0 

30. SP5/l .2 948 81,50 7,5 7,5 25,25 1,198 170,5 

3 I. SPl/1.6 948 81.10 7,5 7,5 4,35 1,585 169,7 

32. SP2/l .6 948 78,45 7,ó 7,6 9,34 1,601 164,5 

33. SP3/l .6 181,5 948 78,95 7,6 7,6 11,80 1,608 165,5 

34. SP4/l .6 948 78,35 8,0 8,0 16,48 1,603 164,7 

35. SP5/l .6 947 82,05 7.9 7,9 25,00 1,600 172,0 
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Table 2. 
Comparison of the ultimate load or the plates according to different methods 

Test results Theory results Code 8S5950 Winter's 
No. Spec. no. Pf: [8] PuR Pu: [3] formula 

[N] [N] [N] [NJ 

I. SPl/0.4 3694 3077 - 4256 
2. SP2/0.4 4637 1703 - 5282 
3. SP3/0.4 6595 2017 3787 5995 
4. SP4/0.4 7850 2017 3767 6147 

5. SPl/0.57 12816 4927 - 10899 
6. SP2/0.57 7521 4415 - 10110 
7. SP3/0.57 9634 7480 - 11340 
8. SP4/0.57 9456 4708 6917 11717 

9. SP5/0.57 12327 4800 7015 9023 

IO. SPl/0.63 8455 4817 - 11239 
li. SP2/0.63 10680 9138 - I 1834 
12. SP3/0.63 13261 6727 9492 12988 
13. SP4/0.63 17222 6980 11621 13536 

14. SP5/0.63 20470 7609 13634 14982 

15. SPl/0.81 14182 7850 - 15032 

16. SP2/0.8 l 16243 14220 - 19141 

17. SP3/0.8 I 21360 13750 - 23393 

I 8. SP4/0.8 I 28()35 15310 17622 25643 

19. SP5/0.8 l 35244 14620 23920 26306 

20. SPIA/0.81 14997 8517 - 15712 

21. SP2N0.8I 18957 15130 - 20182 

22. SP3A/0.8 I 22784 14230 16379 24066 

23. SP4A/0.8 l 28258 13560 18356 23820 

24. SP5A/0.8 l 31239 13940 22816 25653 

25. SP6A/0.8 I 37825 15650 20050 27746 

26. SPl/1.2 31150 22800 - 28824 

27. SP2/l .2 38493 34530 - 34888 

28. SP3/l .2 42275 37630 - 37291 

29. SP4/1.2 46814 44520 51414 . 53332 

30. SP5/ I .2 56293 50300 56925 47954 

31. SPl/1.6 33375 34660 - 34149 

32. SP2/ I .6 45835 - 47877 - 
33. SP3/l .6 53400 - 55266 - 
34. SP4/1.6 56960 - 57408 - 
35. SP5/1.6 70310 - 70915 - 

In the case of the plates with stiffeners characterised by low flexural rigidity, 
the minimum values of the critical loads have been obtained for the local 
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distortional mode, whereas for stiffeners characterised by high rigidity - for 
the local antisymmetric mode [9], [ 19]. It follows from the intermediate stiffener 
rigidity. If the rigidity of the stiffener is too low, the plate is not reinforced 
enough, and a stability loss in the plate and in the intermediate stiffener occurs 
at significantly lower stresses. 

In the analysis of the elastic post-buckling state, only approximated 
estimation of the load carrying capacity can be obtained on the basis of the 
simplified failure criterion. 

At this point of the present work, the following criterion of the limit load 
carrying capacity Pu for stiffened plates is assumed: "plastic stresses are reached 
in the plate for the limit load higher than the critical load Per". 

In order to determine maximum stresses occurring in the plate after its local 
buckling, owing to the fact that the investigated plates were compressed, only 
the cross-section areas have been reduced. 

Figure 2 presents the ratios of the theoretical and experimental values of 
loads Pu RIPE, whereas Fig. 3 - the ratio of the theoretical and standard (obtained 
according to BS 5950 Part 5) values of PuR/ P EF as a function of l/Ct1cq· 

Lower values of the load carrying capacities PuR than the experimental 
values PE [8] have been obtained for all the cases investigated. Only in one 
case, the value of the failure limit load was a little lower than the theoretical 
value (case 31 ). In four cases (32-35) the values of local critical stresses are 
higher than the yield limit, and the buckling for these cases occurs in the 
elasto-plastic range. Here an approach suggested in, e.g., papers [ 12], [ 14] can 
by adopted. 

