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The problem of optimal design of symmetrical double-lap adhesive joint is con-
sidered. It is assumed that the main plate has constant thickness, while the thickness
of the doublers can vary along the joint length. The optimization problem consists
in finding optimal length of the joint and an optimal cross-section of the doublers,
which provide minimum structural mass at given strength constraints. The classical
Goland-Reissner model was used to describe the joint stress state. A corresponding
system of differential equations with variable coefficients was solved using the finite
difference method. Genetic optimization algorithm was used for numerical solution
of the optimization problem. In this case, Fourier series were used to describe doubler
thickness variation along the joint length. This solution ensures smoothness of the
desired function. Two model problems were solved. It is shown that the length and
optimal shape of the doubler depend on the design load.

1. Introduction

Adhesive lap joints are integral part of modern composite structures. Wide-
spread application of adhesive joints in composite structures is possible due to
their highmanufacturability, tightness, lowweight and high aerodynamic efficiency.
However, thewell-known disadvantage of lap joints is the stress concentration in the
adhesive layer at the edges of the joining area [1, 2]. To increase joint strength and
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reduce stress concentration, the following structural solutions are used: increasing
thickness of adhesive layer at joint edges [3, 4], reduction of thickness of the joining
plates near the joint edge [5], application of two or more types of adhesives [6],
introducing the transversal-links (pins) in the joint structure [7, 8], etc. One of
the most effective methods for stress concentration reduction is application of the
scarf joints, i.e., the joints with variable thickness of joining articles along the
length. Realization of symmetrical double-lap joints makes it possible to eliminate
structure bending and reduce the tear-off stress in the adhesive [9–11]. Application
of laminated composites is also one of the stipulated realizations of joints with
stepped thickness variation along joint length [12].
Modern technologies make it possible to create structural elements of almost

any shape, which present new optimization and design challenges for engineers.
If joint design requires a constant layers thickness, then the problem consists
in finding only a few unknown parameters such as the optimal joint length and
the base layer thickness. However, topological optimization problem for such a
joint is qualitatively more complex. This problem consists in finding function for
optimal distribution of joining layers thickness along the adhesive joint length (the
joint length is also unknown). This function ensures minimal structure mass and
fulfillment of strength constraints of all joint elements. The solution of such a
problem by classical methods is very difficult. Therefore, it seems promising to
use classical one-dimensional multilayer beam models in conjunction with genetic
optimization methods. This approach allows for reducing the problem dimension
while maintaining physical adequacy of the model.
To describe stress state of lap joints, as a rule, mathematical models of three-

layer rods or beams with pliable filler are used [1, 2]. In this case, if elastic and
geometric parameters of the are constant along the joint length, the deflected mode
of the joint can be described in an analytical form. However, even in the simplest
case, if the layer thickness varies linearly, the problem has no analytical solution.
Therefore, to find the stress state in the joints with thicknesses variable along the
length, numerical methods are used, including the finite difference method. Of
course, the finite element method is also used to study the stress state of joints.
This method of stress state computation is also used to solve the joint optimization
problem. The optimization problem can be formulated in the classical parametric
form [13], or in a more complex form of topological or structural optimization. In
the first case, the shape of the structure is optimized [14], in the second case, one
optimizes the structure of the laminated composite [15, 16]. Topological optimiza-
tion of the joint shape is usually performed in a planar [17–19] or axisymmetric [20]
two-dimensional formulation. However, two-dimensional formulation of optimiza-
tion problem, which is based on application of finite elements, is associated with a
significant amount of calculations. Also, the result of calculations cannot be always
realized in the real structure. Unfortunately, there is a lack of papers devoted to
experimental studying of stress state in beams or plates with variable thickness. For
example, in [21], not all structural geometrical parameters are shown, which makes
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it impossible to use the obtained results for verification of those in the current
analysis.
In this paper, we consider one-dimensional formulation of the problem. To

solve the direct problem, i.e., the problem of finding stress in a joint with given
adhesive length and doubler thickness variation law along the joint length, the
method of finite differences is used. A genetic algorithm is used to find the optimal
joint length and the optimal function for the doubler thickness changing along the
adhesive joint length.

