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MIECZYSŁAW JARONIEK'l

EXPERIMENT AL AND NUMERICAL ANALYSIS OF THE REINFORCED 
COMPOSITE ELEMENTS SUBJECTED TO BENDING 

Brittle fracture of the reinforced composite element has been a matter of 
considerable concern to engineers for many years. It is now generally accepted that 
the mode of failure is the centerpiece of the problem. The publication presents the 
experimental and numerical procedure used to determine the state of' the stress in 
the photoelastic model of reinforced beams. The fracture process of fiber reinforced 
composite materials is very complicated, and the fracture strength is affected by: 
matrix cracking, fiber breakage and interfacial debonding between matrix and 
fibers. 
The criterion used to calculate the maximum load was derived based on two 

processes only: matrix cracking and deformation of the rei nforcerncnt. The 
theoretical ultimate bending moment was calculated using the strain energy release 
rate Ge and the stress intensity factors (K11 and K1) corresponding to the crack 
propagation of the matrix and the elastic-plastic deformation or the yield limit of the 
reinforcement. 

1. Introduction 

In calculating bending 
commonly assumes that all 
compression by the matrix. 

It is the usual practice in calculating stresses in reinforced-composite beams 
to assume that Hooke's law holds for composite, and to compensate for the 
variable modulus by taking a lower value for this modulus than that obtained 
from compression tests. The optical properties of epoxy resin makes it possible 
to determine the stresses in the matrix by photoelastic method [2]. The 
dimensions of the typical model used in the experiment and material properties 

stresses in reinforced-composite beams, one 
the tension is taken by the fibbers and all the 
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are given in Fig. I. The brittle fracture of the matrix was simulated by 
introduction of artificially initiated small cracks (notched) in the tension zone. 

The stress distribution in the matrix was characterized by isochromatic 
patterns and the displacements were measured by applying strain gauges. 

The fracture mechanics parameters: the stress intensity factors K1, K11 and the 
strain energy release rate (Ge) were determined experimentally. The stress 
intensity factors: Kic and K11c were evaluated from the load-displacement curve 
under the ASTM E8 l 3-8 l standard and by using the photoelastic measurement 
results. 
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Fig. I. a) Typical details of the photoelastic models of the reinforced beams; b) Properties of the 
reinforcement and the matrix; c) Model reinforced linearly by carbon fibbers before test 
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2. Material properties 

The properties of the matrix and the reinforcement were determined 
experimentally. The loading experiments were performed using displacement 
control method with automatic measurement system. The mechanical properties 
of the matrix were characterized by: 
Em= 3450 MPa - Young's modulus, 
Vm = 0.36 - Poisson's ratio, 
Rc=l20 MPa, 
Rm =35 MPa 
Gie= 0.5 kN/m 

1/2 Kic=l .30 MPa·m , 
Kuc= 1.302 MPa·m112 

kcr=l .68 MPa/fr. 

- ultimate strength (in: compression, tension), 

- critical value of the strain energy release rate, 

- critical values of the stress intensity factors, 

- photoelastic constants in terms of stresses, 

and of the reinforcement: 
E, = 9.4· 104 MPa 
v. = 0.29 
Re =188 MPa, 
Rm= 320 MPa 

- Young's modulus, 
- Poisson's ratio, 

- yield limit and ultimate strength in tension, 

and load-displacement curve (o-s). 

2.1. Fracture mechanics parameters 

The stress intensity factors Kic and Kuc were evaluated from the load­ 
displacement curve using the compact tension CT and compact shear CS 
specimens and the beams subjected to pure bending and asymmetric loading, as 
illustrated in Figs. 3 and 5. One applied the photoelastic measurement results 
verified using the method presented in [3]-[8]. The stress intensity factor KI was 
evaluated using the photoelastic measurement results by employing the Irwin 
method [4]. The data necessary to determine KI were available in the form of 
isochromatic fringe loops which occur in the region adjacent to the crack tip. 
The Cartesian components of stress: o., cry and 'lxy in the neighbourhood of the 
crack tip were: 

KI 0( . 0 . 30] CT. =--cos- 1-sm-sm- +cr , 
X & 2 2 2 OX 

KI 0( . 0 . 301 
cry= ✓'lmcos2 l+sm2sm2 )' 

KI . 0 0 30 
'T =--sin-cos-cos- . 

. xy ✓'2m- 2 2 2 

Irwin [ 4] has shown that KI and the far field stress component - o., can by 
determined from a single point measurement on one isochromatic fringe loop. In 
the point where: 
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chm1aem =0,
we obtain the followings equation:

21:m = CT1 - CT2,
from which

a.,,= cos(30m/2){cos'0"' +!sin'0,,.r'
and the K1 value can by determined from:

KI = 21:m ✓2rr- r111 f (0m),

J(e
111

) =-__I -[I +(-2-]
2]-f -(I+ 2tg(30m /2) ],

sm 0111 3tg0111 3tg0
111

(1)

where: rm and 0m - are the polar coordinates whose origin is defined at the
crack tip; 21:m= k0mi =cri - cr2 - is known from the stress optic relation; k0 - is
material- fringe value and mi - isochromatic fringe order. An example of the
experimental results is presented in Fig. 2. The value of K1 was also deterrnined
from [ 19], [20]

KI = :; [29.6-185.S(a/ W)+ 655.7(a/ W)2
- I 017(a/ W)'+ 638.9(a/ W)4 J.

