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In recent years, infections are more often caused by pathogens with high multi-drug resistance, clas-
sified as the “ESKAPE” microorganisms. Therefore, investigation of these pathogens, e.g., Klebsiella
pneumoniae, often requires biomass production for treatment testing such as antibiotics or bacterio-
phages. Moreover, K. pneumoniae can be successfully applied as a biocatalyst for other industrial
applications, increasing the need for this bacteria biomass. In the current study, we proposed a novel
magnetically assisted bioreactor for the cultivation of K. pneumoniae cells in the presence of an ex-
ternal alternating magnetic field (AMF). High efficiency of the production requires optimal bacteria
growth conditions, e.g., temperature and field frequency. Therefore, we performed an optimization
procedure using a central composite design for these two parameters in a wide range. As an objective
function, we utilized a novel, previously described growth factor that considers both biomass and
bacteria growth kinetics. Thus, based on the response surface, we could specify the optimal growth
conditions. Moreover, we analysed the impact of the AMF on bacteria proliferation, which indicated
positive field frequency windows, where the highest stimulatory effect of AMF on bacteria prolifera-
tion occurred. Obtained results proved that the magnetically assisted bioreactor could be successfully
employed for K. pneumoniae cultivation.
Keywords: bacteria cultivation; growth kinetics; optimization process; magnetically assisted biore-

actor

1. INTRODUCTION

Klebsiella pneumoniae is well known as a pathogen causing nosocomial infections. World Health Organi-
zation considers particularly strains resistant to antibiotics as one of the main threats to global healthcare
(Kollef et al., 2014; Tacconelli et al., 2018). Investigating the biology and pathogenesis of this microorgan-
ism often requires the production of its biomass, which could be later used for the studies of host-pathogen
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interactions, diagnostic test manufacturing, or as an inoculum for the production of lytic bacteriophages
that are often proposed as a solution for various bacterial contamination in medicine, natural environment
and industry (Grygorcewicz et al., 2020; Grygorcewicz et al., 2017; Sybesma et al., 2016). Recently, also
other biotechnological uses forK. pneumoniae biomass were proposed. One of the most extensively studied
applications of this bacterium is the possibility to use it as a bio-catalyst for industrial biotechnology in the
production of industrially essential acids and alcohols from glycerol (Chen et al., 2015; Kumar and Park,
2018; Mitrea and Vodnar, 2019; Qin et al., 2006; Rehman et al., 2021; Sabra et al., 2016; Sun et al., 2021).
Nevertheless, it should be highlighted that K. pneumoniae is a dangerous pathogen and when it is possible,
a non-pathogenic bacteria strain should be used instead (e.g. C. butyricum in diol production).

On the other hand, new methods allowing high-yield biomass production are still sought. The stimulation
of the living organisms for intensifying the biotechnological process can be induced by various factors
(Domingues et al., 2000; Fijałkowski et al., 2016; Konopacka et al., 2019). Apart from the common
optimization steps such as adjustments of temperature, pH, substrates, and aeration, novel possibilities are
being explored (Askitosari et al., 2019; Derakhshandeh and Tezcan Un, 2019; Leili et al., 2020; Medina-
Cabrera et al., 2020). One promising approach is applying external (magnetic, electric, or ultrasound) force
fields. So far, the electromagnetic field has been used for biomass or enzyme production, intensification of
biochemical processes, and enzymatic reactions. However, this application is still under examination, both
theoretically and experimentally (Al-Qodah et al., 2017; Konopacki et al., 2021; Lechowska et al., 2019;
Rakoczy et al., 2017a; Rakoczy et al., 2017b; Wang et al., 2017; Zhang et al., 2017). One of the currently
investigated studies is the idea of alternating magnetic field application (AMF, e.g., rotating magnetic field,
RMF) for bioprocess intensification. While many observations in this subject have been made on model
microorganisms, i.e., E. coli and S. aureus in magnetically assisted bioreactors (Konopacki and Rakoczy,
2019; Struk et al., 2017), there is still not much data on the optimization of K. pneumoniae in such
conditions. Our previous study proposed a novel mathematical description to optimize bacteria growth
(Konopacki et al., 2020). Previously, we have analysed only the temperature impact on K. pneumonia
proliferation. In the current stage of the project, we have utilized a magnetically assisted bioreactor. Thus
the impact of the additional parameter connected with the AMF, along with temperature, should be tested.
Therefore, this study aimed at finding optimal thermal and field conditions for the production of K.
pneumoniae biomass in a magnetically assisted bioreactor, which was not reported before.