2. Problem formulation and solution

2.1. Problem formulation

Let us consider a structure consisting of two main plates which are jointed
to each other on both sides using symmetrical doublers, Fig. 1a. This structure is
symmetrical, has no bending under stress-strain load and, therefore, it is often used
in mechanical engineering. Due to the symmetry of the structure, we can consider
only one-fourth of it, Fig. 1b. Due to the symmetry, the transverse shifts of the
central layer (main plate) are equal to zero. The symmetry of the structure and
the resulting absence of bending in the central layer make it possible to consider
only the adhesive area, and not to take into account the deformation of the entire
structure.

(a) general shape of joint

(b) fragment of joint

Fig. 1. Joint scheme
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The structure is loaded with longitudinal forces 2𝐹. It is shown in Fig. 1b that
doubler thickness can vary along the joint length. The adhesive layer thickness is
assumed constant along the length. Generally, in manufacturing, film adhesives are
used frequently, therefore the thickness of the adhesive layer is known.
The differential element of the adhesive area and the force factors applied to

its elements are shown in Fig. 2.

Fig. 2. Stress and load values in adhesive joint layers

Equilibrium equations for the outer (main) layers have the following form
d𝑁1
d𝑥

= −𝜏, d𝑁2
d𝑥

= 𝜏,
d𝑄1
d𝑥

= 𝜎,
d𝑀1
d𝑥

− 𝑠1(𝑥)𝜏 − 𝑁1
d𝑠1
d𝑥

+𝑄1 = 0, (1)

where 𝑁1, 𝑁2 are longitudinal forces in base layers; 𝑄1 is the shear force in the
doubler; 𝑀1 is the bending moment in the doubler; 𝜏 and 𝜎 are tangential and
normal stresses in the adhesive layer; 𝑠1 is the distance from the neutral axis of
the doubler to the adhesive layer, in the case of a symmetrical doubler structure

𝑠1(𝑥) =
𝛿1(𝑥)
2
, where 𝛿1(𝑥) is the doubler thickness.

The main layer deformation is described by equations

𝑁1 = 𝐵1(𝑥)
d𝑈1
d𝑥

, 𝑁2 = 𝐵2
d𝑈2
d𝑥

, 𝐷1(𝑥)
d2𝑤1
d𝑥2

= 𝑀1 , (2)

where𝑈1 and𝑈2 are longitudinal displacements of main layers; 𝑤1 are transversal
displacements of the doubler; 𝐵1 and 𝐵2 are stress-strain rigidity values of the layers,
if the layers are homogenous by thickness, then 𝐵1(𝑥) = 𝛿1(𝑥)𝐸1, 𝐵2 = 𝛿2𝐸2, where
𝐸1 and 𝐸2 are elastic moduli of the corresponding layers; 𝐷1 is bending rigidity of

the doubler, 𝐷1(𝑥) =
𝛿31 (𝑥)𝐸1
12

.
We assume that the stress values in the adhesive layer are uniformly distributed

over the thickness and proportional to the displacement difference of main layers

𝜎 = 𝐾 𝑤1 , 𝜏 = 𝑃

(
𝑈1 −𝑈2 + 𝑠1(𝑥)

d𝑤1
d𝑥

)
, (3)
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where 𝐾 , 𝑃 are stress-strain and shear rigidity of the adhesive layer, which can be
calculated as 𝐾 =

𝐸0
𝛿0
, 𝑃 =

𝐺0
𝛿0
, where 𝛿0 is the adhesive layer thickness, 𝐸0 and

𝐺0 are elastic modulus and shear modulus of the adhesive.
The system of Eqs. (1)–(3) can be reduced to the following system of three

differential equations relative to layer displacements

𝐵1
𝑃

d2𝑈1
d𝑥2

+ 1
𝑃

d𝐵1
d𝑥
d𝑈1
d𝑥

−𝑈1 +𝑈2 − 𝑠1
d𝑤1
d𝑥

= 0, (4)

𝑈1 +
𝐵2
𝑃

d2𝑈2
d𝑥2

−𝑈2 + 𝑠1
d𝑤1
d𝑥

= 0, (5)

