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EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE REINFORCED
COMPOSITE ELEMENTS SUBJECTED TO BENDING

Brittle fracture of the reinforced composite element has been a matter of
considerable concern to engineers for many years. It is now generally accepted that
the mode of failure is the centerpiece of the problem. The publication presents the
experimental and numerical procedure used to determine the state of the stress in
the photoelastic model of reinforced beams. The fracture process of fiber reinforced
composite materials is very complicated, and the fracture strength is affected by:
matrix cracking, fiber breakage and interfacial debonding between matrix and

fibers.
The criterion used to calculate the maximum load was derived based on two
processes only: matrix cracking and deformation of the reinforcement. The

theoretical ultimate bending moment was calculated using the strain energy release
rate Ge and the stress intensity factors (Kj and K;) corresponding to the crack
propagation of the matrix and the elastic-plastic deformation or the yield limit of the
reinforcement.

1. Introduction

In calculating bending stresses in reinforced-composite beams, one
commonly assumes that all the tension is taken by the fibbers and all the
compression by the matrix.

It is the usual practice in calculating stresses in reinforced-composite beams
to assume that Hooke’s law holds for composite, and to compensate for the
variable modulus by taking a lower value for this modulus than that obtained
from compression tests. The optical properties of epoxy resin makes it possible
to determine the stresses in the matrix by photoelastic method [2]. The
dimensions of the typical model used in the experiment and material properties
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are given in Fig. 1. The brittle fracture of the matrix was simulated by
introduction of artificially initiated small cracks (notched) in the tension zone.

The stress distribution in the matrix was characterized by isochromatic
patterns and the displacements were measured by applying strain gauges.

The fracture mechanics parameters: the stress intensity factors K;, K;; and the
strain energy release rate (Gc) were determined experimentally. The stress
intensity factors: Kjc and Ky were evaluated from the load-displacement curve
under the ASTM E813-81 standard and by using the photoelastic measurement
results.
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Fig.1. a) Typical details of the photoelastic models of the reinforced beams; b) Properties of the
reinforcement and the matrix; ¢) Model reinforced linearly by carbon fibbers before test
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2. Material properties

The properties of the matrix and the reinforcement were determined
experimentally. The loading experiments were performed using displacement
control method with automatic measurement system. The mechanical properties
of the matrix were characterized by:

E.. = 3450 MPa — Young’s modulus,

V= 0.36 — Poisson's ratio,

R.=120 MPa, . . . i

R, =35 MPa — ultimate strength (in: compression, tension),
Gic= 0.5 kN/m — critical value of the strain energy release rate,

Kic=1.30 MPa-m'?,
Kiic =1.302 MPam'”?
ks=1.68 MPa/fr. — photoelastic constants in terms of stresses,

critical values of the stress intensity factors,

and of the reinforcement:

E.=9.4-10 MPa — Young’s modulus,
v, =0.29 — Poisson's ratio,
R, =188 MPa,

R, = 320 MPa — yield limit and ultimate strength in tension,

and load-displacement curve (C-€).
2.1. Fracture mechanics parameters

The stress intensity factors Kjc and Kjc were evaluated from the load-
displacement curve using the compact tension CT and compact shear CS
specimens and the beams subjected to pure bending and asymmetric loading, as
illustrated in Figs. 3 and 5. One applied the photoelastic measurement results
verified using the method presented in [3]—[8]. The stress intensity factor K; was
evaluated using the photoelastic measurement results by employing the Irwin
method [4]. The data necessary to determine K; were available in the form of
isochromatic fringe loops which occur in the region adjacent to the crack tip.
The Cartesian components of stress: Oy, Oy and T,y in the neighbourhood of the
crack tip were:

o, = S cosg(l—singsinﬁ}rﬁ
Y Vome 2 2 ) ™
_ K, @( 8 39]
o, = cos—| I+sin—sin— |,
Yo 27 2
T, = K, singcosgcosgg.
v Vo 2 2
Irwin [4] has shown that K; and the far field stress component — O, can by
determined from a single point measurement on one isochromatic fringe loop. In
the point where:
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dr, +08 =
we obtain the followings equation:
21y =0, - O,
from which
21, cos O

0xX

1/2 9
cos(30,, /2)- (cos2 0, + %sin2 0, ]

and the K value can by determined from:

Klzz’cmvzn.rmf(@m)’ (1)

2 [142860,/2)
3tg®m 3tg®m

where: 1y, and ©,, — are the polar coordinates whose origin is defined at the
crack tip; 2t= Kgmj =61 — 62 — is known from the stress optic relation; kg —
material- fringe value and m; — isochromatic fringe order. An example of the
experimental results is presented in Fig. 2. The value of K; was also determined
from [19], [20]

P\/a
o

1
sin®

m

f©,)=

K, = 29.6-185.5(a/ W) +655.7(a/ W)’ =1017(a/ W)’ +638.9(a/ W)* J

Fracture mechanics parameters corresponding to pure bending.