2. MATERIALS AND METHODS

2.1. Bacterial strain cultivation parameters

In the present study, a reference strain of Klebsiella pneumoniae (ATCCr BAA-1706™) was employed
(biosafety BSL-2 – pathogenic strain that can cause mild disease to humans). Before use, bacteria were kept
frozen (–21 ◦C) in Trypticase Soy Broth medium (TSB) with 10% (v/v) glycerol. Fresh bacterial cultures
were used, and the material was not passaged to new media more than five times. The fresh inoculum was
used for every experiment.

Cultures were incubated at 37 ◦C for 24 h at Trypticase Soy Agar (TSA) medium. In the next step, a colony
was transferred to 30 mL of fresh TSB medium and incubated overnight (14-16 h) at 37 ◦C. Afterward,
300 mL of TSB (that was kept at the test temperature) was inoculated in (1:100) and dispensed to Falcon
tubes (10 mL of inoculum to each tube). Starting from the inoculum (at 𝑡 = 0), 8 samples (100 µL each)
were taken to measure optical density (OD, at 𝜆OD = 600 nm) on BioTek Synergy H1 (Winooski, VT,
USA) spectrophotometer. The experiments were continued for 10 hours in aerobic conditions to achieve
the stationary phase. At each time point (every hour), one tube was taken from each bioreactor and
used to prepare eight samples (100 µL each) subjected to OD measurements. The cultivation was led in
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various temperatures and electromagnetic field frequencies given by the experiment’s design and control
temperature conditions (without the electromagnetic field marked as 𝑓 = 0 Hz). Moreover, to confirm
gained tendencies, all experiments were triplicated. Within each experiment, all harvested samples were
studied in eight repetitions.

Furthermore, cell metabolic activity (respiration) was measured in resazurin assay, as described elsewhere
(Augustyniak et al., 2020). Resazurin assay was prepared by loading 10 µL of resazurin (1 mg/mL in
PBS) to each well. Afterward, the samples were incubated at 34 ◦C for 20 min, and the fluorescence
(𝜆𝑒𝑥 = 520 nm and 𝜆𝑒𝑚 = 590 nm) read on spectrophotometer BioTek Synergy H1 (BioTek, Winooski,
VT, USA).

2.2. Experimental setup

The schematic of the experimental setup is presented in Fig. 1. The experimental setup consists of two
identical bioreactors. The single system has a tank (1) where the RMF generator (2) is placed in the form
of a 3-phase stator. Inside the generator, a water bath made of polycarbonate (3) is situated. The samples
with bacterial cultures (4) are placed on a sample rack inside the container around its axis at the same
distance from the wall. The RMF is generated by the 3-phase AC supplied and controlled through the phase
inverter (5) connected with the PC (6). The RMF is formed due to the superposition of electromagnetic
fields generated by every phase coil situated around the same axis. The RMF generator during work
produces heat due to the electric resistance of coils powered by AC. For that reason, the generator is
submerged in silicone oil (an electric isolator) which allows to transport the heat outside the tank with the
oil circulation pump (7). The heat produced by the generator can be used again to maintain the cultivation
tank temperature. Excessive heat can be removed from the system through the plate heat exchanger (8).
The amount of heat within the water stream transported back to the tank is controlled by the control valve
(9) equipped with the temperature sensor.

Fig. 1. Schematic of the experimental setup: 1 – bioreactor tank, 2 – RMF generator, 3 – polycarbonate container,
4 – 3-phase inverter, 5 – PC, 6 – sample, 7 – control valve, 8 – plate heat exchanger, 9 – oil circulation pump,

10 – thermostat, 11 – water circulation pump

However, in this study, we decided to mount an additional temperature control system.We applied a precise
thermostat (10) filled with distilled water to maintain the demanded temperature level. Water from the
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thermostat was transported by the circulation pump (11) to a set of two heat exchangers, where the water
bath from each cultivation container was heated to the needed temperature (the same in both bioreactors).
This system allowed to control the temperature within the bioreactors very precisely (changes below
0.1 ◦C). Moreover, in case of some fluctuation of temperature, it affected both bioreactors simultaneously;
thus, the temperature difference between bioreactors can be neglected.

