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Chitosan (CS) is a polysaccharide readily used in tissue engineering due to its properties: similarity to
the glycosaminoglycans present in the body, biocompatibility, non-toxicity, antibacterial character and
owing to the fact that its degradation that may occur under the influence of human enzymes generates
non-toxic products. Applications in tissue engineering include using CS to produce artificial scaffolds
for bone regeneration that provide an attachment site for cells during regeneration processes. Chitosan
can be used to prepare scaffolds exclusively from this polysaccharide, composites or polyelectrolyte
complexes. A popular solution for improving the surface properties and, as a result enhancing cell-
biomaterial interactions, is to coat the scaffold with layers of chitosan. The article focuses on a
polysaccharide of natural origin – chitosan (CS) and its application in scaffolds in tissue engineering.
The last part of the review focuses on bone tissue and interactions between cells and chitosan after
implantation of a scaffold and how chitosan’s structure affects bone cell adhesion and life processes.
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1. INTRODUCTION

Bone lesions are common injuries. In some cases, the bone can regenerate a sufficiently small defect
size (Alonzo et al., 2021; Kanczler et al., 2020). There are also injuries, so-called critical defects, that
cannot regenerate spontaneously and require special treatment. It is assumed that the size of such lesions
is approx. 1–2 cm and more than 50% of the bone volume is affected (Schemitsch, 2017). Regeneration of
such defects is complicated, difficult to control; so far, it has involved autologous bone transplant surgery
(Giannoudis et al., 2005; Kozusko et al., 2018; Pape et al., 2010). Alternative to conventional transplants,
scaffolds made from biomaterials can be used. Scaffolds will provide a place for attachment for new bone
cells and form the basis for the reconstruction process (Deb et al., 2018; Preethi Soundarya et al., 2018).

Biomaterials are the primary materials used in tissue engineering. They must be biocompatible, effective,
and sterilisable (Budnicka et al., 2020; Hudecki et al., 2019). The use of biomimetic materials is currently
popular. They are bioresorbable and designed to stimulate the growth and proliferation of cells on the
material’s surface (Hench and Polak, 2002; Navarro et al., 2008). The literature review aimed to study the
popular polysaccharide of natural origin – chitosan, its properties, behaviour in contact with body cells,
and applications in bone tissue engineering.
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2. CHITOSAN

Chitosan (CS) is a linear cationic polymer, a copolymer composed of N–acetyl–D–glucosamine and
D–glucosamine units linked by 𝛽 1,4 glycosidic bonds (Fig. 1).

Fig. 1. Chitosan

2.1. Preparation and chemical structure

The source of chitosan is chitin (CI) – the second most common polysaccharide in nature (Islam et al.,
2020). CI is one of the main building blocks of arthropod skeletons and fungal cell walls (Bastiaens et
al., 2019; Lalzawmliana et al., 2019). Industrial chitin is most often obtained from food industry waste,
crustaceans or sea molluscs (shrimps, lobsters, crabs, squid, mussels) (Bakshi et al., 2020; Wang et al.,
2020b; Yadav et al., 2019; Zargar et al., 2015) although it may also be of fungal origin (Pochanavanich and
Suntornsuk, 2002).

Due to its low solubility in popular solvents, chitin is obtained in a multi-stage extraction process of
chemical purification (Fig. 2). The dried shells of crustaceans are demineralised by acid (commonly 10%
aqueous HCl solution) to remove minerals, especially calcium (Kou et al., 2021; Younes and Rinaudo,
2015). In the next, deproteinisation step, the residues are treated with alkalines, e.g. NaOH solution, to
remove proteins (Kumari and Kishor, 2020). The obtained chitin of a pinkish colour can be subjected to
a decolouration process under the influence of an oxidant, e.g. KMnO4, H2O2 (Islam et al., 2020; Younes
and Rinaudo, 2015). It is also possible to purify chitin biologically with the use of enzymes – proteases

Fig. 2. Production of chitosan
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(Arbia et al., 2013; Valdez-Peña et al., 2010; Younes et al., 2014) or microbes in the fermentation process
(Doan et al., 2019).

The purified chitin is subjected to a deacetylation process (Fig. 2). To this end, the CI is treated with a
concentrated base, most often 40% NaOH (Kou et al., 2021). The chitosan thus obtained is in the form of
a white powder (Islam et al., 2020). Random acetyl groups are removed in the deacetylation process, thus
replacing some N–acetyl–D–glucosamine with D–glucosamine units. The presence of the latter groups
depends on the degree of deacetylation (DD) used to characterise the CS. The more deacetylated the CS,
the fewer N–acetyl–D–glucosamine groups. The value of the DD of chitosan is in the range of 50–95%
(Aravamudhan et al., 2014; Wang et al., 2020b).