The four point bending tests were carried out in the experiment. One applied the
flexure notched beam test with artificial crack. The fracture energy Gc was
determined by the four point bending tests on 6 specimens of size
(10x30x250 mm with 1 crack notched on the center line). The notch depth was
equal to 10.0mm (a/h = 1/3). The stress intensity factor Kjc for the specimens
was evaluated from load-deflexion diagram under the ASTM E813-81 standard.
The photoelastic measurement results were taken into account by employing [4].
A good approximation of g, and g in the range of 0<€<0.7 was obtained by
using the boundary collocation analysis presented in [5], with the result

M

b-h’
g, (E)=6[E"7(1.99-2.47E +12.976* —23.17E" + 24.8E%)].

E =

——58,()  where: = a/h,

The shearing mode of fracture — Mode I1

In view of the observed tendency of Mode II failures to occur under certain
condition of loading, and in the absence of any experimental data (for material
using in experiment), the Author had to manufacture a specimen suitable for
Mode II fracture testing and to analyze it.
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Fig. 2. Fracture mechanics parameters. CT - specimen according to the ASTM E399
and E813-81 standards and isochromatic patterns associated with the crack
propagation and the principal stresses 0, and 0, form, =6, 8, 10, 12
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Fig. 3. a) Fracture mechanics parameters corresponding to pure bending and isochromatic patterns
associated with the crack propagation, b) Stresses o, corresponding to pure bending
and typical crack development of the matrix in the tension zone.

The stress intensity factor Kyc was evaluated from the load-displacement curve
using the compact shear specimen CS and the beam subjected to asymmetric
loading shown in Figure 5 and by applying the photoelastic measurement results
and the Wiliams stress function [24]. The Cartesian components of stress: Oy, O,
and T, in the neighbourhood of the crack tip were:

o ———KLSing 2+cosgcos3—
i 21 2 2 2 |
1 G €] 30
o, =——K,; sin—cos—cos—, )
27r 2 2 2
1. =———K cos9 l—singsin2—
Yo T2 2 2 )

1 ) .3
from which 21, = K”\/——(4cos‘ O+sin” Q) ,
2nr

and the K;; value can by determined from:
K, =21,2nr/(4cos> ©+sin’ ©) . 3)

Two examples of the experimental results are presented in Figs. 4 and 6.




EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE REINFORCED COMPOSITE ELEMENTS 335

For the compact shear specimen CS, Kjc value was also determined from [4],

(7], (8]

P
Ky, = Fu\/;
BH

= trace 1
= e 2
trace 3
trace 4

Ky =1.34 MPa-m'?

Fig.4. Compact shear specimen CS and isochromatic patterns for a load P=95 N, Kjc value was
determined from (3) and (4) for a load P.=177.5 N and &/W=0.5, Kj;c=1.39 MPa-m'?
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P,=Pd/(L-d) —fc e——

Fig. 6. The beam subjected to asymmetric loading and isochromatic patterns associated with the
crack propagation, a) before cracking b) just (1/250 sec.) after cracking for a load P.=1220 N
and wW=0.3, K;c=1,45 MPam'”
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For the beam subjected to asymmetric loading (Fig. 6) Ky was evaluated by
applying the photoelastic method [3], [4] from (3) and from

K= —Q—F” (a/W) where Q=P,-P, and also for comparison from [20]

BJW

2 ¢ ] d ¥
K“:TQ 1.3—0.65(%)+0.37[—\%}—] +O.28(%j L e
Ta a
2t
W

2.2. The photoelastic models of the reinforced composites

The models were manufactured in the same way as the element of reinforced
composite using cold casting of epoxy resin "Ep-53" (matrix). The element was
reinforced by the copper bars, cevlar and carbon fibbers. The models of the
reinforced beams were tested in pure bending especially in the cracked stage up
to their collapse. It was decided to test a series of beams, to investigate the
ultimate limit state corresponding to cracking of the matrix and the plastic
deformation or the yield limit of the reinforcement. The state of stress in the
matrix, according to the vertical and horizontal crack propagation, was observed
using a photoelastic method. The strains in the reinforcement were determined
using strain gauges 1.0 mm of length. One determined the critical value of the
strain energy release rate (Gc=0dU/dA) obtained experimentally from the relation
between the work of the acting forces and the crack surface. In the case of
vertical propagation of cracks, which develop directly (perpendicularly to the
beam axis), the displacements of the forces and the propagation of the crack in
the matrix corresponding to them allows us to determine the stress intensity
factor Kjc and the strain energy release rate G, from:

Gie Zﬂzm; and K, =4E_, G, 4)
AA  aB
where: AU - dissipated energy, AA =aB - fractured area, P; — force
corresponding to the crack propagation, AVi — displacement corresponding to
the cracks length (a).

3. Cracking mechanisms

3. 1. Crack propagation vertical - perpendicular to the beam axis

For computation of the ultimate moment Mcr related to the crack
propagation, the strain energy release rate G¢ was evaluated based on the known
isotropic linear elasticity solution.