Fracture mechanics parameters corresponding to pure bending. 
The four point bending tests were carried out in the experiment. One applied the
flexure notched beam test with artificial crack. The fracture energy Ge was
determined by the four point bending tests on 6 specimens of size
(10x30x250 mm with 1 crack notched on the center line). The notch depth was
equal to I 0.0mm (a/h = 1/3). The stress intensity factor K1c for the specimens
was evaluated from load-deflexion diagram under the ASTM E8 I 3-8 I standard.
The photoelastic measurement results were taken into account by employing [4].
A good approximation of gb and gt in the range of O<s<0.7 was obtained by
using the boundary collocation analysis presented in [5], with the result

M 
KI= b. hm gb(s) where: s= a/h,

gb (Ś) = 6[śI/2 (1.99- 2.47ś + J 2.97ś2 -23. J 7ś' + 24.8ś4
)].

The shearing mode of fracture - Mode II 
In view of the observed tendency of Mode II failures to occur under certain
condition of loading, and in the absence of any experimental data (for material
using in experiment), the Author had to manufacture a specimen suitable for
Mode II fracture testing and to analyze it.
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Fig. 2. Fracture mechanics parameters. CT - specimen according to the ASTM E399 
and E8 I 3-8 I standards and isochrornatic patterns associated with the crack 

propagation and the principal stresses 01 and 02 form, = 6, 8, I O, 12 
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a) m=6, 0=131.8°, r=2.4mm b) m=8, 0=92°, r=l .25mm
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Fig. 3. a) Fracture mechanics parameters corresponding to pure bending and isochromatic patterns
associated with the crack propagation, b) Stresses CJ, corresponding to pure bending

and typical crack development of the matrix in the tension zone.

The stress intensity factor K11c was evaluated from the load-displacement curve
using the compact shear specimen CS and the beam subjected to asymmetric
loading shown in Figure 5 and by applying the photoelastic measurement results
and the Wiliams stress function [24]. The Cartesian components of stress: Gx, Gy

and 'Txy in the neighbourhood of the crack tip were:

KII . 0( 0 30;CJ. =---sm- 2+cos-cos-
x ~ 2 2 2 '

1 0 0 30
CJY = ~K11sin-cos-cos--,

-v27tr 2 2 2
(2)

l 0( . 0 . 20)'t =--K cos- 1-sm-sm-
xy ~ 11 2 2 2 '

from which 2--cm = Ku -
2

1 (4cos2 0+sin2 0),
nr

and the K11 value can by determined from:
---------- 

K 11 = 2--cm✓2nr/(4cos2 0+sin2 0).
Two examples of the experimental results are presented in Figs. 4 and 6.

(3)
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For the compact shear specimen CS, K11c value was also determined from [4], 
[7], [8] 
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Fig.4. Compact shear specimen CS and isochrornatic patterns for a load P=95 N, Kuc value was 
determined from (3) and (4) for a load P,= 177.5 N and a/W=0.5, Kuc= 1.39 MPa m 112 
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P2=Pd/(L-d) -----, c

a 

Rys.5. The beam subjected to asymmetric loading 

a) 

Fig. 6. The beam subjected to asymmetric loading and isochrornatic patterns associated with the 
crack propagation, a) before cracking b) Just ( 1/250 sec.) after cracking for a load P,= 1220 N 

and a/W=0.3, K11c= I ,45 MPa 111
112 
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For the beam subjected to asymmetric loading (Fig. 6) K11c was evaluated by 
applying the photoelastic method [3], [ 4] from (3) and from 

K11 = ~ F
11 (a/ W) where Q=P1-P2 and also for comparison from [20] 

B-vW 

K,, ~ 1[u-o6s[ ~ )+031[ ~ J +ozs[ ~Jl~. 
2.2. The photoelastic models of the reinforced composites 

The models were manufactured in the same way as the element of reinforced 
composite using cold casting of epoxy resin "Ep-53" (matrix). The element was 
reinforced by the copper bars, cevlar and carbon fibbers. The models of the 
reinforced beams were tested in pure bending especially in the cracked stage up 
to their collapse. It was decided to test a series of beams, to investigate the 
ultimate limit state corresponding to cracking of the matrix and the plastic 
deformation or the yield limit of the reinforcement. The state of stress in the 
matrix, according to the vertical and horizontal crack propagation, was observed 
using a photoelastic method. The strains in the reinforcement were determined 
using strain gauges I .O mm of length. One determined the critical value of the 
strain energy release rate (Gc=aU/aA) obtained experimentally from the relation 
between the work of the acting forces and the crack surface. In the case of 
vertical propagation of cracks, which develop directly (perpendicularly to the 
beam axis), the displacements of the forces and the propagation of the crack in 
the matrix corresponding to them allows us to determine the stress intensity 
factor K1c and the strain energy release rate G1c from: 

.6.U P.6.V --- 
G1c =- =-'--' ; and K1c = ./E111 • G1c , (4) 

.6.A aB 
where: .6.U - dissipated energy, .6.A = aB - fractured area, Pi - force 
corresponding to the crack propagation, ,6. Vi - displacement corresponding to 
the cracks length (a). 

3. Cracking mechanisms 

3. I. Crack propagation vertical - perpendicular to the beam axis 

For computation of the ultimate moment MCR related to the crack 
propagation, the strain energy release rate Ge was evaluated based on the known 
isotropic linear elasticity solution. 