𝐷1(𝑥)
𝑃

d4𝑤1
d𝑥4

+ 2
𝑃

d𝐷1
d𝑥
d3𝑤1
d𝑥3

+
(
1
𝑃

d2𝐷1
d𝑥2

− 𝑠21 (𝑥)
)
d2𝑤1
d𝑥2

− 2𝑠1(𝑥)
d𝑠1
d𝑥
d𝑤1
d𝑥

+ 𝐾
𝑃
𝑤1 −

𝐵1(𝑥)
𝑃

d𝑠1
d𝑥
d2𝑈1
d𝑥2

+ d𝑠1
d𝑥
𝑈2

+
(
− 1
𝑃

d𝑠1
d𝑥
d𝐵1
d𝑥

− 𝑠1(𝑥) −
𝐵1
𝑃

d2𝑠1
d𝑥2

)
d𝑈1
d𝑥

− d𝑠1
d𝑥
𝑈1 + 𝑠1(𝑥)

d𝑈2
d𝑥

= 0. (6)

Boundary conditions can be formulated in the following way:

𝑁2(0) = 𝐹, 𝑁2(𝐿) = 0, 𝑁1(0) = 0, 𝑈1(𝐿) = 0,

𝑄1(0) = 0, 𝑀1(0) = 0, 𝑄1(𝐿) = 0,
d𝑤1
d𝑥

����
𝑥=𝐿

= 0.

Boundary conditions can be given in terms of displacements

d𝑈2
d𝑥

����
𝑥=0

=
𝐹

𝐵2
,

d𝑈2
d𝑥

����
𝑥=𝐿

= 0,
d𝑈1
d𝑥

����
𝑥=0

= 0, 𝑈1(𝐿) = 0;

𝑠1(0)𝑃
(
𝑢1 − 𝑢2 + 𝑠1(0)

d𝑤1
d𝑥

����
𝑥=0

)
− d
d𝑥

(
𝐷1(𝑥)

d2𝑤1
d𝑥2

)����
𝑥=0

+ d𝑠1
d𝑥

𝐵1(0)
d𝑈1
d𝑥

����
𝑥=0

= 0;

𝑠1(𝐿)𝑃
(
𝑢1 − 𝑢2 + 𝑠1(𝐿)

d𝑤1
d𝑥

����
𝑥=𝐿

)
− d
d𝑥

(
𝐷1(𝑥)

d2𝑤1
d𝑥2

)����
𝑥=𝐿

+ d𝑠1
d𝑥

𝐵1(𝐿)
d𝑈1
d𝑥

����
𝑥=𝐿

= 0;

𝐷1(0)
d2𝑤1
d𝑥2

����
𝑥=0

= 0,
d𝑤1
d𝑥

����
𝑥=𝐿

= 0.
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Optimization problem can be formulated in the following way: we have to
find such a length 𝐿 of the adhesive and such a dependence for doubler thickness
variation versus longitudinal coordinate 𝛿1(𝑥), which ensure minimal structural
mass. Mass is equal to the cross-sectional area of the doubler up to a constant
factor and a constant term

𝑀 =

𝐿∫
0

𝛿1(𝑥)d𝑥 → min, (7)

subject to maintaining the bearing capacity of the joint.
The bearing capacity of the structure may include several constraints on max-

imal stresses in the adhesive layer and stresses in the doubler. The thickness of
the main plate is constant and, therefore, is not a part of condition (7). As a rule,
the entire failure of the joint occurs due to adhesive layer failure. The choice of
adhesive strength criterion depends on adhesive type, adhesive application tech-
nology, processing of the surfaces to be bonded, and other factors. It was found in
paper [22] that strength test results for a joint are better described by the criterion
of maximal normal stress:

𝜎1(𝑥) =
|𝜎(𝑥) |
2

+ 1
2
√︁
𝜎2(𝑥) + 4𝜏2(𝑥) 6 𝜎max , (8)

where 𝑥 ∈ [0; 𝐿]; 𝜎1(𝑥) is the first principal stress; 𝜎max is the strength limit.