In paper [ 16], a very significant influence of local imperfections upon the 
post-buckling limit load, which has been neglected in the present study, has 
been shown. 
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Fig. 4. Comparison of the ultimate load of the plates according to the Winter's rule 

Local buckling modes corresponding to the lowest values of the critical loads 
predict correctly the type of failure mechanisms in stiffened plates under 
compression. 

The nondimensionalized ultimate load (PJPp1) or stress (crJRe) as a function 
of the dimensionless slenderness ✓Re/ cr,, has been plotted in Fig. 4. The 
experimental and theoretical values indicate a good agreement with the Winter's 
formula. 
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4.2. Thin-walled beams with intermediate stiffeners 

Next, the results of the presented theory have been compared with the 
experimental results obtained for beams with intermediate stiffeners under pure 
bending (Fig. 6a) [8]. Geometry of the cross-sections is shown in Fig. 6b and 
Table 3. 

a) 

b) 
w w 

z 
• .o 

Fig. 6. Thin-walled beam under pure bending and cross-section or the beams with a central 
intermediate stiffener 

A detailed comparison of the theoretical analysis results within the first order 
approximation and the experimental results has been included in [IO]. 

At this point of the paper, the following criterion has been adopted for the 
load carrying capacity, ME: 
• in a plate under tension, the yield stress is attained at a limit load value 

higher than the critical moment Mer. In a compressed plate, elastic strains 
are present; 

• in a compressed plate, the yield stress is attained at a limit load value lower 
than the critical moment, M,,. In this case we are dealing with the 
pre-buckling bending. 
Such a criterion takes into account the post-buckling of plates under 

compression or a lack of this buckling in the pre-buckling state in perfect 
structures; it considers also a relevant mechanism of failure by means of 
yielding in the plate being compressed. 
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Table 3. 
Dimensions of the channel beams with a central intermediate stiffener (8) 

No. Spec. Re b. w bs bsp bd bw b1 t 

[MPa] [111111] [m111J [mm) [mm] [mm] [111111] [m111] [mm! 

I. LCO 214,5 1060 76.95 o.o 0,0 0,0 78.5 15,0 1,570 

2. AO 76.60 0,0 0,0 0.00 77.1 15,1 0.41 O 
3. Al 71.50 5,2 11.2 4,20 76.4 17,3 0.405 
4. A2 275.0 1060 73,10 6.5 8, I 5.56 77,4 17.5 0.410 
5. A3 73.55 6.6 7.1 9.00 76.8 16.6 0.410 
6. A4 73.65 6.8 7,2 11.80 76.9 18.0 0.415 
7. AS 7:1.35 6,6 8,0 18.20 76,9 17,1 0,405 