The critical load causes the propagation of cracks, which develop directly, 
perpendicular to the beam axis. For simplification (shown in Fig. 7), the linear 
stress distribution in the matrix was assumed. According to the theory of 
strength of materials, the stresses in reinforced beams can be easily calculated. 
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The stress intensity factor K1 for the specimens was evaluated based on the
known isotropic linear elasticity solution. From dimensional consideration, the
stress intensity factor K,(M) depends upon the applied bending moment Ma, and
axial force Za in the reinforcement is related to the stress intensity factor K?>. 
The stress intensity factor K1 is given by the superposition principle:

K = K(M) + K(Z) 
I I I 

(Z) Z ):.
K, =b-hl/2g,(½)K(M)=~O (>-)

I b-h'12oh½ where: s= a/h

(5)

(6) 

A good approximation of gb and g1 for the range of O < s< 0.7 can obtained by
using the boundary collocation analysis presented in [5], [12) with the result

gh cs)= 6[s'12(1.99- 2.47s + 12.97s2 - 23.17s' + 24.8s4
) J

g,Cs) =s'12(1.99-o.41s+18.7s2 -38.48s' +s3.85s4
)

The applied bending moment Ma and axial force Z produce local rotations,
respectively:

(7) 

where:

cp<M) = ĄMM . M .. '

A __ 2_f~ o2(>-)d>-
MM - bh2E oh ½ ½,

111 ()

(8)

Up to the moment of nonlinear deformations of the reinforcement, the local
rotation in the cracked cross-section is equal to zero:

cp = cp<M) + cp<Z) = 0. (9)
The bending moment Ma (in cracked section) depends upon the applied bending
moment Mand axial force Za in the reinforcement.

M" = M-ZJh/2-e0), 

and from (7) and (8)
AMM [M-Z, (h/2-e0) ]-AMz ·Z,= O,

M = Z, [(h/2-e0) + h · r(s)],
(IO)

where: h · r(s) = ĄMZ /ĄMM, ĄMM and ĄMz are determined from (8).
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Fig. 7. Cracked reinforced beam element and axial force Z,. in reinforcement: a) - axial force in the
reinforcement causes the propagation of cracks, b) - tensile axial force Z,= - Z in the

reinforcement actually restrains the cracks
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In the case of nonlinear deformations of the reinforcement, the stress intensity 
factor Kr of crack propagation can by found from (5): 

K1 = g"~~,;[M-Z" -(h/2-e0)]- z1",0 g/~) (11) 
bh' - bh - 

where: z .. = -z. 
In the case of completely open crack, the local rotation in the cracked cross­ 
section equals 

cp(M) + cp(Z) = cp(Mrn)' 

"-MM [M - z .. (h / 2-eo)] + "-MzZ = "-MMM(K,cl' 

bh''2 
where: Z= -Z. , MCK l = Kcic) -- - 

a IC gi,(~) 

The moment corresponding to the crack propagation is: 

b · h 3/2 [( h ) A l MCR = KIC---+z.. -h/2-eo +_ML , 
gb~) 2 "-MM 

(12) 

where: 
- Za= Er ErFr for £::; £0 and for £1)£0 Za= <J (Er )Fr and <J (Er )=<J (£/£0)P, 
- p=0.072 (obtained experimentally), F, - cross section of the reinforcement, 
- strains re.) in the reinforcement were determined using strain gauges I .O mm 

of length. 
The displacement in the crack may by derived by local rotation in the cracked 
cross-section and crack length a as the crack opening displacement (COD) 

?\a) = cp(CR) . a . (13) 

The corresponding axial displacement of the reinforcement 8(Z): 
()(Z)= cp(CR). (a-eo)= "-MMM(K,c). (a -eo). ( 14) 

Applying the critical value of K,c of the matrix and the crack length "a" and the 
strains of the reinforcement, one obtains the ultimate moment (MCR)- The 
bending moment MCR for 3 different percentage values of the reinforcement 
(2%, I%, 0% ), in the case of vertical cracking, is presented in Fig. 8. 
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Fig. 8. The values of the ultimate moment (Mrn) in the case of vertical cracking 
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Experimental and numerical results of the limit state 
Tab Ie I . 

Ultimate moment Mrn corresponding to vertical crack propagation 
h = 33.5 mm, K1c= 1.31 Ml'am 112, e.,=4.5mm, CT.,= 188 MPa, EJ1=0.002 

a £,·IO' z., M., Mrn <P I O 3 o(a) Mm-Exp 
[mm) [NJ [Nm] [Nm] [rd] [mm] [Nm] 

2.0 2.4 1196 29.131 50.962 0.686 1.37 io' - 

5.0 3.6 1232 I 8.810 42.260 2.65 13.31 O 3 - 

!00 21.0 1398 12.34] 41.005 8.09 80.9 10-3 39.5 

15.0 35.0 1451 8.347 40.510 17.9 0.269 40.4 

20.0 42.0 1470 5. 168 40.437 3.86 0.773 43.2 

230 44.0 1475 3.662 40.427 6.27 1.44 44.5 

Horizontal cracks propagation - parallel to the beam axis 

3.2. Horizontal cracks propagation - parallel to the beam axis. 

Some simplifications in theoretical analysis are based on experimental 
observations. The critical load causes propagation of the cracks that have 
developed directly, perpendicular to the beam axis, but further, as the load 
increases, they turn and run parallel to the beam axis. The crack path in the 
second stage of the crack propagation, when it is running almost parallel to the 
beam axis, can by influenced by the changes of mechanical conditions 
(compressive zone) at the end of the beam. The stress intensity factors KJ and 
K11 can be calculated from the J-integral by using the theory of strength of 
materials (for simplified model shown in Fig. 9). 