2.2. Physicochemical properties

Chitosan is insoluble in water or popular organic solvents (including methanol, ethanol, isopropanol,
toluene). However, it dissolves in dilute aqueous acid solutions, e.g. hydrochloric acid, acetic acid, formic
acid and citric acid (Grant and Allen, 2006; Lu et al., 2004; Tsai et al., 2009). Due to the presence of free
amino groups that can protonate at a pH below 6 (Chicatun et al., 2017; Leedy et al., 2011), CS forms with
acids water-soluble salts (Ravi Kumar et al., 2004). The solubility of chitosan depends on the degree of
deacetylation (DD) and the molecular weight of the polysaccharide (Madureira et al., 2015; Wang et al.,
2020b). Due to its positive charge, chitosan can form complexes with negatively charged compounds, e.g.
polylactide (Wan et al., 2007), poly(glutamic acid) (Antunes et al., 2011), DNA (Maurstad et al., 2007;
Strand et al., 2005), collagen (Kaczmarek et al., 2018), alginates (Park et al., 2019; Phoeung et al., 2017;
Wang et al., 2010), hyaluronic acid (Gennari et al., 2019; Lallana et al., 2017; Oyarzun-Ampuero et al.,
2009), pectin (Bombaldi de Souza et al., 2019; Pandey et al., 2013) and many others. The presence of
hydrophobic acetyl groups and hydrophilic amine and hydroxyl groups ensures the amphiphilic nature
of the chitosan (Islam et al., 2020). The amine groups that are responsible for the cationic nature of the
polymer result in high surface tension of aqueous solutions of this polysaccharide (Xu and Yang, 2014).

The structure of chitosan, based on D–glucosamine and N–acetyl–D–glucosamine units, is similar to
the structure of naturally occurring glycosaminoglycans (GAG). GAGs build the extracellular matrix and
perform various functions in organisms, so it can be expected that chitosan can also easily interact with
animal cells thanks to its GAG-like structure (Chicatun et al., 2017; Preethi Soundarya et al., 2018). CS also
demonstrates osteocompatibility (the presence of chitosan does not adversely affect bone regeneration) and
osteoconduction (the ability to connect with bone tissue and stimulate its growth) (Islam et al., 2020; Luo
et al., 2008; Wu et al., 2014), it inhibits the growth of neoplastic cells (Shi et al., 2017; Yuan et al., 2019)
and promotes wound healing (Abd El-Hack et al., 2020; Duan et al., 2019; Kim and Shin, 2013; Kucharska
et al., 2019). Chitosan also has antibacterial and antifungal properties (against both gram-positive (Li
et al., 2020b; Raafat et al., 2008) and gram-negative bacteria (Helander et al., 2001; Li et al., 2020b)).
These properties are probably due to the interaction between the positively charged polymer and negatively
charged lipopolysaccharides or proteins in microbial membranes (Kucharska et al., 2019). Interactions
with the surface of the bacterial cell reduce the permeability. The antibacterial properties of chitosan may
also result from the interaction with the DNA of the bacterial cell, which results in inhibition of RNA
synthesis (Ahmad et al., 2020; Kucharska et al., 2019; Kumar et al., 2019).

2.3. Chitosan degradation

Scaffolds must be sterilised before implementation. Chemical or radiation sterilisation is commonly used.
Chitosan is a natural polymer that decomposes under the influence of both chemical and physical factors,
and such changes may affect the properties of the polymer and, consequently, the chitosan-containing
medical device (Pandit et al., 2021; Petrov et al., 2016).
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Chemical factors include depolymerisation under the influence of strong oxidants (Ma et al., 2014) or
free radicals, (Hsu et al., 2002) popularly used in the sterilisation process. The products are chitosan
oligosaccharides with various, low molecular weights (Yan et al., 2020). Chemical degradation is fast but
poorly controlled (random cutting of the polymer chain) (Je and Kim, 2012; Tsao et al., 2011; Yuan et
al., 2019).

It was examined that the CS structure changes under the influence of gamma radiation used in radiation
sterilisation. A decrease in molecular weight of polysaccharide is observed after exposure to radiation of
15 kGy, the effect is stronger with increasing radiation dosage (San Juan et al., 2012). Contrary to chemical
depolymerisation, cuts occur more frequently inside the polymer, (Lim et al., 1998) and the obtained
oligosaccharides are characterised by a narrower size distribution (Yan et al., 2020).

2.4. Metabolism in living organisms

A biodegradable scaffold used in bone regeneration should degrade in the body into well-known, non-toxic
products that can be excreted or incorporated into the body’s natural metabolic cycles. The time of scaffold
degradation in the body depends on the place of implanting and the patient’s characteristics (their age,
chronic diseases), but on average in bone regeneration, it should take from 3 to 9 months (Budnicka et
al., 2018).

Glycosidic bonds in chitosan can undergo non-enzymatic hydrolysis, but a process occurs very slowly
(Jennings, 2017; Kim et al., 2008). Enzymatic degradation of chitosan can occur under the influence
of specific or non-specific enzymes (Je and Kim, 2012). The specific enzymes in the human body that
hydrolyse the 𝛽-1,4-glycosidic bonds present in chitosan are chitinases (Sørbotten et al., 2005). Non-
specific enzymes are, for example, human pancreatic lipase or lysozyme (Halim et al., 2012; Nawrotek
et al., 2020). Chitosan also degrades under the influence of enzymes produced by bacteria present in the
colon (Guarino et al., 2015). The rate of chitosan degradation depends on properties of the polysaccharide,
such as molecular weight, degree of deacetylation, crystallinity (Zhang and Neau, 2002). Products of the
process are non-toxic oligosaccharides of various molecular sizes, which can be easily removed from the
body in urine (Onishi and Machida, 1999; Szymańska and Winnicka, 2015). Chitosan does not elicit a
long-lasting inflammatory or immune response (Abarrategi et al., 2010; El-Sayed et al., 2021; Kim et al.,
2011). The inflammation observed after introducing chitosan depends on the degree of deacetylation of the
polysaccharide: chitosan with a lower DD induced a stronger leukocyte response (Barbosa et al., 2010). The
degradation of scaffolds made of chitosan with similar DD but in different forms: microspheres (Mi et al.,
2002), hydrogel (Moura et al., 2017), and 3D porous scaffold, occurs at different times (Qasim et al., 2017).