The RMF magnetic flux density (𝐵) measurements were performed using the FW Bell 5180 digital
gaussmeter for the whole range of utilized field frequency, proportional to frequency 𝑓 of power current
(5–50 Hz). It should be noticed that the power frequency is the controlled parameter (using the AC inverter)
and the magnetic flux density varies with the changes of frequency. The typical magnetic field distribution
in the generator area is presented in Fig. 2.

Fig. 2. Typical distribution of magnetic flux density in the RMF generator: a) vertical cross-section,
b) horizontal cross-section at the position of the samples ( 𝑓 = 30 Hz)

The RMF distribution presented in Fig. 2 was found to be symmetrical around the generator axis. The
highest magnetic flux density values were measured near the generator’s wall and decreased toward the
center. Samples with the cell suspension were placed around the generator axis in the uniform field zone
(black circles, respecting to Fig. 2), creating the same field conditions in each sample.

2.3. Design of experiments

The optimization of the K. pneumoniae growth conditions was planned with the design of the experiment
(DoE) technique utilizing the central composite design. In this study, we decided to test bacteria growth
under RMF exposure at various temperatures. Therefore, two parameters were selected for optimization,
i.e., the temperature (𝑥1) and the frequency (𝑥2). The input matrix containing the standardized values of
each parameter is presented in Table 1.

Table 1. Central composite design input matrix

Experiment 1 2 3 4 5 6 7 8 9

𝑥1 1 1 –1 –1 0 0 0 𝑎 −𝑎

𝑥2 1 –1 1 –1 0 𝑎 −𝑎 0 0

𝑦 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9

where: 𝑥1, 𝑥2 – input parameters, 𝑦 – the objective function.
Values of each parameter:
𝑥1: “−𝑎” = 32 ◦C, “–1” = 33.5 ◦C, “0” = 37 ◦C, “1” = 40.5 ◦C, “𝑎” = 42 ◦C,
𝑥2: “−𝑎” = 5 Hz, “–1” = 11.6 Hz, “0” = 27.5 Hz, “1” = 43.4 Hz, “𝑎” = 50 Hz.
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Furthermore, the experimental points given by the composition plan were extended by the additional five
points, for each tested temperature without the RMF presence ( 𝑓 = 0 Hz). The objective function should
be chosen according to the purpose of the experiment, i.e. microorganism growth kinetics, biomass or
product concentration. The objective function values measured in the experiments can be described as
a function of two input parameters, commonly by the quadratic model, defined by the following equation:

𝑦 (𝑥1, 𝑥2) = 𝑝0 + 𝑝1𝑥1 + 𝑝2𝑥2 + 𝑝3𝑥1𝑥2 + 𝑝4𝑥
2
1 + 𝑝5𝑥

2
2 (1)

where: 𝑝0–𝑝5 – equation parameters.

Estimation of Eq. (1) parameters allows us to find the objective function extremum, thus finding the optimal
values of the input parameters. In other words, we can find optimal values of the input parameters (such
as process conditions) for which we can obtain maximized or minimized value of specified objective
function. In the current study, we aimed to optimize K. pneumoniae growth based not only on amount
of biomass, but on the growth kinetics. Therefore, we decided to use as an objective function a newly
proposed parameter, we called growth factor, that evaluates the whole bacterial growth curve. The growth
parameter takes into account the whole growth process – both kinetics and final biomass concentration.
The detailed information about growth factor was described in our previous manuscript (Konopacki et al.,
2020). In the present study, growth factor calculations are shown in Evaluation of bacteria growth section.

3. RESULTS AND DISCUSSION

3.1. Evaluation of bacteria growth

The bacteria growth was monitored through the optical density (OD) measurements. The typical changes
of the OD during the process are presented in Fig. 3.