-JI d 11 aui d )- ) [J 2d J 2d I 2d ] J - (-
0 
cr E x0 -T - s - -- cr s1 - cr s, + cr s, 

- ,., ,., - r a 2E X X ·' X ·' 

, XI m SI S3 S5 

( 15) 

This approach is justified because fracture initiation experiments show linear 
behaviour near cracks in these (composite) specimens. 

h/2 

h/2-~ -eo 

a 

b 

Fig. 9. Internal forces over cross section corresponding to cracking parallel to the beam axis 
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Let us consider a short section, loaded by the stress-resultants M and Za that 
contains a quasistatically propagating horizontal crack (parallel to the beam 
axis). In the model shown in Fig. I O, the stress intensity factors K1 and K11 can 
be found by using the theory of strength of materials assuming linear stress 
distribution in the matrix. For both loading cases, the crack is predominately 
loaded by in-plane shear, so we can assume that: 

K11 = ~, K1 = ~ and J = J 8 + J H . ( 16) 
Assuming linearly elastic stress distribution in the matrix, the J 8 -integral 

describing the bending energy during the mode I loading (cracking by tension) 
can by determined. Similarly, the integral JH corresponding to horizontal shear 
forces Za can by evaluated. The results are as follows: 

J 6 [ M~ (M z I I 2)2 I z:i ( / 2 )2] =-- ,- - .·1 ·-,+-, a -e 
B E b2 (h - )., " f ·' ·' O ' 

111 
a 1 a 

J =~[_I_(_l +_I_ 1-~] 
H Emb2 2lh-a a) 2h · 

A local crack tip stress analysis is essential for fracture under combined 
loading for both loading modes (I and Il). The values of the stress intensity 
factors K1 and K11 can be found from the strain energy release rate Ge and G1 and 
G11 corresponding to pure mode I and pure mode II. Assuming that the axial 
forces in the reinforcement in the cracked section and uncracked section 
(Fig. 11) are equal Za and Z1, respectively, the strain energy release rates Ge, G1 

and G11 can by calculated by using the theory of strength of materials, as 
follows: 

K1 =.JEG1, K11 =~ and Kc =.JE·Gc, (18) 

G =J=-1-{ 12M~ ,-(MLJ
2

[(h-ell)°_h(h-eo/+(~]
2

ch-e)]+ 
C 2E b2 (h - )' J 3 2 2 li 

,n a L 

Z~ _1(M1-MJZ1[(h-e0)
2 
-~(h- )] (M1-M")(Z1-Z")(~- ]} + , --~-~~ --~- e11 +------- e11 , 

b-(1,-a) J1-bh 2 2 3-b J1 2 
( 19) 

G =-] { 12M~, _(~ 1\h-e )[(h-e0)
2 

h(h~e11) +( _
1
1_, Y]}, 

1 2Em b2(h-a)' l11) 11 
3 l ) 

(20) 

G =-'-{ Z~ -(M1-M" J
2

[(h-e11)
3 

h(h-e11)2 +(~]
2 

(h-e )]- 
11 ?E b2 (h - a) J 3 2 2 11 

- 111 I 

_2 (M1 -MJZ1 [(h-e11)2 -~(h -e )] + (M1 -M,J(Z1 - ZJ (-'2__e 1}, 
\·bh 2 2 

11 
3-b·Jl l2 °) 

( 17) 
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M 
Za= 1(a-e0 + a)nF,, 

a 

for t = t0, n = E, / Em and for t 2'. to , o, = o, (.s_ Jr, n = CT O · £;~
1 

, 

to Em· £o 

b(h-a)' (h-a )
2 

Ja= 
12 

+b(h-a) -
2
--a +n[J,+F,(a+a-e0)

2
], 

b ' -(h-2)~-nF,(a-e0) 
a= ~2~------- 

b(h - a)+ nF,. 

b(h-a)
3 

(h-a )
2 

[ 2] Ja= 
12 

+b(h-a) -
2
--a +n J,+F,(a+a+e0) , 

~= (h/2-e0)nF,, 
bh + (n - l)F, 

a, ~ - position of the neutral axis of cracked and uncracked section, 
respectively, 

la, JL, - moments of inertia of cracked section and uncracked section (Fig. 1 O), 
respectively, 

J, - moment of inertia of the reinforcement, 
F, - cross section of the reinforcement. 

z~ 
(h+a)/::!~,, 

X 

y (a!l.)-<:" 

Fig. I O. huemal forces under combined loading in mode I and mode II corresponding to cracking 
parallel to the beam axis 
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TML 
h/2 .i ~ 

h /2-e o( ay=a y Z a 

_4◄J:-~~--~====:c==:::r- ---t►► _i_ 
Co ♦ ZL 

Ma 
a, 

Z a t 
(h+a)/2-e" 

Fig. 11. Internal forces over cracked and uncracked cross sections, respectively 

In a general case, the Cartesian components of stress: o., cry and 'Ixy in the 
neighbourhood of the crack tip are: 

<J =-
1
-[K cos

8
(1-sin

8
sin

38
)-K sin

8
(2+cos

8
cos

30
)]+0 

x ~ I 2 2 2 II 2 2 2 ox , 

I [ 0 ( 0 30 J 0 0 30 l <J = ~ K,cos- l+sin-sin- +K"sin-cos-cos- 
Y -y 27Cf 2 2 2 2 2 2 , 

I [ . 0 0 30 0 ( . 0 . 20 )] 't = -- K sm-cos-cos-+ K cos- 1-sm-sm- 
xy ~ I 2 2 2 II 2 2 2 , 

from which: 