The critical load causes the propagation of cracks, which develop directly,
perpendicular to the beam axis. For simplification (shown in Fig. 7), the linear
stress distribution in the matrix was assumed. According to the theory of
strength of materials, the stresses in reinforced beams can be easily calculated.
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The stress intensity factor K; for the specimens was evaluated based on the
known isotropic linear elasticity solution. From dimensional consideration, the
stress intensity factor K™ depends upon the applied bending moment M,, and
axial force Z, in the reinforcement is related to the stress intensity factor KI(Z)
The stress intensity factor K; is given by the superposition principle:

K[ — K(M) K(Z) (5)

| M,
K = b~hg” g () KP¥-= - h”’ ———g ()  where: £&= a/h (6)

A good approximation of g, and g, for the range of 0 < £< 0.7 can obtained by
using the boundary collocation analysis presented in [5], [12] with the result

g, (&)= 6[&'”(] 99-2.47E+12.978* - 23.178" + 24.8@“)]
g ()=E"2(1.99-0.41E +18.78* —38.48’ +53.85")

The applied bending moment M, and axial force Z produce local rotations,
respectively:

(7

CD(M) XMM Mu’ (D(Z) A'MZ Zu’ (8)
2
here: 7\, )\. =)
where: Ry =g j WO, A =g Jg g, (E)dE .

Up to the moment of nonlinear deformations of the reinforcement, the local
rotation in the cracked cross-section is equal to zero:
d=0" +0% =0. 9)

The bending moment M, (in cracked section) depends upon the applied bending
moment M and axial force Z, in the reinforcement.

M =M-Z (hf2—e,),
and from (7) and (8)

A [IM=Z,(h/2-e))]— Ay, - Z, =0,

(10)
M=Z[(h/2-e,)+h-r&)],
where:  h-r(§) =X, /Ayy» Aum and Ay are determined from (8).
a) b)
M, M. M, M,
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Z l d h/z-(%u Zn % | & h/2-€u
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Fig. 7. Cracked reinforced beam element and axial force Z, in reinforcement: a) - axial force in the
reinforcement causes the propagation of cracks, b) — tensile axial force Z,= - Z in the
reinforcement actually restrains the cracks
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In the case of nonlinear deformations of the reinforcement, the stress intensity
factor K7 of crack propagation can by found from (5):

£,(&) Z,

K, = M=Z - (h/2-e))] e, (©) (1)
where: Z, =-7.

In the case of completely open crack, the local rotation in the cracked cross-
section equals

q)(M) +q)(2) e (D(MCR)
Py [M = Z, (01 2—&0) |+ A= DeggMe_s5

bh3/2
where: Z=-7,, M ,=Kye,—<-
2 (©)
The moment corresponding to the crack propagation is:
b-h"’ h Mz
Moz =Ke———%Z, || =hiZ=gy [+ : (12)
gb(€) 2 MM

where:

- Z,=¢EF,for e<g, and for €,)¢, Z, = 0 (¢, )F; and © (g, )=0 (g,/€,)P,

— p=0.072 (obtained experimentally), F, — cross section of the reinforcement,

— strains (&) in the reinforcement were determined using strain gauges 1.0 mm
of length.

The displacement in the crack may by derived by local rotation in the cracked

cross-section and crack length a as the crack opening displacement (COD)

S(u):cD(CR)'a' (13)
The corresponding axial displacement of the reinforcement &(Z):
Bz =P (a—eg)= oM, (a—85) . (14)

Applying the critical value of Kic of the matrix and the crack length "a" and the
strains of the reinforcement, one obtains the ultimate moment (Mcgr). The
bending moment Mcr for 3 different percentage values of the reinforcement
(2%, 1%, 0%), in the case of vertical cracking, is presented in Fig. &.

aMcr [Nm]

50.0 1-F,=6.28 mm°
40.0 x
30.0 . 2-F,=3.14mm*

~N

_——

Fig. 8. The values of the ultimate moment (Mcg) in the case of vertical cracking
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Experimental and numerical results of the limit state

Ultimate moment My corresponding to vertical crack propagation feble
h=33.5 mm, K;c=1.31 MPa-m'?, ¢,=4.5mm, 6,=188 MPa, £,;=0.002
a e 10° Z, M, Mcr ®-10™ 3(a) Mcr-Exp

[mm)] [N] [Nm] [Nm] [rd] [mm] [Nm]

2.0 24 1196 29.131 50.962 0.686 1.37-107 -

5.0 3 1232 18.810 42.260 2.65 13.3-10° -

10.0 21.0 1398 12.34] 41.005 8.09 80.9-10° 39.5

15:0 35.0 1451 8.347 40.510 17.9 0.269 40.4
20.0 42.0 1470 5.168 40.437 3.86 0.773 43.2
23:0 44.0 1475 3.662 40.427 6.27 1.44 445

Horizontal cracks propagation — parallel to the beam axis

3.2. Horizontal cracks propagation - parallel to the beam axis.

Some simplifications in theoretical analysis are based on experimental
observations. The critical load causes propagation of the cracks that have
developed directly, perpendicular to the beam axis, but further, as the load
increases, they turn and run parallel to the beam axis. The crack path in the
second stage of the crack propagation, when it is running almost parallel to the
beam axis, can by influenced by the changes of mechanical conditions
(compressive zone) at the end of the beam. The stress intensity factors Ky and
Ky can be calculated from the J-integral by using the theory of strength of
materials (for simplified model shown in Fig. 9).