2.2. Numerical solution of the direct problem

We assume that the function 𝛿1(𝑥) and the length 𝐿 of the adhesive are given.
Hence, the functions 𝑠1(𝑥), 𝐵1(𝑥) and 𝐷1(𝑥) are known, as well. To solve the
system of Eqs. (4)–(6) numerically with the corresponding boundary conditions,
we use the finite difference method. To do this, we break adhesive area 𝑥 ∈ [0; 𝐿]
into the system of nodal points enumerated from zero to 𝑁 . The size of subintervals
is ℎ =

𝐿

𝑁
. The points denoted with number 0 and 𝑁 are the boundary ones (𝑥 = 0

and 𝑥 = 𝐿 correspondingly), the points numbered from 1 to 𝑁 − 1 are the inner
ones. We introduce left-side and right-side points relative to the area as well,
which are located out of area 𝑥 ∈ [0; 𝐿] and have the numbers −1 and 𝑁 + 1,
correspondingly. The coordinate of the 𝑖-th point can be calculated by the formula
𝑥𝑖 = ℎ 𝑖. Main layer displacements at these points are denoted as 𝑈1(𝑥𝑖) = 𝑢

(1)
𝑖
,

𝑈2(𝑥𝑖) = 𝑢
(2)
𝑖
and 𝑤1(𝑥𝑖) = 𝑤

(1)
𝑖
. Thus, the solution of Eqs. (4)–(6) reduces to

finding the displacement values 𝑢 (1)
𝑖
, 𝑢 (2)

𝑖
and 𝑤 (1)

𝑖
in the 𝑥𝑖 point system. The

presence of boundary conditions allows us to introduce displacements at outer
nodes beyond the adhesive area as unknown values. However, the function 𝛿1(𝑥)
and the functions 𝑠1(𝑥), 𝐵1(𝑥) and 𝐷1(𝑥) associated with it, are given only in the
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adhesive area 𝑥 ∈ [0; 𝐿], i.e., there are only the values 𝛿 (1)0 , . . . , 𝛿
(1)
𝑁
, 𝐵 (1)
0 , . . . ,

𝐵
(1)
𝑁
, 𝐷 (1)

0 , . . . , 𝐷
(1)
𝑁
. Therefore, at the extreme points 𝑥0 and 𝑥𝑁 , the derivatives

of displacements in Eqs. (4)–(6) can be represented in a difference form using a
symmetrical finite-difference pattern. However, for writing derivatives of 𝑠1(𝑥),
𝐵1(𝑥) and 𝐷1(𝑥) in the extreme points it is necessary to use one-side patterns.
Writing differential Eqs. (4)–(6) for the points 0, 1, . . . , 𝑁 in a difference form,
and the boundary conditions as well, we obtain a system of linear equations with
respect to the unknown values 𝑢 (1)−1 , 𝑢

(1)
0 , 𝑢

(1)
1 , . . . , 𝑢

(1)
𝑁+1, 𝑢

(2)
−1 , . . . , 𝑢

(2)
𝑁+1, and

𝑤
(1)
−2 , 𝑤

(1)
−1 , 𝑤

(1)
0 , . . . , 𝑤

(1)
𝑁+2, which contains 3𝑁 + 11 equations. Having solved this

system, we find the displacements of main layers at nodal points. This allows us to
find stress values in the adhesive layer (i.e., a set of stress values 𝜎𝑖 and 𝜏𝑖 in the
nodal points), longitudinal forces in the main layers, and other force factors in the
joint elements.

2.3. Genetic algorithm optimization

As mentioned above, the solution of optimization problem (4)–(8) in an an-
alytical form seems to be very difficult. Therefore, it is proposed to use a genetic
optimization algorithm for the solution. To do this, we can take the length of joint
𝐿 and the doubler thickness in nodal points 𝛿 (1)

𝑖
as the required variables, and

then find such their optimal values, which ensure a minimal mass of doubler when
the condition (8) is met. However, in contrast to the problem of finding optimal
material distribution along a beam [14], if the thickness values 𝛿 (1)

𝑖
in neighbor-

ing points are significantly different (that can happen due to crossbreeding and
mutations), then the stress values in the adhesive layer Eq. (3), computed by the
finite difference method, may exhibit unreal overshoots, which indicates that the
mathematical model becomes inadequate. Therefore, it is proposed to find an op-
timal dependence 𝛿 (1)

𝑖
among the functions, which are assumed smooth a priori.