8. Bl 70,55 4,7 13,2 6,00 76,9 17.6 0,682 
9. B2 374,0 1060 72,70 6.5 8,8 5.60 76.7 17,4 0.691 

10. 133 73,10 6,5 7,8 7.70 77,1 18.5 0.698 
11. B4 73,20 6,7 8,0 10,70 77,0 18.9 0,695 

12. co 76,90 0,0 o.o 0,00 77,4 I 5,3 0,818 

13. Cl 70.75 4.5 12.7 5.65 77.0 17,2 0.818 
14. C2 285.0 1060 72.65 5.7 9,5 5,45 76.7 17.7 0,821 

15. C3 73.85 6.9 7,3 8.70 77.4 17, I 0.814 

16. C4 73,60 7,0 7,4 11,70 77.0 18,5 0,815 

17. cs 73,35 6.9 7.6 18.20 77,5 18,2 0,810 

18. Dl 71.25 5.5 9,5 4.55 76.5 16.2 0.759 

19. 02 147,4 1060 72,50 6.5 8,0 8.95 76,4 25,5 0,761 

20. 03 72,15 6,2 8,2 I 1,35 76,2 16,8 0.762 

21. 04 72.40 6,2 8.2 I 5.10 76,9 9.0 0,763 

22. El 71,65 7.0 I I.O 4.85 76.3 17.0 1,213 

23. E2 72,30 7,0 IO.O 5.10 77,8 17,0 1,207 

24. E3 176,5 1060 73,55 7,0 7.0 8.20 79.0 18,0 1.207 

25. E4 73.20 7.0 8, I 9,00 77.2 14,5 1.200 

26. ES 73.80 7.7 7,7 12.00 76.7 17.0 1.209 

27. E6 73,50 7.5 7.5 18,80 78.7 17,5 I ,?02 

28. Fl 70,25 5,2 13,0 5.1 O 76,0 17.7 1.519 

29. F2 70,90 5,5 12,0 6,00 75,5 17.8 1.528 

30. F3 214.5 1060 71.75 6.2 IO.O 9.70 76.3 17.0 1.528 

31. F4 71,50 6,5 10.5 12,55 76.3 I 5.5 1.514 

32. FS 71.63 7.0 9,75 18.25 77,6 18,5 1,525 

However, in order to determine maximum stresses in the plate after the local 
buckling of the beam, one must find not only the reduced flexural stiffness but 
also the position of the effective stiffness centre of the cross-sect ion. 

The above-mentioned thin-walled beams are considered as calculation 
examples. Generally speaking, one has to find the effective width of a plate 
under compression and of webs subject to bending. In this paper, only the width 
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of a compressed flange is reduced so as to obtain an actual decrease in flexural 
stiffness of the cross-section after buckling. The effective width of the 
compressed plate is derived from the condition saying that the moment of inertia 
of the effective cross-section corresponds to the expression for the coefficient of 
reduced flexural stiffness, T) (6). 

Table. 4. 
Comparison of the ultimate moment of the channel beams according to different method 

No. Spec. no. Test results Theory results Code BS5950 Code Winter's 

ME [8] Mc MEF [3) PN-90/B-03200 formula 

[Nm) [Nm] [Nm] [Nm] [Nm) 

I. LCO 3223, I 2257 - 1699,0 2716,4 

2. AO 339,0 575, I - 522,0 335, I 
3. Al 350.8 468,0 - 546,6 336.2 
4. A2 375,7 612.5 - 571,8 435.6 
5. A3 349,6 591,4 502,7 554.5 424,2 
6. A4 318,9 619,6 464,7 582,5 444,6 
7. AS 306,4 587,6 440,7 553,5 521,0 

8. Bl 1177.8 1126,9 - 1298,4 1255,7 
9. B2 1250.0 1286,8 - 1310,6 1331,0 
IO. B3 1291,4 1443,0 - 1376,0 1377,7 

11. B4 1273,3 1444,9 1372,7 1378,6 1374,6 

12. co 1232,7 1202.8 - 1147,0 8 I 5,2 
13. Cl 1395.0 I 021.8 - 1211,5 1323.6 
14. C2 1489,6 1229.7 - 1229,7 1164,5 

15. CJ 1463,0 1308,5 1373,9 1308,5 1687.2 
16. C4 1380,2 1328,9 1262,5 1328.9 1543, I 

17. cs 1377,2 1311,3 1245.7 131 1.3 15 I 7.6 

I 8. Dl 889,2 840,8 - 840,8 986,3 

19. D2 1023,4 1044,7 1253,6 1044,7 934.8 
20. D3 924,2 913,5 1096.2 913,5 858.1 
21. D4 877,3 810,8 1013,5 810.8 767,7 

22. El 1909,0 1755,6 - 1755,6 1749.4 

23. E2 1904,9 1802.9 - 1802,9 1802,9 

24. E3 2045,1 1877,5 2065,3 1877.5 1877,5 

25. E4 1930,8 1698,3 1953, I 1698,3 1698,3 

26. ES 1980,8 1765,7 2030,6 1765,7 1765.7 

27. E6 1980,8 1836,7 2020,4 1836,7 1836,7 

28. Fl 2712,1 2673.4 - 2673,4 2617,0 

29. F2 2918,3 2671.6 - 2671,6 2671,6 

30. F3 2924.2 2679,7 - 2679.7 2679,7 

31. F4 2687,6 2585.2 2714.5 2585.2 2585,2 

32. FS 7879,5 2797.8 2937,7 2797,8 2797,8 
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The plate model that has been assumed in the calculations allows one to take 
into account an influence of global imperfections on the values of reduced local 
critical loads of the beams under compression, which is impossible in the case 
the beam model is assumed. In papers [ I OJ, [ I 6], a method for lower bound 
estimation of the load carrying capacity has been discussed in detail. In ( I OJ, 
higher values were obtained for the theoretical limit load carrying capacity than 
for the experimental limit load carrying capacity. Hence, the second order 
approximation provides a better estimation of the load carrying capacity of 
beams under bending. 