I=[(o,gdx, - T LT =—1—[jo§ds, ~ [ olds, + [0,7ds,] (15)
s aXl Em Si S3 S5
This approach is justified because fracture initiation experiments show linear
behaviour near cracks in these (composite) specimens.

ay

b

Fig. 9. Internal forces over cross section corresponding to cracking parallel to the beam axis
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Let us consider a short section, loaded by the stress-resultants M and Z, that
contains a quasistatically propagating horizontal crack (parallel to the beam
axis). In the model shown in Fig. 10, the stress intensity factors K; and Ky can
be found by using the theory of strength of materials assuming linear stress
distribution in the matrix. For both loading cases, the crack is predominately
loaded by in-plane shear, so we can assume that:

K,=yE'J,, K,=E-J, and J=Jz;+J,. (16)

Assuming linearly elastic stress distribution in the matrix, the Jg —integral
describing the bending energy during the mode I loading (cracking by tension)
can by determined. Similarly, the integral Jy corresponding to horizontal shear
forces Z, can by evaluated. The results are as follows:

B

M’ 1 Z .
= 67 t——(M=-Z,-h/2) - —+—(@l/2-¢,) |,
E b | (h—a) h” a

o iy 1) 3
" Eb|2(h-a a) 2h]

A local crack tip stress analysis is essential for fracture under combined
loading for both loading modes (I and II). The values of the stress intensity
factors K, and Kj; can be found from the strain energy release rate G¢ and G; and
Gy corresponding to pure mode I and pure mode II. Assuming that the axial
forces in the reinforcement in the cracked section and uncracked section
(Fig. 11) are equal Z, and Z,, respectively, the strain energy release rates Ge, G
and Gy can by calculated by using the theory of strength of materials, as
follows:

(I7)

Ki=+BG; s Kp=yB-G; and K.=E-Gg, (18)
) 2 2 5 3 - ) 2
GCZJ: : ﬁl-—M;, 3 & (h e”) _h(h e()) + E (h_e()) +
2E |b’th-a)® | J, 3 2 2
L ,M=M)Zfhe)’ h o M -MOEZ=Z)(h }
b’ (h—a) J,-bh 2 2 3-b-J, P
(19)

g " {1121\4; ﬁ_[&] (h_e”{(h—eor_h(h—a»%l;”}’
2E_|bi(h-a) | J, 3 2 5

(20)

Gu = 7}; b3 Z; - Ml _Mu (h —6())' - h(h_e())_ +[Ej_ (h ——eo) -
“m (h_a) JI 3 2 2

M, -M,)Z, [(h—e(,)' _g(h_eo)}tm -M,)(Z, —zu)(ﬁ_e” j}
1, -bh 9 2 3-b-J, 2
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where: M, :M—Zu(h;a —e(,), M =M-2 {%—e(,j,

M
Z, :J—(a—e() +o)nE, Z :JM(h/’Z—eO)nFr,

a 1

B p-l
€ O, €&
for e=g,, n=E,/E, andfor e2¢,, 0,=0,| — |, 0 =—— -,
€, B €
b l - 3 h'—' 2 .
Ju :%+b(h_a)(—2£_a] +n[Jr+Fr(a+OL—eo\‘],

b 5
5(h—2)‘ -nF(a—e,)

- b(h—a)+nE

2

_b(h-a)’ h—a ,
I ——12—+b(h—a)(——2——a] +n[J,_ +FE(a+a+e,) ]

B= (h/2—-e,)nF,
bh+(n—1E ’
o, B — position of the neutral axis of cracked and uncracked section,
respectively,
1., J_, — moments of inertia of cracked section and uncracked section (Fig. 10),
respectively,
Jo— moment of inertia of the reinforcement,
F, - cross section of the reinforcement.
v M.,
taye M [T - .%
X < T
sz ‘g_i_ 3 2 Z.
o {_ad "”é\ & (h+a)/2¢o
a,/2 ‘ * > % 7.
?—f\ e Z(al2-e.)/ WY f al2ean
S: S
-— M,
M -Z,(W2) - }/
@ i i ham Z.m2) (.
) (h+a)/2-c,
Sy ay=a | _ Sz /} Z«(u/z.c“)
177 —-¥
y v (al2)»-eq

Fig. 10. Internal forces under combined loading in mode I and mode II corresponding to cracking
parallel to the beam axis
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M, M.
h/2 X
el = z, 1
h /2-e 0 ay=a } (h+a)/2-e,
gy ' v
o A 7 n

Fig. 11. Internal forces over cracked and uncracked cross sections, respectively

In a general case, the Cartesian components of stress: Oy, Oy and Ty, In the
neighbourhood of the crack tip are:

1] © 0 30 © )
o = K, cos—| 1 —sin—sin— |— K, 5in— 2+cos—cosﬁ +0,,,
i 2 2 2 2 2 2 ’

27

,
= j
3

© . © 30 .0 00 30
o, = K, sos—| 1+sin—sin— |+ K, 5in—cos—eos— | (21)
2 2 2 2 2 r

Xy

.6 © 30 of, . 6 20
= K, sin—cos—cos—+ K, cos—| 1 —=sin—sin— ||,
2mr | 2 2 Z 2 2 2
from which:

x

) 1 : > : 2
(0,—0,) = 2—[(KI sin®@+ 2K, cos @) + (K, sin©®©)" J -
Tr

(22)

c. . O . 2 2

2#"‘511} 7[KI sin©(1+2cos©)+ K, (1+2cos” ©+cos @)J +0,

nr 2

By inserting the values k; =m, =0, —0, into (22) we obtain the isochromatics
curves in polar coordinates (r, ©). For each isochromatic loop, the position of
maximum angle ©,, corresponds to the maximum radius of the r,. This principle
can also be used in the mixed mode analysis [11] by employing information
from two loops in the near field of the crack, if the far field stress component —
o, (©)=const . Differentiating Eqn (22) with respect to ©, setting © = ©_ and