This also follows from intuitive thoughts about the desired function 𝛿1(𝑥), which
probably is smooth and has no angular points and spikes. To meet this condition,
the Bezier functions [23, 24] can be, for example, considered. In this paper, it is
proposed to use a cosine Fourier expansion at the interval b ∈ [0; 1] to describe
the function 𝛿1(𝑥).

𝑦(b) = 𝑎0
2

+
𝑀∑︁
𝑛=1

𝑎𝑛 cos 𝜋𝑛b.

If we divide the interval b ∈ [0; 1], as well as the interval 𝑥 ∈ [0; 𝐿] into
𝑁 + 1 points b𝑖 enumerated from 0 to 𝑁 , then the doubler thickness in nodal points
can be found in the following way:

𝛿
(1)
𝑖

= 𝑦 (b𝑖) =
𝑎0
2

+
𝑀∑︁
𝑛=1

𝑎𝑛 cos 𝜋𝑛b𝑛 . (9)
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A description of the doubler geometrical form as the Fourier series Eq. (9)
allows us to calculate the doubler mass by Eq. (7) rather simply

𝑀 =

𝐿∫
0

𝛿1(𝑥)d𝑥 =
𝑎0𝐿

2
. (10)

Thus, the unknown parameters that need to be found in the procedure of
solving the optimization problem are the length 𝐿 of the joint and the set of Fourier
coefficients 𝑎0, 𝑎1, . . . , 𝑎𝑀 , which describe the change of doubler thickness along
the joint length.
To implement a genetic algorithm, it is necessary to create a fitness function

that makes it possible to rank different sets of parameters 𝐿 and 𝑎0, 𝑎1, . . . , 𝑎𝑀
(i.e., individual) by quality. Obviously, this function must contain, for example,
as a term, the cross-sectional area of the doubler Eq. (9) and the penalties for
violation of the strength criterion Eq. (8), as well as the fines for violation of
technological restrictions, for example, if the minimal doubler thickness is smaller
than the maximal allowable one 𝛿1(𝑥) < 𝛿min. So, we can, for example, write the
fitness-function in the following form:

Φ = 𝐿
𝑎0
2

+


𝑍1

©«
max
𝑖

(���𝜎 (1)
𝑖

���)
𝜎max

− 1
ª®®¬
2

, max
𝑖

(���𝜎 (1)
𝑖

���) > 𝜎max
0, max

𝑘

(���𝜎 (1)
𝑖

���) 6 𝜎max
+


𝑍2

©«
𝛿min

min
𝑖

(
𝛿
(1)
𝑖

) − 1
ª®®¬
2

, min
𝑖

(𝛿𝑖) < 𝛿min

0, min
𝑖

(
𝛿
(1)
𝑖

)
> 𝛿min,

(11)

where 𝑍1, 𝑍2 are some big numbers which define the value of penalty for leaving
solution out of available area; 𝜎 (1)

𝑖
are first main stress values in the adhesive layer

in nodal points; max
𝑖

(���𝜎 (1)
𝑖

���) is the maximal value of the first principal stresses for
all points in the area; min

𝑖

(
𝛿
(1)
𝑖

)
is the minimal value of doubler thickness.

Thus, if the solution (i.e., the set of values 𝐿 and 𝑎0, 𝑎1, . . . , 𝑎𝑀 ) is available,
then the fitness-function value is equal to the doubler cross-section area. But, if at
least at one node the stresses in the adhesive layer exceed their allowable values, or
(and) the doubler thickness at least at one node is smaller than the allowable value,
then penalty terms are added to this area. Therefore, the solution to the optimization
problem consists in finding such a set of values 𝐿 and 𝑎0, 𝑎1, . . . , 𝑎𝑀 for which
the function Eq. (11) reaches minimum.
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To solve the posed optimization problem, we use the genetic algorithm, which
consists of the following steps:
1. Creation of an initial population of vectors ®ℎ ( 𝑗) , where 𝑗 = 1, . . . , 𝑁𝑔, (𝑁𝑔 is
a number of individuals in the population). Each vector ®ℎ ( 𝑗) (the individual)
contains the components 𝐿 ( 𝑗) and 𝑎 ( 𝑗)0 , 𝑎

( 𝑗)
1 , . . . , 𝑎

( 𝑗)
𝑀
.