Fig. 3. A typical bacteria growth curve ( 𝑓 = 27.5 Hz, 𝑇 = 37 ◦C)

The growth curve presented in Fig. 3 has a characteristic sigmoidal shape so that it can be precisely
approximated by the following logistic equation:

OD(𝑡) = 𝑎

1 + exp(𝑏 − 𝑐𝑡) (2)

where: 𝑎 [–], 𝑏 [–], 𝑐 [hr−1] – Eq. (2) coefficients, 𝑡 – time [hr].
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All growth curves obtained in the experiments were approximated with Eq. (2) using Statistica 13 (Statsoft,
Poland). Precision of adjustment was described by the coefficient of determination, 𝑅2. Therefore, the
estimated values of 𝑎, 𝑏, 𝑐 and 𝑅2 coefficients are presented in Table 2.

Table 2. Estimated values of Eq. (2) coefficients for each growth curve

𝑇 [◦C] 𝑓 [Hz] 𝑎 [–] 𝑏 [–] 𝑐 [hr−1] 𝑅2

32 0 0.2419 7.6118 1.1533 0.9983

32 27.5 0.2416 7.1500 1.0754 0.9984

33.5 0 0.2418 6.6310 1.1847 0.9972

33.5 11.6 0.2680 5.0749 1.0685 0.9865

33.5 43.4 0.2652 5.1236 1.0108 0.9928

37 0 0.2192 5.2081 1.1774 0.9879

37 5 0.2137 6.2425 1.2274 0.9888

37 27.5 0.2436 5.1027 1.1655 0.9943

37 50 0.2179 4.5026 1.1451 0.9862

40.5 0 0.1929 4.6595 1.0967 0.9899

40.5 11.6 0.1987 5.1531 1.2812 0.9900

40.5 43.4 0.2178 6.3902 1.2346 0.9917

42 0 0.1708 5.8127 1.5672 0.9849

42 27.5 0.1876 4.5764 1.1368 0.9874

The bacterial growth was described using a few parameters such as the maximum specific growth rate,
maximum concentration of biomass, or the duration of the lag-phase (Zwietering et al., 1990). Knowing
the values of Eq. (2) coefficients (Table 2), it was possible to estimate the value of each growth parameter
(Konopacki et al., 2020). The specific growth rate was calculated as follows:

𝜇max =
𝑎𝑐

4
[
hr−1

]
(3)

The following equation defined the lag-phase duration:

𝜆 =
𝑏 − 2
𝑐

[hr] (4)

The maximum biomass concentration (treated as the asymptote 𝐴 of the sigmoidal curve) was defined as:

𝐴 = 𝑎 [−] (5)

Each of those above mentioned parameters can be used as the objective function for the optimization
process. Nevertheless, choosing only a single parameter that does not fully describe the bacteria growth
phenomenonmay lead to severe errors in estimating growth conditions. On the other hand,multi-parametric
optimization can be complicated and demand an advanced mathematical approach. Therefore, in one of our
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previous manuscripts, we proposed a single parameter that assumes all those three parameters we called
the growth factor (Konopacki et al., 2020):

𝜑 = 𝑛𝐴

(
1 − 𝑏

𝑐𝑡

)
[−], 𝑛𝐴 =

𝐴

𝐴max
(6)

where: 𝑛𝐴 – maximum growth ratio, 𝐴max – maximum value of the asymptote estimated for the whole data
set.

As a result, the values of the maximum specific growth rate, 𝜇max, duration of the lag-phase, 𝜆, maximum
biomass concentration, 𝐴, and the growth factor, 𝜑, are presented in Fig. 4 as the contour plot versus
temperature and frequency.

Fig. 4. Bacteria growth in tested conditions (from Eq. (3–6): a) the maximum biomass concentration, b) lag-phase
duration, c) maximum specific growth rate, d) growth factor

The results presented in Fig. 4 indicate that every parameter covered a different area with an optimal range
of values. Current results have confirmed our previous finding that the maximum biomass concentration
given by the asymptote (Fig. 4a) is achieved in the temperature between 33–35 ◦C (Konopacki et al., 2020).
This result confirms that the reference temperature (37 ◦C) commonly used for culturing K. pneumoniae is
not optimal. The RMFwith frequency in the 20–40 Hz range had the most potent effect on bacterial growth.
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Moreover, higher temperatures (38–42 ◦C) assisted with RMF produced a more considerable stimulatory
effect, particularly in the middle of the frequency region, creating a specific positive “window". Such
frequency “windows” were reported previously (Ahmed et al., 2013; Binhi and Savin, 2002; Carta and
Desogus, 2012), although we have observed this effect along with the temperature changes in the current
work. The duration of lag-phase (Fig. 4b) decreased with the temperature reaching a relatively low value
at 34 ◦C. Moreover, the RFM significantly influenced 𝜆 values in the range 15–40 Hz at 34–37 ◦C and up
to 25 Hz at 40–42 ◦C.

