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Abstract—The paper presents a novel heuristic procedure 

(further called the AH Method) to investigate function shape in the 

direct vicinity of the found optimum solution. The survey is 

conducted using only the space sampling collected during the 

optimization process with an evolutionary algorithm. For this 

purpose the finite model of point-set is considered. The statistical 

analysis of the sampling quality based upon the coverage of the 

points in question over the entire attraction region is exploited. The 

tolerance boundaries of the parameters are determined for the 

user-specified increase of the objective function value above the 

found minimum. The presented test-case data prove that the 

proposed approach is comparable to other optimum neighborhood 

examination algorithms. Also, the AH Method requires noticeably 

shorter computational time than its counterparts. This is achieved 

by a repeated, second use of points from optimization without 

additional objective function calls, as well as significant repository 

size reduction during preprocessing. 

 
Keywords—heuristics; evolutionary computations; genetic 

algorithms; uncertainty estimation; parameter study 

I. INTRODUCTION 

VOLUTIONARY computations are well-developed global 

optimization techniques. Many different approaches to this 

topic have been designed since the generic strategy of 

concurrent seeking the optimal solution was originally proposed 

by Holland [1]. Various techniques involve combinations of 

space exploration and exploitation of previously revealed 

attraction regions. The search process is performed by 

processing a set of candidate solutions, called a population. 

During this operation a vast number of objective function 

values are calculated for different points in the search space. 

Assuming that the optimization procedure succeeded in finding 

an optimum, the sampling collected in the process contains not 

only the global optimum, but also some information about its 

vicinity. Such a repository may be the subject of further 

processing, which would result in a cost-free outcome, i.e. 

revealing the approximated shape of the optimum neighborhood, 

without the need for additional objective function value 

calculations. 

While assembling the points into a repository of space 

sampling is a straightforward task for most optimization 

problems, extracting the required information can be 

challenging. One should be certain that: the points cover the 

whole area of interest and the sampling distribution is scattered 

uniformly enough to deliver exact information. 
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Knowing that the statistical distribution of points depends 

predominantly on the adopted optimization strategy and the 

shape of the search space, it is crucial to choose the set of points 

with the desired characteristic for the second use in the function 

shape examination. This helps to save a lot of computational 

time as no additional objective function value calculations are 

required during the following function shape investigation. 

This paper is composed as follows. Following the introduction 

in Section I, a brief review of the related work is provided in 

Section II. Section III gives a description of the AH Method. 

Section IV defines the genetic algorithm under consideration 

and depicts a two-dimensional test-case based on the F7 

function by Schwefel [2]. In Section V the results of the test-

case are presented. Section VI concludes this paper. It outlines 

possible directions for further research and specifies possible 

areas where the AH Method may be applied. 

II. RELATED WORK 

Although multiple approaches to the search space sampling 

have been applied (through various heuristic algorithms, such as 

simulated annealing, evolutionary processes, Particle Swarm 

Optimization, etc.), no research has been done on the second use 

of space sampling. If the generation of new solutions is difficult 

or computationally demanding, function shape may be 

investigated in the direct vicinity of the found solution. A large 

number of references exist associated with the operations used 

in particular steps of the presented procedure. 

There are multiple sources regarding optimization 

approaches. Genetic Algorithms (GA) are a benchmark method, 

used as the standard tool [1, 3-5]. 

In case of the GA’s population diversity there is an extensive 

review in [4] providing a set of equations describing population 

variance in a quasi-equilibrium state for an infinite population 

model. This methodology can be applied to the number of points 

higher in order of magnitude than the case considered in this 

paper. The test-case results in [6] show the approximation error 

below ±5%  with the error median about -1%. This was achieved 

for an order of 107 points and only a one-dimensional Gaussian 

fitness function. This paper investigates multidimensional 

multimodal function shape and the number of points in our two-

dimensional test-case is of the order of 103.  