It has been noted that chitosan can interact with blood cells due to its cationic nature. In the presence of
chitosan, blood tends to coagulate and form clots on the surface of chitosan (Hirano et al., 1987). After
oral administration of a polysaccharide in the organisms of rabbits, a specific response was observed, i.e.,
an increase in lysozyme secretion by the organism, which may prevent thrombosis (Hirano et al., 1991).
In vivo degradation studies of chitosan-poly-L-lactide composites in rats showed that the polysaccharide
did not cause an unexpected, negative response, and no blood clots were detected after a week (Guo et
al., 2018).

3. CELL SCAFFOLDS

Tissue engineering is looking for solutions to replace the need for autographic or allographic transplants.
One of the proposed solutions is the use of scaffolds that mimic the fundamental roles of tissues and enable
their regeneration (Chan and Leong, 2008; Salgado et al., 2013).
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Such scaffolds is usually three-dimensional, porous structures made of biomaterial. The main task of
scaffold is to support the regenerating tissue by providing an artificial matrix on the surface of which cells
can settle (Deb et al., 2018). Scaffolds should imitate the tissue for which they are used to regenerate,
its structure and properties (O’Brien, 2011). The implant must not cause an adverse immune response, it
should be metabolised by the body, easy to shape and sterilise, and it should be durable so that it can be
stored in ex vivo conditions (Middleton and Tipton, 2000).

3.1. Scaffolds made of chitosan alone

Chitosan supports cell adhesion and proliferation and thus tissue regeneration. CS can be easily modelled
to a specific shape and create porous structures with open pores (García Cruz et al., 2010). It is suitable
as a material for 3D printing (Sadeghianmaryan et al., 2020). These features make chitosan a potential
candidate for scaffold material.

Production conditions significantly affect the porosity, pore size or mechanical properties related to the
compressive modulus of scaffolds (Reys et al., 2017). Scaffolds made of chitosan with a higher degree
of deacetylation are characterised by higher mechanical resistance, slower degradation time and lower
absorbability of the scaffold (Thein-Han and Kitiyanant, 2007). Also, the scaffold’s porosity significantly
influences its mechanical properties (Sadeghianmaryan et al., 2020); the more porous the structure, the
worse the mechanical properties. The decrease in the porosity from 94.1% to 82.5% was related to an
increase in Young’s modulus to 5.2 kPa and 520 kPa, respectively, while the pore size decreased (Xu et
al., 2017).

In vitro and in vivo studies are conducted on chitosan scaffolds to treat damage to various tissues. The
interactions and influence of CS on cells are investigated, among others, spinal cord (Kim et al., 2011),
bones, cartilage (Abarrategi et al., 2010), tendons (Chen et al., 2018a) and skin (Intini et al., 2018). The
use of chitosan in the treatment of the spinal cord has been studied. After the implant insertion into the
meninges or directly into the spinal cord for 6 or 12 months, the host (rat) cell response was low, which
indicates the inert nature of chitosan and the possibility of using the material in long-term therapies (Kim et
al., 2011). In vivo studies suggest that the cellular response depends on the properties of the chitosan used,
and chitosan scaffolds promote the shaping of the subchondral bone (Abarrategi et al., 2010). High DD
(DD 88% and 95% tested) supports cell proliferation on the surface of the chitosan scaffold (Thein-Han
and Kitiyanant, 2007).

Active layers can be applied to the scaffolds to improve the interaction at the biomaterial-tissue interface
(Budnicka et al., 2018). A promising method is to subject scaffolds to a biomineralisation process. Calcium
and phosphate ions from body fluid settle down on a scaffold, thus creating hydroxyapatite layers imitating
bone (Saravanan et al., 2018). After modification, the scaffolds are characterised by greater rigidity and
smaller pore sizes, yet sufficiently large to allow unhindered migration of bone cells (Dash et al., 2017).
The conducted in vitro studies indicate that the scaffold after apatite modification supports the adhesion
and proliferation of cells to a greater extent than the unmodified version. Mineralised scaffolds are better
suited for use in bone tissue engineering (Aday and Gümüşderelioğlu, 2009; Manjubala et al., 2008).

3.2. Chitosan as a scaffold surface modifier

Chitosan is often used as a coatingmaterial for implants or scaffolds. Such surfacemodification significantly
improves the surface properties of an implant – its bioactivity, biocompatibility, corrosion resistance, and
properties supporting bone regeneration, such as osteoconductivity (Di Martino et al., 2005; Roach et al.,
2007). Chitosan layers are stable, and depending on the concentration of chitosan, its molecular weight,
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the degree of deacetylation and application technique, they degrade at different rates, even allowing for
long-term use (Gallyamov et al., 2018; Kumari et al., 2021). Surface modification significantly influences
the mechanical properties of the scaffold. As chitosan concentration in the layer increases, the compression
strength and the compression modulus factor increase, while scaffolding crystallinity decreases (Poddar
et al., 2021). The increase in the first two is likely related to the rise in the number of amine groups that
support the scaffold’s material, polycaprolactone (PCL), and improve the strength of the scaffold. The
decrease in crystallinity results from hydrogen bonds between PCL and chitosan (Poddar et al., 2021).