Table 4 includes a comparison of the results ME and the experimental ME 
(8) values of the limit loads to the results calculated in three other manners. The 
codes used were the Polish Code PN-90/B-03200 [ I 8), the British Code 
BS 5950 Part 5 (3) and the method based on the Winter's formula. In all the 
analysed cases, a good agreement is found between the presented lower bound 
estimation of the load carrying capacity ME and the experimental results Mi, . 

Figures 7 and 8 show the ratios of the theoretical and experimental values of 

loads ME /ME and the ratio of the theoretical and standard (obtained according 
to BS 5950, Part 5) values of Md M EF as a function of IJI..ueq· 

The nondimensionalized ultimate moments (MJMp1) or stresses (0JR0) as a 

function of the dimensionless slenderness ✓Re/ o., have been plotted in Fig. 9. 

The experimental and theoretical values indicate a good agreement with the 
Winter's formula. Figure 9 shows that the correlation of all the results becomes 
better when the dimensionless slenderness becomes smaller. For higher 
dimensionless slenderness, the theory and test results do not agree so well with 
the Winter's formula, although the agreement is still fair. 
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Fig. 7. Ratio of the theoretical and experimental values of ME/ME as a function of Is/ Ia(ieq 
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Fig. 9. Comparison of the ultimate moment or the channel beams according to the Winter's rule

Figure 1 O shows the comparisons between the theoretical ultimate moment 
and those determined using the British Code BS 5950 Part 5, the Polish Code 
PN-90/B-00320 and the method based on the Winter's formula, respectively. 
Figure 1 O indicates that for the channel beams, the test results are in a fairly 
reasonable agreement with the ultimate moment predictions of all three codes. 
All specifications are similar in their approach to calculating the ultimate 
moment capacity. The main differences between the specification results arise 
from the application of the imperfection factor and the modulus of elasticity 
values used in the calculations. 
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5. Conclusions 

The interactive buckling analysis of thin-walled structures with an 
intermediate stiffener under axial compression or/and a constant bending 
moment, carried out by means of the transition matrix method, has been 
presented. All global and local modes are described by means of the plate 
theory. The presented analysis provides correct lower bound estimation of the 
load carrying capacity of thin-walled structures with intermediate stiffeners 
under compression or bending and it predicts correctly failure mechanisms, 
which is impossible if the beam model is assumed. A good agreement of the 
theory presented here with the results of investigations carried out by other 
authors and with numerous cases of standards in force has been obtained. The 
next publication by the authors that is now being prepared to be printed, will be 
devoted to significant differences occurring in some cases between the results of 
the presented theory and standards. A comparison of the results obtained when 
the effect of global bending on local buckling is taken into account allows one 
to state that lower bound estimation of the load carrying capacity of beams 
under bending produces lower values than those obtained for one-mode 
bucki ing [ I Ol In [IO] higher values of the theoretical load carrying capacity 
than of the experimental ones have been obtained. Thus, the method being 
proposed gives, in this case, more correct evaluation of the load carrying 
capacity for the thin-walled structures under analysis. The presented method of 
calculations allows for taking into account an effect of local pre-buckling and an 
influence of local initial imperfections on the coefficient of reduced rigidity 
[ 16]. 

In the case the global stresses exceed the minimum local stress, it is possible 
to attain the load carrying capacity higher than the minimum local stress value 
for sufficiently smal I imperfections. 

Intermediate stiffeners are found to exert a strong influence on local buckling 
modes. 

Manuscript received by Editorial Board, October 24, 2000: 
final version, December 05, 2000. 
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Porównanie teoretycznych i eksperymentalnych obciążeń granicznych dla wybranych
dźwigarów i płyt cienkościennych z żebrami

Streszczenie

W prezentowanej pracy wyznaczono teoretyczne wartości nośności granicznej dla
cienkościennych dźwigarów i płyt z centralnymi. wzdłużnymi żebrami pośrednimi obciążonych
osiową siłą ściskającą i stałym 1110111cntem gnącym. Nieliniowe zagadnienie stateczności
rozwiązano stosując teorię Byskova i Hutchinsona (4J wykorzystując w obliczeniach numeryczną
metodę macierzy przejścia. W prezentowanej metodzie oszacowania współczynników redukcji
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sztywności wzdłużnej postuluje się wyznaczenie zredukowanego lokalnego obciążenia
krytycznego z uwzględnieniem globalnego dokrytycznego zginania w ramach pierwszego
nieliniowego rzędu przybliżenia teorii interakcyjnego wyboczenia konstrukcji. Otrzymane wyniki
porównano z wynikami opublikowanymi przez innych autorów oraz z wartościami obliczonymi
wg obowiązujących norm.