(o, -crJ2 = -1
-[ (K, sin 0 + 2K11 cos 0)

2 + (K11 sin 0)
2 
]- 

2m 

(21) 

2 i!---sin 
8
[K1sin0(1+2cos0)+K11(1+2cos

20+cos0)]+cr~, 
...;2n:r 2 

By inserting the values k , = m; = cr1 - <J2 into (22) we obtain the isochromatics 
curves in polar coordinates (r, 0). For each isochromatic loop, the position of 
maximum angle 0111 corresponds to the maximum radius of the r111• This principle 
can also be used in the mixed mode analysis [ I I] by employing information 
from two loops in the near field of the crack, if the far field stress component - 
cru, (0) = const . Differentiating Eqn (22) with respect to 0, setting 0 = 0m and 

(22) 

r = rill and using Eqn (chill/ aelll = O) gives: 

f (Kl, KII, cru,)= -
1
-[ (Kl sin 0lll + 2KII cos 0111 )2 + (KII sin em )2 ]- 

2nrlll 

2 ~ sin 
8

m [ Kl sin 0111 (I+ 2cos0lll) + KII (I+ 2cos2 em+ cos01l1)] + (23) 
2n:rrlll 2 

+cr~x - (k, . m)2 = O, 
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g(K1, K11,0"x) =-
1
-[K: sin 20111 + 4K1KII cos 20111 ]- 2m 

-2 ~ sin 8111 {[K1 (cos0111 + 2cos 20111) - KII (2sin 20111 + sin 0m)] + (24) 
'\/ 2m 2 

+lcos ~11 [KI (sin em+ sin 20m) + KII (2 + cos 20m + cos em)]}= O. 

Substituting the radii r111 and the angles 0111 from these two loops into a pair of 
equations of the form given in eqn (24) gives two independent relations 
dependent on the parameters K1, K11 and CTox· The third equation is obtained by 
using Eqn (23). The three equations obtained in this way have the form 

g;(K1,KII,O'ox)=O, 

gj(KI 'K11,0'o,) =O' 

fk (Kp KII ,0'0x) =O, 
In order to determine K1, K11 and O'ox it is sufficient to select two arbitrary points 
r;, 0; and apply the Newton-Raphson method to the solution of three 
simultaneous non-linear equations (25). Example of the numerical results 
obtained from (25): 
For r1=0.35mm, 01=0.695 rd, 1111= 12.0 fr, r2=0.92 mm, 02=0.642 rd. 
we hawe K1=0.584 MPa ml/2, K11=-l.27 MPa m112 and 00,=0.02 MPa. 
After assuming that in the neighbourhood of the crack tip the far field stress 

(25) 

component - 00,=0, the followings equations are obtained: 

(26) 

This equation may by used to construct the isochromatics loops for curves of 
constant stress 1

11
"" • Inserting the values "kam" into (26) we obtain the 

isochromatics curves in polar coordinates (r,0) in the neighbourhood of the 
crack tip 

r(G) = (K1 sin 0 + 2KII cos 0)2 ~ (K11 sin 0)2 , 
2-n(ka·mt 

and the values of the angle 0111 and radius r111• corresponding to maximum shear 

(27) 

stress 'Tmax . 
The angle 0111 is found by setting ch 11/ d0111=0 from (26). The resulting equation 
IS 

tg20111 = 4KIKII 
K;-3K;I 

and (.!SL:c _.±(.!SLJct020 _ _!_=O 
K 3 K O 

m 3 I I 

(28) 
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By inserting the values r., 0i in three selected arbitrary points into (23) we 
obtain three non-linear equations (i = I, 2, 3) 

f;(K1,K11,00J=0 (29) 
and applying the Newton-Raphson method to the solution we have K1, K11 and O"ox· 

Example of the numerical results (shown in Fig. 12) obtained from (29): 
for r1=0.69 mm, 01=0.639 rd, m1= 14.5 mm, r2=0.98 mrn, 02=0.643 rd. 

m2= I 0.4, r3= 1.18 mm, 0,=0.656 rd, m,=6.5, 
we hawe K1= 1.27 MPa m'", K11= -0.841 MPa rn112 and 00,=2.472 MPa. 
The results of the numerical analysis were verified experimentally by 
photoelastic investigation. The isochromatics-fringe patterns obtained under the 
loading condition corresponding to cracking parallel to the beam axis, recorded 
photographically, are shown in Fig. 12. Comparison between the numerical and 
experimental investigation is presented in tables 2-4. The difference between 
the analytically predicted isochromatics-fringe patterns distribution and those 
determined photoelasticaly is less then 5-;-6 percent. The initial assumption of 
linear stress distribution in the matrix for calculation the intensity factors K1 and 
K11 from ( 16) or ( 19) caused the errors of about 3-;-6 percent. 

M"=S.168 Nill, Z"= 420 N, a-'=6, h=33.5rn!ll, ay=23.5mm, be l Omm, h=33.5mlll, 
Ill= I 6, I 8,20,22; K1 = 1.27 MPa 111112, K2 = -1.03 MPa lll112 

for 02 111 = 14, 18, for CT1 Ill = 22, 26 
,,. -L -t •. ·; -L 

- 
"· 

I 
\ 

'~-- 

·•-y 
·"·'/ 

!. 

___ .,..., 

..... ltJC'••! 