The maximum specific growth rate (Fig. 4c) was primarily affected by the temperature. The increasing
RMF intensity caused a relatively slight inhibition of the specific growth rate. The highest 𝜇max values can
be observed at 33–35 ◦C and frequency up to 20 Hz. Literature data suggest that the highest biochemical
activity of these bacteria is between 30–35 ◦C (Grimont and Grimont, 2015), which supports our finding.

Those three described parameters covered different regions with optimal values, suggesting the specificity
of observed effects. This knowledge could be used depending on the purpose accompanying the bacterial
cultures. Furthermore, it means that other values of the parameters could be used to achieve higher
maximum biomass concentration (Fig. 4a), shorter lag-phase duration (Fig. 4b), or maximum specific
growth rate (Fig. 4c). Nevertheless, we have based our optimization on the growth factor considering all
the above parameters, allowing us to choose the proper growth conditions. The results presented in Fig. 4d
suggest that the optimal growth can be obtained for the temperature at the range between 34–36 ◦C and
RMF exposure of frequency in the range 25–35 Hz.

3.2. Optimization of K. pneumoniae cultivation conditions

To estimate accurate optimal temperature and frequency, we utilized the growth factor as the objective
function for Eq. (1). Moreover, in the current study, we modified Eq. (1) by substituting the additional
reciprocal terms 𝑝6

𝑇
, 𝑝7
𝑇 2
to provide sufficient surface curvature and lower the adjustment error. Finally, the

growth factor as the function of temperature and frequency was defined as follows:

𝜑 (𝑇, 𝑓 ) = 𝑝0 + 𝑝1𝑇 + 𝑝2 𝑓 + 𝑝3𝑇 𝑓 + 𝑝4𝑇
2 + 𝑝5 𝑓

2 + 𝑝6
𝑇

+ 𝑝7

𝑇2
(7)

The non-linear estimation of Eq. (7) parameters was performed with Statistica 13 software (Statsoft,
Poland). The quasi-Newton method was employed with the quadratic loss function (mean square error,

MSE, where MSE =

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2

𝑛
). The quasi-Newton method uses the estimated values of first and

second-order derivatives to analyse how fast and in which direction the function slope is changing. This
information is then utilized to minimize the loss function. The estimated parameters of Eq. (6) allowed
to create a surface plot (called a response surface) 𝜙(𝑇, 𝑓 ) with marked data points that are presented in
Fig. 5. Parameters 𝑝0 − 𝑝7 of Eq. (7) are presented in Table 3.

Table 3. Estimated parameters of the Eq. (6)

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑅2

–2.60E+03 4.54E+01 1.25E–02 –2.96E–01 –6.12E–05 –2.50E–04 6.62E+04 –6.30E+05 0.90

The obtained parameters presented in Table 3 allowed us to optimize the function given by Eq. (6). In this
study, the optimization was conducted with Matlab 2020b software (Mathworks, USA). Our optimization
aim was to maximize the growth factor value. However, most of the mathematical procedures available in
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Fig. 5. Surface plot of the adjusted growth factor 𝜙(𝑇, 𝑓 ) function to the experimental data

the software give the only possibility to minimize the non-linear multivariable function. For that reason,
the fmincon – built-in Matlab algorithm finding the function minimum was applied for the –𝜙(𝑇, 𝑓 )
function (this is equal to maximize 𝜙(𝑇, 𝑓 )) with boundaries set to the analysed region (𝑇 = 32–42 ◦C,
𝑓 = 0− 50 Hz). This procedure allowed us to obtain the optimal values of both temperature and frequency
for the maximized growth factor. The optimized parameters are presented in Table 4.

Table 4. Optimized values of temperature and frequency

Parameter Optimal value

Temperature [◦C] 34.38

Frequency [Hz] 31.51

Based on the calculated optimal conditions, we performed an additional experiment to verify the correctness
of the model. The results are presented in Fig. 6 and Table 5.