0X

r=r,, and using Eqn (d1,,/00,, =0) gives:

[$33

f(K,.K,.0,)= L[(KI sin®,, +2K, cos0,)’ +(K, sin©,) |-

m

C) )
2 Ous sin——ﬂ[KlsinGm(l-l-Zcos@ )+K”(l+2cos'®m+cos®m)]+ (23)

\ 2T,

m

+02, —(k,-m)’ =0,

0OX
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1 pos
2K, ,K,,c ):2—m[K; 5in 20, +4K K, c0s20, |-

0Xx

o, . ©
ol 51117‘“{[K1(cos®m+20052®

) N 21

1
+§cos%[Kl (sin®, +sin20

)-K,(2sin20, +sin@ )]+ (24)

m

m

)+ K, (2+c0s20,, +cos @,“)]} =},

Substituting the radii r,, and the angles ©,, from these two loops into a pair of
equations of the form given in eqn (24) gives two independent relations
dependent on the parameters K;, K;; and o, The third equation is obtained by
using Eqn (23). The three equations obtained in this way have the form

g (K..K;,0,)=0,

0X

g_|(KI7K[]76 ):O’ (25)

0xX

f. (K,,K,,5,)=0.
In order to determine K, Kj;and o it is sufficient to select two arbitrary points
r, ©; and apply the Newton-Raphson method to the solution of three
simultaneous non-linear equations (25). Example of the numerical results
obtained from (25):
For r;=0.35mm, 0,=0.695 rd, m;=12.0 fr, r,=0.92 mm, ©,=0.642 rd.
we hawe K=0.584 MPa m" Ky=-1.27 MPam" and 6,,=0.02 MPa.
After assuming that in the neighbourhood of the crack tip the far field stress
component — G,,=0, the followings equations are obtained:

G, —0y | 4
Tm = 7 +tx)’ ?

- L[(KI sin®, + 2K, 030, )" + (K, sin®@, )" |. (26)
2nr

m

This equation may by used to construct the isochromatics loops for curves of
constant stress T Inserting the values “k,m” into (26) we obtain the

max °
isochromatics curves in polar coordinates (r,0) in the neighbourhood of the
crack tip

(K,sin®+2K, cos @)’ + (K, sin @)’
2-m(k,-m)”

and the values of the angle ©,, and radius r,,. corresponding to maximum shear

stress T

(@) = (27)

max -’

The angle ©,, is found by setting 91 ./ d©,,=0 from (26). The resulting equation

is
&
1020 :_LK'{ and ST I 5 cthG)m—l:O (28)
t= m KI__:))K]_I Kl KI 3
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By inserting the values r;, ©; in three selected arbitrary points into (23) we
obtain three non-linear equations (i = 1, 2, 3)
f,(K,,K;,0,,)=0 (29)

and applying the Newton-Raphson method to the solution we have K, K;;and O.
Example of the numerical results (shown in Fig. 12) obtained from (29):
for 1=0.69 mm, ©,=0.639 rd, m,=14.5 mm, r,=0.98 mm, ©,=0.643 rd.
m>=10.4, r;=1.18 mm, ©:=0.656 rd, m;=6.5,
we hawe K=1.27 MPam'”?, K;=-0.841 MPam' and 6,=2.472 MPa.
The results of the numerical analysis were verified experimentally by
photoelastic investigation. The isochromatics-fringe patterns obtained under the
loading condition corresponding to cracking parallel to the beam axis, recorded
photographically, are shown in Fig. 12. Comparison between the numerical and
experimental investigation is presented in tables 2—4. The difference between
the analytically predicted isochromatics-fringe patterns distribution and those
determined photoelasticaly is less then 5+6 percent. The initial assumption of
linear stress distribution in the matrix for calculation the intensity factors K; and
K from (16) or (19) caused the errors of about 3+6 percent.

M,=5.168 Nm, Z,= 420 N, a,=6, h=33.5mm, a,=23.5mm, b=10mm, h=33.5mm,
m=16,18,20,22; K, =1.27 MPam"? K,=-1.03 MPam'*

Fig. 12. MODEL L-01. Comparison between the numerical and experimental investigation. The
isochromatic patterns G-, distribution corresponding to typical crack development
— parallel to the beam axis propagation



346 MIECZYSLAW JARONIEK

3.3. The strain energy release rate G¢ corresponding to horizontal cracks
propagation

According to the classical solution, the strain energy release rate G can be
found from the following expression:

1 s . vad
G:G|+G”=E—(K,‘+Kfl) (30)

m

For a crack horizontal — parallel to beam axis, the local crack tip stress analysis
is essential in the fracture problem under combined loading in both mode I and
mode II. In pure mode I, one could postulate a Kjc condition of fracture.