The arithmetic crossover operator, considered in [6], has a 

significant drawback of unauthorized self-convergence 

inclination to the center of a domain range [7]. This makes it 
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useless if a location of the global optimum is previously 

unknown and may lie close to some of the search space 

boundaries, because otherwise it would disturb finding the 

minimum. Thus we decided to use a different approach and to 

base the tool for the sampling survey of a relatively small finite 

set of points on a sophisticated statistical and histogramic 

analysis (sampling analysis module) rather than on the 

Glivienko-Cantelli theorem which assumes an infinite model. 

As the clustering procedure [8-13] we decided to implement 

the NBC algorithm [14], aiming to isolate from the repository 

the points located in the attraction region of the optimum. In the 

future we consider applying Self-Organizing Maps [15] to 

overcome the (sometimes challenging) need to specify the 

values of three preprocessing module arguments. 

Uncertainty estimation is often conducted in empirical 

sciences [16-24]. One can distinguish the branch based on an 

analytical approach and the one using the Monte Carlo Method 

[25]. The former is often infeasible due to the complexity of the 

model, while the latter requires a significant number of 

additional objective function calls, increasing the computational 

time. In this paper we investigate a function shape using, for the 

second time, the space sampling collected during the 

optimization process with an evolutionary algorithm. 

Multiple parameter study methods have been developed [26]. 

Most are based on Monte Carlo sampling; sapling on a 

predefined grid (mesh); or the vector parameter study (where 

sampling goes along the set vector). To provide a proper 

comparison in our test-case, the repositories containing the first 

two above-mentioned sampling routines are collated with the 

repository containing the genetic algorithm space sampling 

assembled in one of its runs. 

All graphical visualizations have been prepared with either 

Matlab [27] or Gnuplot [28] plotting regimes. 

 
 

 

TABLE I  

OUTLINE OF THE AH METHOD 

Stage  Name Description 

 

P
re

p
ro

ce
ss

in
g

 

A Raw Dataset input repository of the space sampling 

B Threshold Cut 
all points with a function value above the given threshold, 𝑦𝐶𝑈𝑇 , 

are removed 

C 
Minimum 

Distance Rule 

all points having a closer distance to a point with a better 

function value than the given minimum distance, 𝑑𝑚𝑖𝑛, are sieved 

out  

D Clusterization 
detection of the points lying in the attraction region of the global 

optimum – application of NBC algorithm 
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E Statistics 

information about statistical distribution of the points in the 

attraction region of the global optimum (ranges, moments, 

covariation and correlation matrices) 

F Histograms 

information about distribution of the points in the attraction 

region of the global optimum, based on distances between the 

points 
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G 
Front-Line 

Algorithm 

detection of the points located closest to the plane of uncertainty 

determination 

H 
Parameter 

Uncertainties 
parameter uncertainties determination for the given plane, 𝑦𝑃𝑈  

 
a[Footnote Text] Content. 
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III. THE AH METHOD DESCRIPTION 

The AH Method consists of eight stages labeled A to H 

consecutively (Table I). The processing of the initial repository 

is divided into three phases (modules). The preprocessing 

module comprises stages A to D and aims to isolate from the 

repository, the points located in the attraction region of the 

optimum. Stages E and F form the sampling analysis module 

that delivers a quantitative description of the distribution of the 

points in space. Finally, stages G and H constitute the 

uncertainty determination module. The uncertainty is 

interpreted as the tolerance boundaries of the parameter set, 

according to the user-specified increase in the function value 

above the located minimum. 

From the geometric point of view, this is identical to the 

extreme (maximal and minimal) values of the parameters 

belonging to the contour line, being the result of cutting the 

function surface by the threshold plane at the user-specified 

height. The AH Method is especially useful when dealing with 

functions describing some statistical relationships, e.g. χ2-test 

for goodness-of-fit. In this case the outcome is referred to as 

uncertainty intervals in the field of statistics. 