Fig. 6. K. pneumoniae growth in optimized conditions with and without the impact of RMF
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Table 5. Growth factor for optimized conditions

RMF Control RMF predicted Error

Growth factor 0.500 0.451 0.515 3%

Results presented in Fig. 6 (for the optimized growth conditions) show the difference in growth after 5
hours of exposure. The EMF action possibly allowed for the avoidance of limitations resulting in higher
biomass concentration in the stationary phase. This effect could be created by changes in reactive oxygen
species generation (ROS) during exposure. We reported recently that RMF exposure could lead to subtle
changes in the ROS level in cells (Jabłońska et al., 2022). ROS can affect metabolic performance, e.g.
regulating some physiological processes, or impact utilized metabolic routes. However, this mechanism
was not proven enough, so more studies are required.

3.3. Impact of RMF on K. pneumoniae growth

To study the impact of RMF exposure on K. pneumoniae growth in various temperatures, we compared
the growth factor calculated for the whole data set obtained for experiments with various RMF frequencies
and the control process (without the exposure). The results are presented in Table 6 as growth stimulation
index given by the following equation:

𝐺𝑠 =
𝜑RMF − 𝜑Control

𝜑Control
· 100% (8)

where: 𝜙RMF – growth factor for the process with RMF exposure, 𝜙Control – growth factor for the process
without the RMF exposure in the same temperature.

Table 6. Growth stimulation index for tested cases

𝑇 [◦C] 𝑓 [Hz] 𝐺𝑠 [%]

32 27.5 –2.72

33.5 11.6 31.41

33.5 43.4 32.75

37 5 –10.92

37 27.5 11.33

37 50 4.19

40.5 11.6 –11.35

40.5 43.4 8.08

42 27.5 1.48

34.4 31.5 9.80

Data presented in Table 6 showed the highest stimulatory effect of RMF at 33.5 ◦C for the tested frequencies.
On the contrary, at 37 ◦C, the RMF effect strongly depended on the applied RMF frequency, where the most
significant positive effect was observed for 27.5 Hz, which was close to the calculated optimal frequency.
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The highest and lowest temperature from the analysed range (32 and 42 ◦C) yielded no significant changes
compared to the control process without the external electromagnetic field. For the middle-temperature
range (33.5–40.5 ◦C) various effect of RMF exposure was observed; thus temperature had the major
impact on bacteria growth. Moreover, in general, we can see that frequencies at the middle range gave the
best stimulatory effect, whereas low frequency showed the inhibitory effect. These findings also confirm
the assumption of possible positive and negative frequency windows (Ahmed et al., 2013). It should be
highlighted that the𝐺𝑠 index shows only the difference in growth between the control and exposed bacteria,
which is not identical with the maximum possible growth found for the optimal conditions.

The calculated optimal growth conditions were validated by testing the bacteria metabolic activity for
tested ranges of temperature and frequency. Cell metabolic activity was measured in resazurin assay,
which allowed us to estimate the ratio between samples treated with rotating magnetic field (RMF) and
controls with the following equation:

𝐸RMF =
𝑀RMF − 𝑀Control

𝑀Control
· 100% (9)

where: 𝑀 – metabolic activity, 𝐸 – effectiveness of rotating magnetic field stimulation [%].

A single time point (4 h), common for all used conditions where bacteria were in the exponential growth
phase, was selected for further analysis. A contour plot in Fig. 7 presents these findings.

Fig. 7. Values of the effectiveness factor, 𝐸RMF (Eq. (9)) of the cell metabolic activity
stimulation in various temperatures

The results presented in Fig. 7 indicated that in the temperatures of 32–38 ◦C under RMF exposure bacteria
respiration was higher than in the controls. This stimulatory effect was highest between 34 and 36.5 ◦C.
Moreover, we also observed inhibition of the cell proliferation for low (up to 20 Hz) and high (40–50 Hz)
field frequency for the higher temperature. Thus, the values found during these studies (𝑇 = 34.4 ◦C,
𝑓 = 31.5 Hz) showed one of the significant improvements of the metabolic activity stimulation relating
to the control process. However, it should be noticed that the data presented in Fig. 7 were given for
a single point (4 h) and cannot describe the whole growth process like the proposed growth factor. Thus,
the electromagnetic field mechanisms that impact the bacteria cell proliferation are still not well described.
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Various groups speculated about the actionmechanism for electromagnetic fields. One of themost common
assumptions is that the electromagnetic field may generate oxidative stress in cells. It was found, e.g., in
mitochondria of eukaryotic cells (Santini et al., 2018). Our results from the resazurin assay indicate that
this could be the case in our studies. Blue resazurin pigment is reduced by NAD(P)H-dependent reductases
(Hall et al., 2016). Furthermore, Lemire et al. (2017) have shown that oxidative stress may stimulate
overproduction of NADPH which would explain the higher fluorescence in samples exposed to RMF.
Another hypothesis suggested that the electromagnetic field is creating eddy currents which, in principle,
may increase the availability of nutrients to growing cells or increase the aeration of the culture medium
(Aubert et al., 2012; Hammond, 1962; Hristov, 2010).