It is commonly known that the hydrophilicity/hydrophobicity of the scaffold affects cell adhesion and
proliferation. Polylactide (PLA) is a biocompatible and bioresorbable polymer. It is, however, a hydrophobic
polymer that does not promote cell adhesion. To increase the hydrophilicity of the polymer, the PLA
surface can be modified by applying a layer of chitosan (Zhu et al., 2002). Modification of poly-L-lactide
surface with chitosan also improves mechanical properties of the scaffold, as well as enhances adhesion,
differentiation, activity, and morphology of chondrocyte cells (Ma et al., 2002) and mouse bone marrow
stromal cells (mBMSCs) compared to the unmodified structure, which accelerates the bone regeneration
process (Chen et al., 2018b; Jiao et al., 2007). The introduction of the PLLA scaffold with a CS layer
into skull defects of rats and the examination of bone changes after 12 weeks showed that the modified
scaffolds supported more significant bone tissue growth with higher density than the unmodified ones.
This confirms that chitosan-coated polylactide scaffolds are sustainable for bone regeneration (Chen et al.,
2018b) and modifying the scaffold surface with chitosan significantly improves osteoblast adhesion and
proliferation (He et al., 2021). Chitosan coating’s antimicrobial properties were tested on gram-negative
strains of E. coli (Al-Nabulsi et al., 2020; Lin et al., 2021) and gram-positive Staphylococcus aureus (Foss
et al., 2015). For both groups, the use of chitosan layers reduced bacterial settling.

In addition to applying chitosan layers, mixtures of chitosan and other compounds are also used to
improve specific properties. Using a chitosan layer with ZnO particles on a titanium implant increases the
compatibility of such an implant and its corrosion resistance, which results from the closure of pores on the
implant surface. The introduction of the oxide improves the antibacterial properties of the layer compared
to the layer made of chitosan itself (Lin et al., 2021). Incorporating Ca2+ and PO3−4 to chitosan-modified
PLLA scaffolds induces hydroxyapatite formation, thus improving osteoconductive properties (Mano et
al., 2008). Antibiotics can also be incorporated into the chitosan layer. The compounds bind through weak
intermolecular interactions, allowing the easy release of the antibiotic and, consequently, the fight against
bacteria (Zarghami et al., 2021).

3.3. Complexes with other natural polymers

Due to the cationic nature of the polymer, CS can spontaneously form stable polyelectrolyte complexes
(PEC) with negatively charged structures such as natural polymers. In a solution, permanent electrostatic
interactions are formed between the cationic amino group of chitosan and the negatively charged group
of the polyanion (Kulkarni et al., 2016; Wu et al., 2020). PEC formation can be investigated with FTIR
(N–H, C=O bond shift study), DSC differential scanning calorimetry (melting point shift), or by examining
changes in zeta potential (Lal et al., 2017; Lallana et al., 2017). The wide range of properties, non-toxicity,
biodegradability, and biocompatibility of PEC ensure a broad application of the complexes, especially in
tissue engineering (Potaś et al., 2020). Examples of PEC are shown in Table 1.

The size of the complex particles depends on the molecular weight and concentration or addition order
of polymers used. The larger the polymer, the thinner the packing and the larger the size of the PEC
(Strand et al., 2005). The diameters of the chitosan with pectin complexes (CS/Pc) nanoparticles varied
depending on the order of addition and concentration of polymers. Large particles (460 nm) were formed
at low polymer concentrations when chitosan was added first; the inverse was true at high concentrations
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Table 1. Examples of polyelectrolyte complexes with chitosan in tissue engineering

Polycation Polyanion Abbrv. Characteristics Reference

Chitosan

Alginate CS/Alg

3D scaffolds with increased compres-
sive modulus and yield strength, good
osteoblast affinity

Li et al. (2005)

3D scaffolds coated with HAP,
increased mechanical properties,
good osteoblast affinity

Patil et al.
(2017)

Nontoxic biomaterial,
anti-inflammatory properties

Hardy et al.
(2018)

PEC fibres as a controlled protein
encapsulation system

Liao et al.
(2005)

Carboxymethylcellulose CS/CMC

3D scaffolds composed with cal-
cium phosphate, increased compres-
sive strength and compressive modu-
lus, increased osteoblast proliferation

Unagolla et al.
(2018)

Chondroitin sulfate /
hyaluronic acid /
nano-hydroxyapatite

CS/CSA/
HA/nHAP

Porous scaffolds with improved me-
chanical properties, good biocompati-
bility that aids osteoblast proliferation

Hu et al.
(2017)

Gelatin / hydroxyapatite CS/Ge/
HAP

3D porous scaffolds inducing
osteogenic differentiation

Sellgren and
Ma (2012)

Pectin CS/Pc

Porous scaffolds with improved elastic
moduli, non-toxic products of degra-
dation

Bombaldi de
Souza et al.
(2019)