The AH Method needs four arguments to be specified by the 

user: 

• 𝑦𝐶𝑈𝑇  – (stage B) function threshold value, above which the 

points are removed out from the repository; 

• 𝑑𝑚𝑖𝑛  – (stage C) minimum distance between the points in 

the repository; 

• k – (stage D) cardinality of k-nearest neighbors set in the 

NBC algorithm; 

• 𝑦𝑃𝑈 – (stage G) position of the threshold plane for 

parameter uncertainty determination. It defines a slice of 

the surface that is going to be investigated by the AH 

Method. 

The description of all stages in the AH Method is contained 

in the subsections below. 

A. Preprocessing Module 

In stage A, datasets are as yet unprocessed by the AH Method. 

The raw sampling of any sampling routine used for function 

shape investigation is supposed to cover the whole domain. The 

genetic algorithm has an apparent inclination to concentrate the 

sampling in the attraction region of the optimum. This hallmark 

makes it a useful Artificial Intelligence (AI) space sampler for 

obtaining a desired repository in a less time-consuming manner 

than classical sampling routines. 

In stage B, the samplings of different attraction regions are 

separated by removing points with a too high function value 

from the repository and thus introducing gaps between the 

points concentrated around particular optimums. These gaps 

significantly simplify clusterization in stage D. The choice of 

the proper yCUT value is crucial here. It should be: 

 low enough to introduce gaps between the sampling of 

different attraction regions; 

 low enough to shorten the computational time of subsequent 

stages by eliminating points useless for function shape 

investigation around the optimum; 

 high enough not to interfere with the accuracy of the 

parameter uncertainties estimation. 

In stage C, the repository is sieved. Points are placed in an 

ascending queue according to their function value and validated 

one by one. If a currently processed point lies closer than the 

minimum distance, dmin, to any of the already accepted points 

(the ones with a lower function value), it is sieved out from the 

repository. It brings no extra information of the function surface 

to its shape investigation and thus the repository is further 

downsized. 

Stage D focuses on labeling the points, i.e. recognizing them 

as belonging to the attraction region of a particular optimum, or 

rejecting them as noise. This clusterization process is an 

application of the NBC algorithm [14]. The user must define the 

cardinality of k-nearest neighbors set. 

For most real-case data, the stages of the preprocessing 

module should be repeated a few times to find the optimal 

values of its arguments: yCUT, dmin, k. Moreover, any of the stages 

may be substituted with a procedure of similar workings. 

After completing the preprocessing module, no further 

removal of points occurs. The resultant repository is limited to 

the set of points located in the attraction region of the optimum 

and subsequent stages are conducted using only this sampling. 

B. Sampling Analysis Module 

The quantitative description of the sampling distribution is 

done in two stages, E and F, previously presented in [29]. Only 

the points’ parameter vectors are analyzed, their function values 

are neglected. The pivotal question addressed by the sampling 

analysis module is whether the sampling of the optimum 

attraction region is sufficient for parameter uncertainties 

estimation. 

Stage E is a statistical analysis of a repository, containing N 

points. It uses the following equations for empirical parameters. 

Each of them in an unbiased estimator: 

• the mean value of the i-th dimension: 

 �̅�𝑖 =
1

𝑁
∑ 𝑥𝑖𝑘

𝑁
𝑘=1  (1) 

• the standard deviation of the i-th dimension: 

 𝑠𝑖 = √
1

𝑁−1
∑ (𝑥𝑖𝑘 − �̅�𝑖)

2𝑁
𝑘=1  (2) 

• the standard deviation of the i-th dimension normalized to 

the domain range of that parameter: 

 𝑠𝑖
𝑛𝑜𝑟𝑚 =

𝑠𝑖

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑅𝑎𝑛𝑔𝑒𝑖
 (3) 

• the skewness of the i-th dimension: 

𝑆𝐾𝐸𝑖 =
𝑁

(𝑁−1)(𝑁−2)
⋅

∑ (𝑥𝑖𝑘− �̅�𝑖)3𝑁
𝑘=1

𝑠𝑖
3  (4) 

• the kurtosis of the i-th dimension: 