2. According to these sets of parameters, we calculate the corresponding values
Φ 𝑗 = Φ

(
®ℎ ( 𝑗)

)
by the formula Eq. (11). To do this, we have to find the doubler

thickness at nodal points and the discretization step ℎ ( 𝑗) = 𝐿 ( 𝑗)𝑁−1 using
coefficient values 𝑎 ( 𝑗)0 , 𝑎

( 𝑗)
1 , . . . , 𝑎

( 𝑗)
𝑀
and 𝐿 ( 𝑗) to solve direct problem for

longitudinal forces in the first main layer, and apply these results to find the
stress values in the adhesive layer.

3. Selection. We rank vectors available in the population ®ℎ ( 𝑗) according to the
corresponding values of fitness function Φ 𝑗 .

4. We select 2𝑘 elements ®ℎ ( 𝑗) from the population (where 2𝑘 < 𝑁𝑔). Probability
of being included in the sample may depend either on the number in the ranked
list or on the values Φ 𝑗 . It is necessary that the best individuals ®ℎ ( 𝑗) from the
population, which have smallest values of fitness-functions, be included in the
sample.

5. Choice of parents. We join 2𝑘 selected individuals into pairs and obtain 𝑘 pairs
of “parents”. Pairing can be implemented according to different strategies, as
similarities, or in the other way, by differences in vectors ®ℎ ( 𝑗) . In the simplest
case, we can connect them in pairs at random.

6. Cross breeding. We randomly select parameters for each new individual 𝐿 ( 𝑗)

and 𝑎 ( 𝑗)0 , 𝑎
( 𝑗)
1 , . . . , 𝑎

( 𝑗)
𝑀
from both parent individuals. As a result of such an

operation, we get a population 𝑘 of new individuals, “descendants”.
7. Mutations. In the version of algorithm implemented by the authors, mutations
occur only within a small part of the vector components ®ℎ ( 𝑗) of the individuals
which appear as a result of a “descendant” breeding. Themutation is a change in
the values of the vector components by some slight deviation. The magnitude of
the randomdeviation can be described, for example, by theGaussian distribution
with zero mean value, and the dispersion which depends on the absolute value
of the coefficient 𝑎𝑛. So, the larger absolute Fourier coefficients mutate with
a larger dispersion, and the smaller ones with a smaller one. If the coefficient
𝑎𝑛 is equal to zero, then in mutations, the mean-square deviation has a frozen
value 𝜎0.

8. After making changes to the genetic code, the descendants return to the main
population, which increases from 𝑁𝑔 to 𝑁𝑔 + 𝑘 individuals. After that, individ-
uals are again ranked according to the values of fitness-function Φ 𝑗 and 𝑘 the
worst individuals are removed from the population.

9. Checking the stop criterion. If the stop criterion (for example, specified number
of reproduction cycles 𝑀) is not reached, then we go back to the step 4.
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At the end of algorithm, the population contains individuals that, although
close to the optimum, still differ slightly due to the mutations. When defining the
best values of required parameters and neglecting the influence of mutations, we
can take from the population a certain part of the best individuals (for example,
half of the population) and find the average values 𝐿 ( 𝑗) and the thickness of the
doubler at the nodes.

3. Results and discussion

Let us apply the proposed joint optimization algorithm to solve two problems
that differ only by the load applied to the joint. The rest of the parameters are the
same in both cases: 𝐸1 = 70 GPa, 𝐸2 = 70 GPa (aluminum alloy), 𝛿2 = 3 mm,
𝛿0 = 0.1 mm, 𝐸0 = 2.01 GPa, 𝐺0 = 0.75 GPa, `0 = 0.33, 𝜎max = 40 MPa,
𝛿min = 0.5 mm. We consider two cases of structure loading: a) 𝐹1 = 130 kN/m;
b) 𝐹2 = 260 kN/m. Elastic parameter of the adhesive film and the margin of
strength, and also the load valued applied to the joint (the first load case) were
taken from [18].
The initial population is formed as follows: joint length is taken randomly