"~"'' ' 

Fig. 12. MODEL L-01. Comparison between the numerical and experimental investigation. The 
isochromatic patterns 01-02 distribution corresponding 10 typical crack development 

- parallel to the beam axis propagation 
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3.3. The strain energy release rate Ge corresponding to horizontal cracks 
propagation 

According to the classical solution, the strain energy release rate G can be 
found from the following expression: 

(30) 

For a crack horizontal - parallel to beam axis, the local crack tip stress analysis 
is essential in the fracture problem under combined loading in both mode I and 
mode II. In pure mode I, one could postulate a K1c condition of fracture. 
Kic =l.3--;-1.45 MPa m112, Knc=l.25-;-1.35 MPa m'", and c=K,cfKnc = 1.0. 
The values of the strain energy release rate G1 corresponding to pure mode I can 
be found from: 

G - K~c 
IC - E (31) 

If one assumes Knc =K,c, we have Gnc =G,c for combined loading in both mode 
I and mode II, the strain energy release rate G1 of the matrix is regarded as a 
linear function of the Gn, G1 = f(Gn). 

GIC G1c =G1c--·G11 
GIIC 

or G = K~c -r~J2 -G I 11, 
Em Kuc 

from which one obtains an elliptical curve fit of the form 

K~ + K~I = I 
K~c K~1c 

(32) 

(33) 

and by means of the critical values K1c and Knc of the matrix, K1 and Kn (from 
an analytical solution or from experience) one obtains the critical values the 
strain energy release rate Ge and the stress intensity factor Kc for combined 
loading in both mode I and mode II. An example based on experimental results 
is presented in Fig. 13b. The stress intensity factors Kn, K1 and Kc obtained 
from ( 16) are presented in tables 2-4 and those form (19) are presented in tables 
5- 7 and in Fig. 13a. In this case, the strain energy release rate Ge EXP from the 
experimental results can be found as follows [25] 

(GEXP )
2 
_ G2 G2 

C - I+ 11 · (34) 
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a) b) 

G1 (N/mm) 

Ge =0.51 

G11(N/111m) 

Fig. 13. a) The values of the K1, K11 of the matrix as a function of the critical values K1c and K11c; 
b) The values of the strain energy release rate G1 and Gu of the matrix as a linear function of the 

G11 obtained from (34) according to mixed mode of the fracture 

Numerical and Experimental Results - Horizontal cracks propagation 
- parallel to the beam axis Gi, G11, Ge, K1 and Ku obtained from (16) and (17) 

Table 2. 

h=3 I mm, a=25 mm, e0=8.0 mm, M = 34.20 Nm, 
£1=0.0035, £,.=0.0095, Ma=0.658 Nm, Za= 1677 N 

G, I G11 I Ge: I EXP K1 I K11 I K(Gcl Ge: 
kN/m MPa·m112 

0.0591 I 0.4488 I 0.5079 I o.598 0.4515 I 1.244 I 1.324 

Table 3. 

h=33.5 mm, e.,=4.5 mm, Mg= 45.20 Nm, 
£1=0.0045, £,= 0.0285, M,=4.641 Nm, Z,=1690 N 

G1 I G11 I Ge: I G EXP K1 I K11 I K(Gc:l 'C: 
kN/m MPa·m112 

0.3704 I 0.2127 I 0.5831 I 0.427 I .1305 I 0.857 I 1.418 

Comparison between the numerical and experimental investigation 
Table 4. 

No r· in, 0 K; ' ' 
point [mm] fr. Rd. Deg. 0 CT ox MPa·m112 

I 0.69 14.5 0.638 36.55 K1 =1.165 
2 0.98 10.5 0.643 36.84 CT.,,=2.0 I MPa K11 = -0.791 
3 118 7.5 0.656 37.60 Kr= 1.41 

Table 5. 

h=36.4 mm, a=23 mm, M=48.5 Nm, 
£,=0.0054, £,=0.0192, e=7.5mm, M,,=7.99 Nm, Z,=1804.5 N 

G, I G,1 I Ge I Gr EXP K, I K11 I K(Gc:l 
kN/m MPa·m112 

0.5067 I 0.1709 I 0.6775 I 0.535 1.3221 I 0.768 I 1.529 
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Numerical and Experimental Results - Horizontal cracks propagation 
- parallel to the beam axis Gi, G11, Ge, K1 and K11 obtained from (19) 

Table 6.

h=3 I mm, a=25 mm, e0=8.0 mm, M = 34.20 Nm,
£1=0.0035, £,=0.0095, Ma=0.658 Nm, Za= I 677 N

G1 I G11 I Ge l GeEXP K1 I K11 I K(Gc)
kN/m MPa-m112

0.0349 I 0.4491 I 0.4840 I 0.598 0.3471 I 1.245 I 1.292 

Table 7.
Comparison between the numerical and experimental investigation. 

No r tn, 0 K;I I

point [mm] fr. Rd. Deg. 0 o., 1/2
MPa·in

I 0.69 14.5 0.639 36.61 K1 =1.274
2 0.98 10.4 0.643 36.84 00,=2.472 MPa K11 = -0.8469
3 1.18 6.5 0.656 37.60 K(' = 1.530 

M
load

L,. .......,. 1- I.,
•--~ i ,4 · ,,

! ł~ !·I + I , I --ł) , -'-4 . , ~

...:,_L__ ! ~ ., I • . ,-1. -1· - ••.

rr.iSi -!± 1'. ;~.
:1/1 I" ,j I .1:
l~•A'L.'.µ 41 .µ' .µ'+-1---ll-1-!-i~; i~, .,;:·· ~· =:.~-•.:..:+:::..m.II~illl•l

'1-:-1-1.
I -1--- 'j..