3Dporous scaffolds, osteoblast affinity Coimbra et al.(2011)

Phosphorylated
chitosan CS/PCS 3D porous scaffolds, good osteoblast

affinity Li et al. (2007)

(Birch and Schiffman, 2014). As the concentration of polymers in the solution increases, the size of the
particles formed increases. In turn, the mass ratio of the polymers used affects the resulting complexes’
size, charge, and solubility (de Vasconcelos et al., 2006). The stability of PEC is independent of particle
size, but it is dependent on the pH of the solution (Birch and Schiffman, 2014). Molecules or ions, other
than the polymers forming the complex, present in the solution affect the ease of forming complexes, their
stability, and their properties. An example of such a compound is sodium lauryl sulphate surfactant, which
increases the surface roughness and the thickness of the chitosan/alginate (CS/Alg) (de Vasconcelos et al.,
2006; Kaygusuz et al., 2017).

The stability of scaffolds made of polyelectrolyte complexes depends on the properties of polymers, such
as molecular weight or, in the case of chitosan, degree of deacetylation (Bombaldi de Souza et al., 2019).
Compared to chitosan-only scaffolds incorporating alginate caused an almost threefold increase in the
compressive modulus and yield strength (Li et al., 2005). It is because the electrostatic interaction between
the chitosan and polyanion increases the stability of the scaffolds obtained compared to chitosan-only
scaffolds (Park et al., 2013). For different polyanions, mechanical properties differ (Baghaei et al., 2021),
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for example, the elastic modulus of scaffolds containing alginate are lower than for the pectin-containing
ones (Bombaldi de Souza et al., 2019). The same dependence is observed in the degradation process:
chitosan complex with alginate degrades faster than another polyanion. It can be attributed to differences
in the crosslinking of both formulations (Bombaldi de Souza et al., 2019).

Introduction of hydroxyapatite (HAP) into PEC scaffolds improvesmechanical strength. Carboxyl groups of
polyanions are crosslinked by Ca2+ ions introduced in the biomineralisation process. As a result, scaffolds’
mechanical properties and stability increase while water uptake and degradation rate get lower (Bombaldi
de Souza et al., 2019; Kaczmarek et al., 2018; Patil et al., 2017). The increase in mechanical properties
may also be due to a decrease in porosity of scaffolds as a result of pore filling by the HAP particles (Patil
et al., 2017).

The polyelectrolyte complexes of chitosan with biogenic polysaccharides are non-toxic, show no inflam-
matory effects, support cell adhesion, as well as osteoblast proliferation and angiogenesis (Hardy et al.,
2018; Kaczmarek et al., 2018; Li et al., 2005; Patil et al., 2017). However, some sources report the CS/Alg
surface as unfavourable for cell adhesion (Phoeung et al., 2017). Incorporating HAP into scaffolds improves
interactions with cells (Kaczmarek et al., 2018; Unagolla et al., 2018).

3.4. Composites with chitosan

Often, implants made of purely natural or synthetic polymers do not have the mechanical properties
desired in tissue engineering; for instance, they cannot carry the required loads (Islam et al., 2020). To
change the properties of the scaffold, a new compound can be introduced into the starting composition to
obtain a composite (Unnithan et al., 2017). The use of the composite influences morphology, mechanical
properties, porosity, swelling of the scaffolds, cellular interactions and degradation processes. Examples
of such composites are presented in Table 2.

The morphology of the scaffolds can be controlled by changing the concentration of the polymers used. For
the poly-L-lactide + chitosan (PLLA+CS) scaffold, the higher the chitosan concentration in the starting
solution, the more chitosan was deposited on the pore surface, making the pores surface more jagged
compared to polylactide systems alone (Mano et al., 2008). This is a desirable phenomenon because of the
increase in scaffold surface area and, as a result, the increase in the space available for cells to attach (Kara
et al., 2019).

The use of composites has a significant influence on mechanical properties. To increase the compressive
strength of macrospheres made of chitosan, montmorillonite (MMT) and hydroxyapatite (HAP) can be
added (Vyas et al., 2017). Inorganic particles act as physical crosslinking sites, increasing the polymer
network’s stability and load-bearing capacity (Cao et al., 2015). The swelling of scaffolds is an essential
process for proper tissue regeneration. It promotes protein adsorption and the diffusion of nutrients and
gases. Increasing the scaffold’s surface area also aids cell adhesion (Ali et al., 2022). Changes in swelling
of composites are caused by the introduction of additional hydrophilic or hydrophobic groups (Li et al.,
2021) The composite made of poly(vinyl alcohol) and chitosan (PVA+CS) showed lower swelling than
in the case when carbonated hydroxyapatite was introduced (Januariyasa et al., 2020). Swelling ratios of
scaffolds can be decreased by crosslinking (Suo et al., 2021) and binding or blocking hydrophilic groups
(Scalera et al., 2021; Vyas et al., 2017). Interestingly, introducing montmorillonite (MMT) to chitosan-
only scaffolds reduced swelling by forming a barrier that inhibited interactions between water particles
and polymer (Vyas et al., 2017).