Kic =1.3+1.45 MPa m'”, Kjic=1.25+1.35 MPa m'"?, and c=K;c/Kic = 1.0.

The values of the strain energy release rate Gj corresponding to pure mode I can
be found from:

2
KIC

GIC = E

31
If one assumes K;;c =Kic, we have Gjc =Gjc for combined loading in both mode

I and mode II, the strain energy release rate G; of the matrix is regarded as a
linear function of the Gy, G; = f(Gy).

G K: (Ke)
Gie =Gy — — -G, or G, e I Gy, (32)
GIIC Em KIIC
from which one obtains an elliptical curve fit of the form
A (33)
KIC KIIC

and by means of the critical values Kc and Ky of the matrix, K; and K;; (from
an analytical solution or from experience) one obtains the critical values the
strain energy release rate G¢ and the stress intensity factor K¢ for combined
loading in both mode I and mode II. An example based on experimental results
1s presented in Fig. 13b. The stress intensity factors Ky, K; and K¢ obtained
from (16) are presented in tables 2—4 and those form (19) are presented in tables
5-7 and in Fig. 13a. In this case, the strain energy release rate G " from the
experimental results can be found as follows [25]

(G} =G} +Gi. (34)
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a) b)

4 Ki (MPam'?)

Kic=1.3 G, (N/mm) Gc’=G/+Gy’
N Gic=0.499

GC =0.51

Ke=(K/ +K;)"?

A
K G=0.346

G (N/mm)

Kic=1.3 G1=0.399  G;1c=0.50

Fig. 13. a) The values of the K, K;; of the matrix as a function of the critical values K;c and Kjjc;
b) The values of the strain energy release rate Gy and Gy of the matrix as a linear function of the
Gy, obtained from (34) according to mixed mode of the fracture

Numerical and Experimental Results — Horizontal cracks propagation
— parallel to the beam axis Gy, Gy;, G¢, K; and K;; obtained from (16) and (17)

Table 2.
h=31 mm, a=25 mm, €,=8.0 mm, M =34.20 Nm,
£=0.0035, £=0.0095, Ma=0.658 Nm, Za=1677 N
G | G | G [ & Kk [ K | KGo
kN/m MPam'"?
0.0591 [ 04488 | 05079 [0.598 0.4515 [1.244 | 1324
Table 3.
h=33.5 mm, e,=4.5 mm, Mg =45.20 Nm,
€=0.0045, &=0.0285, M,=4.641 Nm, Z,=1690 N
G | Gy I Ge ] G Ki [ Ky I K(Ge)
kN/m MPam'"
03704 | 02127 | 05831 [ 0427 1.1305 | 0857 [ 1.418
Comparison between the numerical and experimental investigation
Table 4.
N° ¢ m; o, K;
point [mm] fr. Rd. Deg. ° Oox MPam"?
| 0.69 14.5 0.638 36.55 K;=1.165
2 0.98 10.5 0.643 36.84 G,x=2.01 MPa | K;; =-0.791
3 1.18 75 0.656 37.60 Kc =141
Table 5.
h=36.4 mm, a=23 mm, M=48.5 Nm,
£=0.0054, £,=0.0192, e=7.5mm, M,;=7.99 Nm, Z,=1804.5 N
G, | Gy ] G [ GM K, [ Ky | K(Go)

kN/m MPam'?

05067 | 01709 | 06775 | 0.535 13221 | 0768 | 1.529
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Numerical and Experimental Results - Horizontal cracks propagation
— parallel to the beam axis G;, Gy}, G¢, K, and K;; obtained from (19)

Table 6.
h=31 mm, a=25 mm, ¢,=8.0 mm, M =34.20 Nm,
£=0.0035, £=0.0095, Ma=0.658 Nm, Za=1677 N
G, | Gy I Ge l G K, I Kj [ K(Ge)
kN/m MPa-m'2
0.0349 | 04491 | 04840 [ 0.598 03471 | 1245 | 1292
Table 7.
Comparison between the numerical and experimental investigation.
N° r; m; O, K,
pOint [mm] f['. Rd Deg ° O—UX MPu-m”Z
| 0.69 14.5 0.639 36.61 K;=1.274
2 0.98 10.4 0.643 36.84 0, =2.472 MPa | K;; =-0.8469
3 1.18 6.5 0.656 37.60 K¢ =1.530
P e Mg[Nm]
v FHEHEHHER T 46.8 [— - - el S ha
¥ ) : e 7
T load 14 A
i l : S 380 [ 4 Tz
+ [doans + 1 |
i T oas: i 1 |
33 EIENT S T o LA | ||p=6s2N ‘
TR T g g oy A pgas —_—
IR AR SHEERE 2 240 | L | || av=0.08, sa=9.6 mm | |
ol dBntRt R || aG=0.543kN/m
InEU dRoniiLGaRrinsan; | ] Ki=1.37MPa m'?
A e L 1
1 TE3%41! LR S =t
A RIEREC i REn \ k !
A R Ry 0.56 || 0.64 . 168 1.8
Displacement f [Imm] — ' X f[mm)
0.86

Fig. 14. An example of the load-displacement curve from X-Y plottrer, with characteristic
points corresponding to cracking