!__. ·:·-ł--
-1-' 0 .• LI

24.0 t,v=0.08, t,a=9.6 mm
t,G=0.543kN/m
K,= 1.37MPa m 112

Displacement f [mm] f[mm]

0.86

Fig. 14. An example of the load-displacement curve from X-Y plottrer, with characteristic
points corresponding to cracking

4. Experimental and numerical investigations of the limit state 

The dimensions of the typical model used in the experiment are given in Fig. I.
The models were tested in pure bending especially in the cracked stage. The brittle
fracture of the matrix was simulated by introduction of artificially initiated cracks
in the tension zone (Fig. I). The beams were loaded gradually to initiate crack
propagation in the matrix and plastic deformation of the reinforcement. The
critical load caused propagation of cracks, which developed directly
(perpendicularly to the beam axis), but further, as the load increased, turned and
run parallel to the beam axis. Test results, isochromatics fringe distribution
registered phtoelastically and the force in reinforcement, calculated from the value
of strain, allowed us to determine the state of stresses in the cracked stage. The
stress distributions related to typical crack development (corresponding to the
critical force and the ultimate moment M) are given in Figs. 15 and 16.
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Fig. 15. Phoioelastic model of the reinforced beam. The isochromatic distribution 
patterns (CT1-CT2) before vertical cracking 

Fig. 16. Photoelastic model of the reinforced beam. The isochromatic distribution patterns (CT1-CT2) 
corresponding to typical crack development - perpendicular the beam axis 

(point 3 in load-displacement curve - Fig. 18). 

-21.97 -27.7 

a) P = 690 N, Mg =24 Nm 
-30.4 

4 

b) P = 690 N, Mg =38 Nm 

7 

c) P = 810 N, Mg=44 Nm 

Fig. 17. Distribution of stresses CT., corresponding to 
perpendicular (a, b) and parallel (c) to the beam axis 

propagation of the cracks (points I, 2 and 4 in 
load-displacement curve in Fig. 18) 
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a) 

44.5 
38.0 

24.0 

0.53 

2 P=690 N 
~v=0.09, M=12.5 
G = 0.48 N/mm 
K1=1.29 MPa-m 112 

0.62 1.32 2.10 

f[mm] 
b) 

-41,8 
5 

6.8 I I t 
1::,. a=16.2 

£a=a=26.7mm ~ _ 1 _ a =26.7 
-c ~ - -~ t 

O"li'242MPa I I e =3.~ 
1' 

Fig. 18. a) Load-displacement curve; b) Distribution of stresses <J, corresponding to propagation 
of the cracks parallel the beam axis (point 5 in load-displacement curve) 

Fig. 19. Fracture in direction parallel to the beam axis. Distribution of isochromatic fringes 
corresponding to propagation of the cracks parallel to the beam axis 

(point 5 in load-displacement curve) 
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5. Numerical determination of stress distribution in the cracked stage 

The numerical calculations were carried out using the finite element program 
ANSYS 5.4 [ 17], [25] and by applying the substructure technique. Two 
different methods were used: solid modeling and direct generation. Finite 
element calculations were performed in order to verify the experimentally 
observed branching phenomenon and the isochromatic distribution observed 
during cracks propagation along debonded parts. 

The geometry and materials were chosen to correspond to the actual 
specimens used in the experiments. A finite element mesh of the model (used 
for numerical simulation) of the structure is presented in Fig. 20, and the stress 
distribution as well as the isochromatic fringes are shown in Fig. 21. (For 
comparison, the isochromatics obtained experimentally are given in Fig. 21.) 
The strain energy release rate Ge is equal in this case to the I-integral: 

{ [ 
? j [ ]f I I 2 2 -r:y 'txy civ J=J - -(0 -CT)+- ·n - -(0 -v-0 )·n,+(1 n +CT n,)- s 2 E y ' 2G I E x y - xy I y - dx 

s 

(35) 

or can by determined from numerical calculation using the finite element 
method: 

{ [ 
? ] [ ]} 

I I 2 2 -r;yi 'txyi lwi 1=" - -(0. -CT.)+- -111. - -(0. -VCT .)·n? +(1 n1. +CT n,)- -t..S L 2 E. YI XI 2G I E XI y1 -1 xy1 1 y1 -1 Ax 1 
I I I 

(36) 

The distribution of the stresses and displacement obtained by FEM allows us to 
evaluate the J- integral (equal to the strain energy release rate Ge). 

a) 
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b) 

:O:.H l:t 
IIODAl. 30L1JT l(J!I 

TUO:•l 
SX IA.VG,) 

;,.,.,~ ,c.,~pl, ics 

Fig. 20. Numerical simulation of the cracking. Fracture in the direction perpendicular to the beam
axis; a) Finite element mesh. b) Distribution of the stresses u,,.