using a Gaussian distribution with mean value𝑚𝐿 = 40 mm and standard deviation
𝜎𝐿 = 4 mm. Fourier coefficients are obtained using the assumed linear dependence
of doubler thickness starting from a definite random value 𝛿1(0) with mean value
𝑚 𝛿 = 1 mm and dispersion 𝜎𝛿 = 0.1 m when 𝑥 = 0 and 𝛿1(𝐿) = 3 mm. The
number of terms in the Fourier series is taken as 𝑀 = 40. Computation of the joint
stress state is performedwith the division of the area into 𝑁 = 100 nodal points. The
number of individuals in the population is 𝑁𝑔 = 60. We choose 2𝑘 = 40 individuals
from them for the cross-breeding at each iteration. We assume the probability of
the length mutation as 0.2. The adhesive length during mutation changes by a
random value, which has Gaussian distribution with zero mean value and standard
deviation 0.2 mm. The Fourier coefficients mutate with a probability equal to 0.2 as
well, during mutations, they are changed by a random value, which has a Gaussian
distribution with a standard deviation 𝜎𝑎 = 2 · 10−9, as the corresponding Fourier
coefficient is zero, and the coefficient of variation is 𝑐𝑣 = 0.02. We will take the
number of cross-breeding cycles and reproduction equal to 𝑀 = 10000.
As a result of numerical realization of the given algorithm under design load

𝐹1 = 130 kN/m, it was obtained that the optimal value of the adhesive area length
was 𝐿1 = 8 mm, and under the design load 𝐹2 = 260 kN/m the optimal adhesive
area length value was 𝐿2 = 29.5 mm. It means that doubling the load leads to the
increase of the optimal length of the joint, which in this case increases about eight
times, and its maximal thickness (at the point 𝑥 = 𝐿) – is more than twice smaller.
The diagrams of doubler thickness changing along the joint length in both

cases are shown in Fig. 3. The diagrams of the main plate thickness 𝛿2 = 3 mm are
given to show the scale of the graph.
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(a) optimal thickness under 𝐹1 = 130 kN/m (b) optimal thickness under 𝐹2 = 260 kN/m

Fig. 3. Thickness of main plate and doubler in both computational cases

As expected, the doubler thickness increased from the minimal available value
𝛿min = 0.5 mm to a definite maximal one, which was obtained by application of
the algorithm proposed in this paper.
Stress diagrams 𝜏, 𝜎 in the adhesive layer Eq. (3) and the diagrams of main

normal stress Eq. (8) in both computational cases are shown in Fig. 4.

(a) stresses in adhesive layer under
𝐹1 = 130 kN/m

(b) stresses in adhesive layer under
𝐹2 = 260 kN/m

Fig. 4. Stresses in adhesive layer

As can be seen from the diagrams, the maximum stress values are observed at
the right edge of the joint. In this case, increasing of load causes that, in the optimal
joint, both edges are loaded equally.
The results of the evolutionary algorithm at its various stages are shown in

Fig. 5. The diagrams show distribution of the doubler thickness along the joint
length at various stages of the cross breeding cycles in the first computational
case, 𝐹2 = 260 kN/m. The graph denoted with (a) pertains to the best individual
from the starting population (𝑀 = 0). The letter (b) denotes the best individual
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after 𝑀 = 1000 cycles, (c) denotes the best individual after 𝑀 = 2000 cycles and
(d) – a best individual after 𝑀 = 10000 cycles. It can be seen that after 5000
cross-breeding cycles the diagrams are no longer visually distinguishable from
each other. The second diagram shows the change in the objective function during
the optimization process. To illustrate the convergence, the results of two runs of
the algorithm are shown.

(a) thickness of doubler (b) objective function Φ

Fig. 5. Computational results of genetic algorithm optimization at its various stages: (a) – 𝑀 = 0;
(b) – 𝑀 = 1000; (c) – 𝑀 = 2000; (d) – 𝑀 = 10 000

Let us conduct the analysis of the joint stress state by means of finite-element
modelling to verify the suggested mathematical model. The most interesting is
the second load case (𝐹2 = 260 kN/m), because after solving the corresponding
optimization problem we have found an optimal shape of the doubler with a short
horizontal zone, Fig. 4b, and this result is quite unexpected. A two-dimensional
finite-element model was used for the analysis. The adhesive film was divided into
elements with maximum dimension of 0.2𝛿0. Fig. 6 shows the two-dimensional
finite-element model (the grid is not shown), based on the results of optimization
problem solution at 𝐹2 = 260 kN/m.