Increased hydrophilic properties of composites accelerate non-enzymatic degradation processes. Intro-
ducing hydrophilic compounds like chitosan into hydrophobic scaffolds accelerates water’s diffusion into
the interior, making hydrolysis of the hydrophobic polylactide faster (Guo et al., 2018). In composites,
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Table 2. Examples of chitosan composites in bone tissue engineering

Composite compounds Abbrv. Characteristics Reference

poly(vinyl alcohol) +
chitosan + carbonated
hydroxyapatite

PVA+CS+CHAP
Nanofibrous scaffolds supported
osteoblasts adsorption and pro-
liferation

Januariyasa et al.
(2020)

Chitosan + poly(vinyl
alcohol) + TiO2

CS+PVA+TiO2
Nanocomposite films, antibacte-
rial properties, good osteoblast
affinity

Khan et al. (2020)

Chitosan +
organomontmorillonite +
hydroxyapatite + ZrO2

CS+OMMT+
HAP+ZrO2

Films, antibacterial properties,
good osteoblast affinity

Bhowmick et al.
(2016)

Chitosan + hyaluronic
acid CS+HA

Porous hydrogel supported cul-
tures of human osteoblasts and
osteoclasts

Beşkardeş et al.
(2017)

Alginate + bacterial
cellulose

nanocrystals + chitosan +
gelatin

Alg+BCNs+
CS+GT

Porous 3D scaffolds, good os-
teoblastic cells affinity Yan et al. (2017)

Polycaprolactone +
chitosan PCL+CS

Monolayer scaffolds, mechanical
properties comparable to that of
cancellous bone, high elasticity

Thuaksuban et al.
(2013)

𝛽-cyclodextrin +
nano-hydroxyapatite +

chitosan
nHAP+𝛽-CD+CS Nanoparticles of good osteoblastaffinity, antibacterial properties Shakir et al. (2016)

Chitosan + hyaluronic
acid + nano-pearl powder CS/HA+nPP

Porous 3D scaffolds, increased
mechanical properties, suppor-
ted osteoblasts proliferation and
differentiation

Li et al. (2020a)

Zeolite A + chitosan –
Porous nanocomposite scaffolds
supported osteoblasts adhesion
and proliferation

Akmammedov
et al. (2018)

Gelatin + chitosan +
nanobioglass Ge+CS+nBG

Porous 3D scaffolds, porosity
and mechanical properties com-
parable to that of cancellous
bone, good osteoblast affinity

Maji et al. (2016)

other effects might occur that affect the degradation ratio. Such an example is PLLA+CS. When PLLA
hydrolyses into lactic acid, it lowers the pH of the environment, which causes the dissolution of the CS,
which increases PLLA surface contact with water (Guo et al., 2018).

The introduction of inorganic particles into the composite can have a twofold effect on porosity: either
increasing or decreasing it (Cao et al., 2015; Li et al., 2021). The incorporation of MMT made it possible
to obtain a structure with well-connected pores of small diameters from a poorly connected network of
large pores. It is attributed to interactions between MMT and amino groups of the polymer, resulting in
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smaller, more regular pores (Cao et al., 2015). On the other hand, porosity can decrease due to the physical
occupation of space by HAP particles deposited in the pores of the scaffold (Li et al., 2021).

Chitosan-hydroxyapatite composite (CS+HAP) scaffolds are eagerly studied. Such systems mimic bone
extracellular matrix, show no cytotoxicity and exhibit osteogenic properties (Ali et al., 2022; Danilchenko
et al., 2011; Ressler et al., 2022; Zafeiris et al., 2021). In vivo studies show that porous CS+HAP scaffolds
undergo almost complete biodegradation and are replaced by regenerating tissue 24 days after the imple-
mentation (Danilchenko et al., 2011). Increasing HAP concentrations increases the compressive strengths
of the scaffolds (Patil et al., 2022). As mentioned before, mechanical properties can change due to HAP
particles filling pores, thus reducing porosity and improving mechanical resistance (Ali et al., 2022; Patil
et al., 2017).

HAP can also be introduced in the form of nanoparticles (nHAP), inducing similar effects of improving
susceptibility to mineralisation or positively influencing interactions with bone cells (Dan et al., 2016). In
addition to hydroxyapatite, other nanoparticles, e.g., nZrO2, nSiO2 or TiO2, are also used in composites
to produce non-toxic, bioactive scaffolds (Bhowmick et al., 2016; Jayakumar et al., 2011; Kavya et al.,
2013; Khan et al., 2020; Vaidhyanathan et al., 2021). Chitosan composites exhibit antibacterial properties
against both gram-positive and gram-negative bacteria like chitosan itself (Khan et al., 2020).

4. CELLULAR RESPONSE TO CHITOSAN MATERIALS

After scaffold implantation at a damaged area, the body respondswith a series of actions that ultimately lead
to tissue regeneration. The immune system immediately recognises the implant and triggers appropriate
interactions: clot formation, cellular response and tissue reconstruction (Bosco et al., 2012). A thin layer
of water forms on the scaffold surface that proteins adhere to. The bone cells then recognise these proteins
and settle on the implant. Cell growth and integration enable tissue to regenerate on the scaffold surface
(Anselme, 2000; Paital and Dahotre, 2009). Depending on the surface chemistry and implant topography,
cells may interact with the material with different intensities.