5.1. Fracture in direction perpendicular to the beam axis

The J- integral obtained by FEM (equal the strain energy release rate Ge): 
1/2 1/2lic= 0.493kN/m, K1c :::(Em·J) = 1.304 MPa-m 

STCP'•l
SUI! •6
Tfł1C·•1
SHIT AAVCI
Ol'Ot -) . lOD 
słł'N! ~.Zl1ir.•O) 
.SH)( •114.it 
A •O 
1' •2.1!1 
C -~.:> 
o -a.. 2.:. 
i: •ll 
f' •ll.7!i 
G •16.~ 
li -1,.:~ 
l -zz 

Fig. 21. Distribution or isochromatic fringes (CT1-a2) corresponding to the crtical load before
the propagation of the cracks
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Fig. 22. Distribution of isochrornatic fringes (CJ1-cr2) obtained experimentally, corresponding to the
crtical load before the propagation of the cracks

The Rice J integral obtained by FEM (equal the strain energy release rate Ge):
r, = 0.493 kN/m, Kic =(Em•J)1i2 = 1.304 MPa·m112

a) Isochromatic fringes (CT1-CJ2)
c) Rozkłady izochrom
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Fig. 23. Numerical simulation of cracking; a) Distribution of isochromatic fringes (CT1-CJ2); b) the
strains Ey and the stresses CTy, correspondings to the propagation of the crack; c) the integral path

from which one calculated the value of the Rice J integral
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5. 2. Fracture in direction parallel to the beam axis 

The Rice J integral obtained by FEM (equal the strain energy release rate Ge): 
li,= 0.699 kN/m, K11c = (Em·J)112 = I .55 MPa-m112 

.JNJ ll lOOJ. 
Ol:4l:.t, 
•<1DJ.L 3OLU'T l0• 

,X (,\IX) .,,,, .. 
"--~~~ .. p .. •<• 
I:rACC'T•l 

-i 
·- i 
'""i i 
..,· i 

' ' ' 
od J z b, o J •~, o r~-1 

JW U 2001 
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3TtP•l 
30, :1 
TL'!r=l 
3I {AV.;) .,.,, .. 
P<>.-etGt.iphics 
trM:tT"l 
AVRl:3"'ht 
IIKX =l.H.S 
3!DI =-<U.Ul 
311l =tH.?3? = :: "' D -.HHP 

BJ' Efil .S.tP 
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B ~;_H, 
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Fig. 24. lsochromatic fringes (cr1-cr2) and corresponding the stresses parallel to the beam axis 
propagation of the crack, a) distribution of the isochrornatic fringes b) stresses o., cry and 1,y c) 
the integral path from which one calculated the value of the Rice J integral the experimental 

isochromatic fringes distribution are shown for comparison 
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6. Conclusions 

In the case of composite elements made of synthetic optically active resins, 
there is a possibility to analyse the failure phase by means of the photoelastic 
method, on the basis of model, tests directly in the structure. This method makes 
it possible to determine the critical values of the strain energy release rate (Ge) 
and the stress intensity factors (K, and K11) corresponding to the mixed mode 
fracture based on experimental results. 

The Author decided to test a series of beams: I) Models reinforced classically 
by copper bars and steel. 2) Models reinforced linearly by fibber kevlar and 
carbon. Finite element calculations (FEM) were performed in order to verify the 
experimentally observed branching phenomenon and the isochromatic distribution 
observed during cracks propagation along debonded parts. 

The theoretical ultimate bending moment was derived using the strain energy 
release rate (Ge) and the stress intensity factors (K1 and K11) corresponding to the 
crack propagation of the matrix and the yield limit stress in the reinforcement. 

The fracture in the reinforced composite elements subjected to bending and 
their strength are closely dependent on several processes: matrix cracking, fiber 
plastic deformation or failure, interfacial debonding between matrix and fibers. 
The criterion to calculate the maximum load was derived from two processes 
only: matrix cracking and the plastic deformation of the reinforcement. 

The fracture criterion for combined loading in both mode I and mode II can 
by expressed in terns of the stress intensity factors (K1 and K11) in the form (32) 
and (33). The experimental results confirmed the validity of the hypothesis that 
the empirical equation (32) can by considered as a practical criterion for 
reinforced composite elements. 

Manuscript received by Editorial Board, May 25, 2001; 
final version, November 29, 200 I. 
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Eksperymentalna i numeryczna analiza zbrojonych elementów kompozytowych
poddanych zginaniu

Streszczenie

Kruche pękanie elementów kompozytowych jest istotnym problemem analizowanym przez
konstruktorów od wielu lat i analiza sposobu zniszczenia zajmuje centralną pozycję przy
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rozwiązywaniu tego problemu. W pracy przedstawiono przykłady i porównano wyniki badań
eksperymentalnych i obliczeń numerycznych elastooptycznych modeli belek zbrojonych.

Procesy pękania elementów kompozytowych zbrojonych prętami, lub pasmami są dosyć
złożone, zniszczenie może być spowodowane pękaniem matrycy, utratą nośności zbrojenia,
delaminacją zbrojenia, lub inaczej mówiąc utratą przyczepności zbrojenia matrycy
(spowodowaną tzw. pękaniem międzyfazowym).

W pracy niniejszej przedstawiono kolejne fazy zniszczenia belek kompozytowych z żywic
syntetycznych zbrojonych prętami, lub pasmami w strefie rozciąganej, narażonej na pękanie oraz
określono wielkość współczynnika uwalniania energii sprężystej w złożonym sposobie zniszczenia
elementu. Przedstawiono także uproszczoną metodę określania nośności belek zbrojonych na
podstawie parametrów mechaniki pękania matrycy K,c. K11c i Ge oraz nośności zbrojenia.
Wprowadzając do obliczeń założenia mechaniki pękania, można wyznaczyć graniczne wartości
obciążeń w funkcji współczynników intensywności naprężenia K1, K11 i współczynnika uwalniania
energii sprężystej (Ge) oraz odkształceń zbrojenia (sprężystych lub plastycznych). Zastosowana
metoda umożliwia jakościową ocenę propagacji pęknięć w poszczególnych fazach zniszczenia
elementu.