4. Experimental and numerical investigations of the limit state

The dimensions of the typical model used in the experiment are given in Fig. 1.
The models were tested in pure bending especially in the cracked stage. The brittle
fracture of the matrix was simulated by introduction of artificially initiated cracks
in the tension zone (Fig. 1). The beams were loaded gradually to initiate crack
propagation in the matrix and plastic deformation of the reinforcement. The
critical load caused propagation of cracks, which developed directly
(perpendicularly to the beam axis), but further, as the load increased, turned and
run parallel to the beam axis. Test results, isochromatics fringe distribution
registered phtoelastically and the force in reinforcement, calculated from the value
of strain, allowed us to determine the state of stresses in the cracked stage. The
stress distributions related to typical crack development (corresponding to the
critical force and the ultimate moment M) are given in Figs. 15 and 16.
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Fig. 15. Photoelastic model of the reinforced beam. The isochromatic distribution
patterns (0,-0,) before vertical cracking

Fig. 16. Photoelastic model of the reinforced beam. The isochromatic distribution patterns (0,-05)
corresponding to typical crack development — perpendicular the beam axis
(point 3 in load-displacement curve — Fig. 18).

-21.97

a) P =690 N, Mg =24 Nm
-30.4

£,=2.0%

]
Z =1405N e =3.5\y

0,=222 MPa — /|V

¢c)P=810N,Mg=44 Nm

-27.7

Z =1395N e =3.5 \|
6,=220 MPa —,TJL

b) P =690 N, Mg =38 Nm

Fig. 17. Distribution of stresses O, corresponding to
perpendicular (a, b) and parallel (c) to the beam axis
propagation of the cracks (points 1, 2 and 4 in
load-displacement curve in Fig. 18)
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a)
Mg[Nm]
44 5
o I = N
2  P=690N
24.0 Av=0.09, Aa=12.5
G =0.48 N/mm
Ki=1.29 MPa-m'?
0.53 0.62 1.32 210
f [mm]
b)
-41.,8

6.8 N
A a=16.2
8a=a =26.7 mm ;_ | a =26.7
Ga=242MPa e =3.5

/{\

Fig. 18. a) Load-displacement curve; b) Distribution of stresses o, corresponding to propagation
of the cracks parallel the beam axis (point 5 in load-displacement curve)

Fig. 19. Fracture in direction parallel to the beam axis. Distribution of isochromatic fringes
corresponding to propagation of the cracks parallel to the beam axis
(point 5 in load-displacement curve)
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5. Numerical determination of stress distribution in the cracked stage

The numerical calculations were carried out using the finite element program
ANSYS 54 [17], [25] and by applying the substructure technique. Two
different methods were used: solid modeling and direct generation. Finite
element calculations were performed in order to verify the experimentally
observed branching phenomenon and the isochromatic distribution observed
during cracks propagation along debonded parts.

The geometry and materials were chosen to correspond to the actual
specimens used in the experiments. A finite element mesh of the model (used
for numerical simulation) of the structure is presented in Fig. 20, and the stress
distribution as well as the isochromatic fringes are shown in Fig. 21. (For
comparison, the isochromatics obtained experimentally are given in Fig. 21.)
The strain energy release rate Ge is equal in this case to the J-integral:

J:J %[é(ﬁi—ﬁiﬁzé}nl_{Tg(cx—v-oy)~nz+(txyn,+0yn:)§—v} s (35

X

or can by determined from numerical calculation using the finite element
method:

=% %{El(o;-03,)+§é}.n“{‘g (cxi_vcyi).nﬂ+(Tmn,,+ayinﬁ)ii} a5

X

(36)

The distribution of the stresses and displacement obtained by FEM allows us to
evaluate the J— integral (equal to the strain energy release rate Ge).

a)

=

e
N\

Xt
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Powezbraphics

Fig. 20. Numerical simulation of the cracking. Fracture in the direction perpendicular to the beam
axis; a) Finite element mesh. b) Distribution of the stresses Oy,.

5.1. Fracture in direction perpendicular to the beam axis

The J- integral obtained by FEM (equal the strain energy release rate Ge ):
T = 0.493kN/m, Kic =(E,J)'” = 1.304 MPa-m'”

STEP=1

sl =&

TIHE=]

SINT {ANG]
Dt =3, L8
SMM e J39E-03
=174.81
=0

=2.7%
5.5

wg. .23

L2

w13, Th
16,5
=19.2%

25
=22

HZCXWUUN“)%

Fig. 21. Distribution of isochromatic {ringes (G-62) corresponding to the crtical load before
the propagation of the cracks
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Fig. 22. Distribution of isochromatic fringes (0,-0,) obtained experimentally, corresponding to the
crtical load before the propagation of the cracks

The Rice J integral obtained by FEM (equal the strain energy release rate G¢ ):
J, = 0.493 kKN/m, Kic =(EJ)"” = 1.304 MPa-m'”

a) Isochromatic fringes (0,-0,)
¢) Rozklady izochrom

JUN 26 2000

00:438:42
ANSYS S.4 NODAL 3OLUTION
¥ 22 2000 sTLP=1
00:01:30 SUB =1
NODAL SOLUTION TIME=1
on 3EQV (26)
sy 4 Powerfraphics
:;:ra‘:l (ave .. LTACET=1