4.1. Cell adhesion

The term “adhesion” describes two phenomena that occur after the implantation of the scaffold. It concerns
the short-term generation of interactions between the cell membrane and the material (ionic forces, van
der Walls interactions) and long-term cell attachment (Anselme, 2000). Cell attachment to the surface is
essential for their proper growth, division and proliferation (Nowacka, 2012). Proteins containing specific
Arg-Gly-Asp (RGD) sequences in extracellular matrix (ECM) are necessary to mediate cell adhesion
(Ruoslahti, 1996). Cell receptors recognise RGD motifs and aid cell adhesion to other cells or surfaces
(Cavalcanti-Adam et al., 2008; Pierschbacher et al., 1994). Adhesion receptors are transmembrane adhesion
proteins that connect cells with their environment, used to obtain information from the outside. In addition
to integrins, the primary ECM receptors, cadherins, immunoglobulin superfamily (Ig-SF) and selectins are
also involved in adhesion processes (Hynes, 1999). In bones, integrins connect osteoblasts or osteoclasts
to glycoproteins in ECM such as collagen type I, osteopontin, fibronectin, consequently inducing cell
adhesion, migration, growth or proliferation (Klein-Nulend and Bonewald, 2020; Taylor et al., 2022).

Implants are recognised by the organism as foreign bodies and trigger an immediate immune response,
leading to the formation of a fibrous layer on the biomaterial’s surface (Nowacka, 2012). The body’s
response mechanism after implantation (Fig. 3) begins with forming a thin layer of water on the surface of
the biomaterial within a few nanoseconds (Cavalcanti-Adam et al., 2008). Proteins with the characteristic
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RGDmotif are deposited on the implant surface, creating a protein layer within seconds to hours (Nowacka,
2012; Scotchford et al., 2002). Depending on the surface properties of the biomaterial, proteins settle in
different amounts, densities and conformations (Roach et al., 2007). The cells recognise the attached
proteins, and cell-protein interactions are formed, lasting from a few minutes to several days. The final step
of cell growth and integration enables tissue formation on the scaffold surface (Bosco et al., 2012; Paital
and Dahotre, 2009).

Fig. 3. Cell adhesion to the biomaterial. After biomaterial implementation a thin water layer is formed on the surface,
followed by protein adhesion. Cells recognise proteins and adhere to the biomaterial, regenerating tissue

The surface properties of the material control adhesion processes, so modifications with integrin agonists
are used to enhance properties that promote cell adhesion, growth and proliferation (Cirillo et al., 2021).
Depending on a surface potential, the material can inhibit or improve adhesion (Guette-Marquet et al.,
2022). In addition to the surface properties, the scaffold topography and porosity significantly impact cell
adhesion. The rough structure increases the contact area between the implant and the surrounding tissue and
allows cells to settle. Osteoblast differentiation is supported in particular by nanosized roughness (Budnicka
et al., 2018;Xiao et al., 2017). The scaffold should be characterised by open porosity, enabling cellmigration
and colonisation of pores. Open porosity supports the process of vascularisation of the resulting tissue
(Gadomska-Gajadhur et al., 2018). Cell adhesion is also significantly affected by the surface energy of the
biomaterial. High surface energy enables excellent wettability and adhesion. Osteoblasts are more likely
to settle, differentiate faster and multiply on a surface with higher surface energy (Comelles et al., 2010;
Tian et al., 2019; Yang et al., 2012).

4.2. Interactions with groups in chitosan

Biomaterials used in tissue engineering should be osteoconductive and/or osteoinductive. Osteoconduction
is the ability of a material to connect to bone tissue, provide adequate support for cells and influence the
direction of the regeneration process (Albrektsson and Johansson, 2001; Gadomska-Gajadhur et al., 2018).
Osteoinduction involves triggering a series of processes and reactions that lead to bone regeneration through
biomolecular signalling devices. One such process is, for example, cell differentiation (Cao et al., 2020;
Habibovic and de Groot, 2007; Porrelli et al., 2021). The nature of a biomaterial is determined by its
surface properties such as hydrophilicity, the presence of functional groups or surface charge (Budnicka et
al., 2018; Wang et al., 2020a).
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Functional groups on the biomaterial surface significantly affect the adhesion processes of bone cells.
Researching the binding of osteoblasts to surfaces with different functional groups shows that hydroxyl
–OH and amino –NH2 groups present in chitosan supported the adhesion and differentiation of stem
cells into osteoblasts better than the carboxyl –COOH and methyl –CH3 groups (Keselowsky et al.,
2005). Depending on the functional groups, the shape of the cells may also change. Flattened cells were
preferred for the –NH2 group and spherical cells for –COOH (Curran et al., 2005). The surfaces with
the amino group also promoted and maintained the process of osteogenesis, both under normal and
osteogenesis-promoting conditions (Curran et al., 2006). A more significant number of adhesive proteins,
and a smaller number of hydrophobic proteins that do not participate in the process, were deposited on
the hydrophilic surfaces, which confirms that good wettability facilitates the process of protein deposition
on the surface of the material and, as a result, cell adhesion (Nowacka, 2012; Sobieska et al., 2013).
Proteins settle differently on the positively charged surface than on the negatively charged one. Amino
groups of the CS promote the deposition of negatively charged proteins and cell membranes, proliferation
and differentiation, which results from electrostatic interactions (Anselme, 2000). Chitosan with a higher
degree of deacetylation provides better conditions for osteoblast subsidence but to a lesser extent supports
the secretion of osteoprotegerin compared to CS with a lower DD (Cao et al., 2020; Govindasamy et al.,
2020; Sukul et al., 2021).