Fig. 6. Fragment of finite-element model

A fragment of the joint finite-element model (near the left side edge) with
designation of the finite-element grid is shown in Fig. 7.
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Fig. 7. Fragment of finite-element model

Fig. 8 shows the diagrams of tangent and normal stress (3) calculated by
means of the suggested one-dimensional model and by the finite-element modelling
(stresses in the mid-surface of the adhesive film are shown).

(a) normal stress (𝜎) in adhesive film (b) shear stress (𝜏) in adhesive film

Fig. 8. Stresses in adhesive film calculated by means of suggested one-dimensional model (1D) and
two-dimensional finite-element model (FEM)

It follows from given diagrams that the stress calculated by both the suggested
one-dimensional model and the two-dimensional finite-element model are very
close to each other. Some differences are visible near the joint edges. This phe-
nomenon is well-known and can be explained by a definite contradiction in the de-
scription of shear stress in the adhesive film according to Holland-Reissner [9, 22].

4. Conclusion

An approach to the solution of problems of joints optimization is shown. It is
based on the application of conventional one-dimensional models of stress state of
tree-layered structures and on a genetic algorithm of optimization. Application of
classical one-dimensional models of joint stress state makes it possible to combine
a quite accurate description of the structure stress state and the effectiveness of



40 S. KURENNOV, K. BARAKHOV, O. POLYAKOV, I. TARANENKO

numerical calculation. The latter is critically important for solving optimization
problems using genetic algorithms.
One can draw the following conclusions based on the analysis of solutions of

several optimization problems:
1. The dependence of optimal length and thickness of the joint on the load applied
has a non-linear character. In particular, the results show that a twofold increase
of the load leads to the joint length increasing three times in practical conditions.

2. The presence of restrictions imposed on minimal allowable doubler thickness
leads to the effect that the obtained doubler shape contains a horizontal zone
with a minimal allowed thickness near the non-loaded doubler edge.

3. It is impossible to reach a uniform stress distribution in joints at given con-
ditions. Apparently, the key restriction is the constant thickness of the main
load-carrying plate along the joint length. Due to this fact, the load-carrying
ability of the joint is restricted. In the case when the load 𝐹 exceeds a certain
maximal value, which depends on the adhesive margin of strength, elasticity
moduli of joint components, etc., the problem of joint design has no solution.

4. In both considered cases of load, maximal stress appears near the right-side
joint edge. If the load 𝐹 still increases, the stress near the left-side edge also
becomes equal to the joint margin of strength.

5. The obtained optimal shape of the doubler differs from both the wedge-like one
[13] and the parabolic one [21], and contains at least one inflection point.

6. Application of doublers with variable thickness makes it possible to increase
load-carrying ability of the joint and reduce stress concentration near the joint
edges.

7. The suggested mathematical one-dimensional model for stress state of a joint
with variable doubler thickness is reduced to differential equations (4)–(6). The
model is characterized by high precision which can be proved by comparison
with the results of finite-element modelling.
The proposed approach can be easily developed and generalized in the follow-

ing directions:
1. Application of finite-difference patterns of increased accuracy in solving the
direct problem, which will make it possible to perform calculations with high
accuracy with a smaller number of nodal points, which in its turn will increase
calculation rate.

2. Increasing number of constraints. Onemay add constraints on doubler thickness
and adhesive layer strength in the form of Eq. (8), as well as restrictions on
deflection, doubler strength, etc. Other criteria for the adhesive layer strength
may also be used.

3. Application of pliable adhesives at the edge of the adhesive and more rigid
adhesives in the depth of the adhesive area [25, 26]. In this case, it is necessary
to introduce two new parameters – the lengths of the pliable adhesive sections
at the left and right edges of the joint, and to calculate the coefficients 𝐾 and 𝑃
in Eq. (3) accordingly, which in this case depend on the longitudinal coordinate.
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4. Application of the proposed approach to optimize joints of coaxial cylindrical
shells [27] with circular symmetry [28, 29].
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