Another leading theory implies the modification of the cell membrane transport by facilitating the pene-
tration of the relatively large ions (e.g., divalent cations of metals), magneto- and electroporation effect,
and the micro-mixing phenomena induced by the magnetic field (Konopacki and Rakoczy, 2019). Similar
findings of AMF impact on cell transport mechanism were recently suggested for the Saccharomyces cere-
visiae yeast model. De Andrade et al. (2021) discussed the possible biophysical effect of electromagnetic
fields that may influence the transport of H+ ions. If the same effect would accompany EMF action in K.
pneumoniae, it might influence the proton-motive force crucial for energy production (ATP) in bacteria
(Roger et al., 2018). However, in bacteria, this hypothesis should be verified by some additional research
involving gene expression and metabolic pathway studies. At this point, it is possible to obtain the positive
effect of the electromagnetic field exposure on the bacteria growth but for the particular conditions which
can be used in further processing, e.g., production of the bacteriophages.

The optimization of the K. pneumoniae cultivation process was the first stage of our current project.
Then, the optimized biomass production will be further studied in bacteriophage production. Previously
we discovered that the application of AMF (𝐵 = 34 mT, 𝑓 = 50 Hz) improved the induction of lambdoid
prophages (Struk et al., 2017). In further studies, we will verify whether the observed stimulation of
bacteria can be applied in the more efficient production of lytic phages. For that reason, we plan to set up
a very promising two-stage magnetically assisted process of bacteriophage production, where at the first
stage, AMF will stimulate the host-cell proliferation and alter their metabolic activity, and at the second
stage, AMF will facilitate the phage adsorption and cell infection.

4. CONCLUSIONS

We have successfully conducted the optimization of K. pneumoniae growth in the planned experimental
conditions. The central composite design of experiments limited the total number of conducted experi-
ments. We found that the measured parameters: maximum specific growth rate, duration of lag-phase,
and maximum concentration of biomass showed different optimal regions; thus, the optimization could
be complicated. These difficulties were mitigated through using the previously proposed growth factor as
an objective function. We confirmed that the K. pneumoniae growth was optimal near 34 ◦C. An external
electromagnetic field did not significantly change the optimal temperature. However, we found that the
field with about 30 Hz frequency could stimulate bacterial growth in the optimal temperature up to 10%,
which confirmed the possibility of increasing the effectiveness of the process using certain AMF. In this
study, we found optimal temperature lower than reference, commonly used 37 ◦C. Additionally, this will
result in decreased energy consumption, thus reducing the bioprocess’s operational cost.
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SYMBOLS

𝑎 logistic function coefficient,
𝐴 growth curve asymptote,
𝐴max maximum value of growth asymptote,
𝑏 logistic function coefficient,
𝑐 logistic function coefficient, hr−1
𝐸 effectiveness of rotating magnetic field stimulation, %
𝑓 frequency, Hz
𝐺𝑠 growth stimulation index, %
𝑀 metabolic activity
𝑛𝐴 maximum growth ratio,
𝑝 equation parameter,
𝑇 temperature, ◦C
𝑥 input parameter,
𝑦 objective function,

Greek symbols
𝜇max maximal specific growth rate, hr−1
𝜆 lag-phase duration, hr
𝜆𝑒𝑚 fluorescence emission wavelength, nm
𝜆𝑒𝑥 fluorescence excitation wavelength, nm
𝜆OD optical density wavelength, nm
𝜑 growth factor,

Subscripts
1, 2 number of parameter
Control for process without electromagnetic field exposure,
RMF for process with electromagnetic field exposure
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