4.3. Secreted cellular metabolites

There are several types of cells in bone: osteoblasts, osteocytes, osteoclasts and bone lining cells (Florencio-
Silva et al., 2015). Osteoblasts are mature, metabolically active bone-building cells found at the surface of
the bone, that are tasked to secrete compounds that make up the intercellular substance (Dirckx et al., 2019;
Ducy et al., 2000). The most numerous cells in bone tissue (over 90%) – osteocytes form a communication
network of bone cells, which regulate bone tissue homeostasis (Aarden et al., 1994; Bonewald, 2010;
Datta et al., 2008; Klein-Nulend and Bonewald, 2020). The bone lining cells are osteoblasts that have not
undergone apoptosis or developed into osteocytes. They perform functions related to bone remodelling
(Brown et al., 2013; Florencio-Silva et al., 2015). The last group of cells are multinucleated osteoclasts,
whose task is to maintain the tissue’s calcium balance and secrete compounds that break down the bone
(Jang et al., 2009; Kalfas, 2001; Morgan et al., 2013).

The body’s living cells conduct metabolic processes to produce the energy using the energy carrier
adenosine-5′-triphosphate (ATP), created in various processes. Osteoblasts obtain ATP through glycolysis
and the Krebs cycle, predominating the former process. The Krebs cycle is used mainly in the period
of higher energy demand, during bone formation. In addition to glucose, osteoblasts obtain ATP from
transforming amino acids and fats. Osteocyte metabolism is not a well-understood process. Osteoclasts
generate energy in the processes of glycolysis and the Krebs cycle (Yang et al., 2020).

Osteoblasts mainly produce the extracellular matrix. Osteocytes contribute to a lesser extent to the pro-
duction of the matrix, which is due to their structure – mature osteocytes do not have many organelles
responsible for secretion (Klein-Nulend and Bonewald, 2020). ECM consists mainly of collagen (90%)
and non-collagen proteins (10%). Most collagen is a type I; however, type III and V are also found in
the ECM. The non-collagenous organic part consists of proteoglycans, osteocalcin (also known as bone
gamma-carboxyglutamic acid-containing protein (BGLAP)), glycoproteins and Small Integrin-Binding
LIgand N-linked Glycoproteins (SIBLINGs) (Gentili and Cancedda, 2009; Johansen et al., 1992; Lin et
al., 2020). Proteoglycans are mainly secreted by osteoblasts, e.g. biglikan (Hua et al., 2020) or decorin
(Li et al., 2008). Osteocalcin is primarily secreted by mature osteoblasts but also by osteocytes (Hosseini
et al., 2019). SIBLINGs are small hydrophilic proteins containing the characteristic set of amino acids
(RGD) and participating in cell adhesion processes. These compounds are mainly produced by osteocytes
(e.g. Matrix Extracellular Phosphoglycoprotein (Siggelkow et al., 2004)), but to a lesser extent also by
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osteoblasts (osteopontin, Dentin Matrix Protein-1 (Bellahcène et al., 2008; Saito et al., 2020; Singh et al.,
2018)). Osteoclasts are also capable of secreting H+–adenosine triphosphate and cathepsin K protease re-
sponsible for dissolving the demineralised organic part of bone during bone resorption processes (Bossard
et al., 1996; Teitelbaum, 2000).

Bonemarkers are examined to determine if the biomaterial supports cell growth. The rate of bone formation
is related to the enzymatic activity of osteoblasts, which can be examined by checking the activity of a
well-recognised osteogenic marker alkaline phosphate (ALP) (Kara et al., 2019; Sukul et al., 2021). ALP
starts to be expressed by osteoblasts when they cease to proliferate, reaches a peak duringmatrix maturation
and eventually, its concentration decreases with the mineralisation process (Garnero and Delmas, 1997;
Stein et al., 1990). Similarly, osteopontin (OPN) or osteocalcin (OCN) secreted by mature osteoblasts can
be used, reaching its maximum level during mineralisation (Erickson and Payne, 2019; Stein et al., 1989).
In vitro studies of MCF-7 cells on chitosan scaffolds showed that chitosan has a positive effect on the
metabolic behaviour of cells: the metabolism of cells in such a system is very similar to that in tissue
(Dhiman et al., 2005). Similarly, for dental pulp stromal cells, CS has a positive effect on metabolism and
proliferation (Amir et al., 2014).

5. CONCLUSIONS

Chitosan (CS) is a polysaccharide exhibiting biocompatibility, biodegradability and suitable physicochem-
ical properties and therefore shows great potential in tissue engineering uses. There has been a great deal
of research into the use of CS to produce biocompatible scaffolds that could be used to treat bone damage
caused by, for example, ligament reconstruction, tumour resection or osteoporosis. The use of chitosan
as one of the scaffold materials alongside others, e.g. polylactide, polycaprolactone, alginate, pectin, hy-
droxyapatite, improves mechanical and surface properties of the scaffold and shows good cell affinity,
promoting cell adhesion and proliferation. However, more focus should be on the interaction between
chitosan and the cell and its osteogenic effect. A thorough understanding of these processes will aid the
medical treatment of bone damage.
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