)
R3Y3I=0 AVRLS HMac

PowerGraphics
y EFACET=1

DO =1.698
St =.005163
X =362.867

.222£-02
.667C-03
001111
001886
.002

Zhrojenie, mavezial liniowo-spresyzey 2brojenie, material liniowo-spresysty

c) stresses Oy

(496)

PowerGraphics
CrACET=1

Fig. 23. Numerical simulation of cracking; a) Distribution of isochromatic fringes (G,-05); b) the
strains €, and the stresses 0y, correspondings to the propagation of the crack; c) the integral path
from which one calculated the value of the Rice J integral
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5. 2. Fracture in direction parallel to the beam axis

The Rice J integral obtained by FEM (equal the strain energy release rate Gc):
Jh=0.699 kN/m, Kjc = (En])"” =1.55 MPa-m"”

a) Isochromatic fringes (G,-05)

Maprezenia [MPa)

odl . od zbrojenia

JAN 13 2001
01:46:29
¥ODAL SOLUT 10N
STLP=1

3UB =1

TOE=L

34 (26)
R3VS=0
Powerbzaphics
LTACET=1
AVRLSHay

X =1.946
SHE =-45.411
e =254.297

LU EGEE R BUAVRIR I B
wmammm Re o
A e
BRess SEREE,
QIS
LSS S: s

SESTE LA

I8 Belnousitels

%l

o a0 B

Fig. 24. Isochromatic fringes (0,-0,) and corresponding the stresses parallel to the beam axis
propagation of the crack, a) distribution of the isochromatic fringes b) stresses o,, 6, and T, ¢)
the integral path from which one calculated the value of the Rice J integral the experimental
isochromatic fringes distribution are shown for comparison
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6. Conclusions

In the case of composite elements made of synthetic optically active resins,
there is a possibility to analyse the failure phase by means of the photoelastic
method, on the basis of model, tests directly in the structure. This method makes
it possible to determine the critical values of the strain energy release rate (Gc)
and the stress intensity factors (K; and Kj;) corresponding to the mixed mode
fracture based on experimental results.

The Author decided to test a series of beams: 1) Models reinforced classically
by copper bars and steel. 2) Models reinforced linearly by fibber kevlar and
carbon. Finite element calculations (FEM) were performed in order to verify the
experimentally observed branching phenomenon and the isochromatic distribution
observed during cracks propagation along debonded parts.

The theoretical ultimate bending moment was derived using the strain energy
release rate (G¢) and the stress intensity factors (K; and Ky) corresponding to the
crack propagation of the matrix and the yield limit stress in the reinforcement.

The fracture in the reinforced composite elements subjected to bending and
their strength are closely dependent on several processes: matrix cracking, fiber
plastic deformation or failure, interfacial debonding between matrix and fibers.
The criterion to calculate the maximum load was derived from two processes
only: matrix cracking and the plastic deformation of the reinforcement.

The fracture criterion for combined loading in both mode I and mode II can
by expressed in terns of the stress intensity factors (K; and Kj;) in the form (32)
and (33). The experimental results confirmed the validity of the hypothesis that
the empirical equation (32) can by considered as a practical criterion for
reinforced composite elements.

Manuscript received by Editorial Board, May 25, 2001;
final version, November 29, 2001.
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Eksperymentalna i numeryczna analiza zbrojonych elementéw kompozytowych
poddanych zginaniu

Streszczenie

Kruche pgkanie elementéw kompozytowych jest istotnym problemem analizowanym przez

konstruktoréw od wielu lat i analiza sposobu zniszczenia zajmuje centralng pozycj¢ przy
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rozwigzywaniu tego problemu. W pracy przedstawiono przyktady i poréwnano wyniki badan
eksperymentalnych i obliczen numerycznych elastooptycznych modeli belek zbrojonych.

Procesy pgkania elementéw kompozytowych zbrojonych pretami, lub pasmami sa dosyc
ztozone, zniszczenie moze by¢é spowodowane pgkaniem matrycy, utrata nosnosci zbrojenia,
delaminacja zbrojenia, lub inaczej moéwiac utrata przyczepnosci zbrojenia 1 matrycy
(spowodowang tzw. pgkaniem migdzyfazowym).

W pracy niniejszej przedstawiono kolejne fazy zniszczenia belek kompozytowych z zywic
syntetycznych zbrojonych prgtami, lub pasmami w strefie rozciaganej, narazonej na pgkanie oraz
okreslono wielko$¢ wspdlczynnika uwalniania energii sprezystej w ztozonym sposobie zniszczenia
elementu. Przedstawiono takze uproszczong metode okreslania nosnosci belek zbrojonych na
podstawie parametrow mechaniki pgkania matrycy Kjc, Kpyc i G oraz nosnosci zbrojenia.
Wprowadzajac do obliczen zalozenia mechaniki pgkania, mozna wyznaczy¢ graniczne wartosci
obcigzen w funkcji wspotczynnikow intensywnosci naprezenia K; Kj; i wspélczynnika uwalniania
energii sprezystej (Gc) oraz odksztalcen zbrojenia (sprezystych lub plastycznych). Zastosowana
metoda umozliwia jakosciowa oceng propagacji pgknig¢ w poszczegdlnych fazach zniszczenia
elementu.