𝐾𝑢𝑟𝑡𝑖 =
𝑁(𝑁+1)

(𝑁−1)(𝑁−2)(𝑁−3)
⋅

∑ (𝑥𝑖𝑘− �̅�𝑖)4𝑁
𝑘=1

𝑠𝑖
4 − 3 ⋅

(𝑁−1)2

(𝑁−2)(𝑁−3)
  (5) 

• the covariance between i-th and j-th dimensions: 

 𝑠𝑖,𝑗 =
1

𝑁−1
∑ (𝑥𝑖𝑘 − �̅�𝑖)(𝑥𝑗𝑘 − �̅�𝑗)𝑁

𝑘=1  (6) 

• the correlation between i-th and j-th dimensions: 

 𝑟𝑖,𝑗 =
𝑠𝑖,𝑗

𝑠𝑖⋅𝑠𝑗
 (7) 

These empirical parameters deliver information about 

sampling distribution separately for each dimension (the 
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moments), and about linear dependences between pairs of 

dimensions (the covariance and correlation matrices). Based on 

the resulting information one can deduce a repository’s quality. 

Stage F follows up the sampling study with histogramic 

analysis of the repository. The deductions are brought out on the 

strength of the distances between points. The information about 

repository presented in stage F consists of: 

• Space Sampling Histogram (SSH), which is carried out for 

each dimension separately. The points are allocated into a 

user-specified number of bins of equal width. It clarifies 

whether the sampling is free from gaps within the optimum 

attraction region; 

• Distance from Best Histogram (DBH), i.e. the numbers of 

points located in the concentric adjoining hyper-rings with 

user-specified width. This allows one to check if the 

number of points in the consecutive distance intervals from 

the best point increases proportionally to the volume of the 

hyper-rings; 

• Vertex Degree Histogram (VDH), where the repository is 

transformed into an Euclidean Graph with user-specified 

maximum edge length. If most vertices have the same 

degree, the points are uniformly distributed in the 

attraction region.  

C. Uncertainty Determination Module 

At this phase of processing, the repository has already been 

positively verified by the sampling analysis module. It stores 

only the points lying in the optimum attraction region and 

contains precise enough information about the function shape in 

the vicinity of the minimum. This final module of the AH 

Method focuses on the estimation of the uncertainty intervals of 

the parameter vector values for the user-specified threshold 

plane, 𝑦𝑃𝑈. It is divided into two stages: G and H. 

In stage G, the points located closest to the plane of 

uncertainty determination are labeled. This subset contains 

information about the shape of the uncertainty contour and 

allows for conclusions regarding the accuracy of uncertainty 

estimation on the strength of the given space sampling 

repository. This procedure, the Front-Line Algorithm (FLA), 

was originally presented in [30]. 

The inspiration for FLA comes from the martial strategy 

where two finite sets of soldiers (dots on a map), belonging to 

two involved parties, are separated by an abstract and artificial 

frontline. As with the uncertainty contour resulting from a 

repository of finite size, the exact location of the frontline is 

unknown and may only be estimated to some degree through the 

knowledge of the points’ (soldiers’) positions. 

The greater the spread of points closest to the frontline, the 

poorer the quality of its estimated position, and thus the 

accuracy of uncertainty estimation. 

In the FLA, each point in the repository receives at least one 

of the following labels recognizing it as belonging to the 

appropriate set. Each label has a shorthand form, specified after 

the coma (Fig. 1): 

• 𝑝𝐵𝐸𝑆𝑇 , 𝐵𝐸𝑆𝑇 – point with the minimal 𝑓(𝒙) 

• Allies, 𝐴 – set of points with 𝑓(𝒙) ⩽ 𝑦𝑃𝑈; 

• Enemies, 𝐸 – set of points with 𝑓(𝒙) > 𝑦𝑃𝑈; 

• Whole, 𝛺  – set of all points in the optimum attraction 

region; 

𝐴 ∪ 𝐸 = 𝛺; 𝐴 ∩ 𝐸 = ∅ 

• AllySoldiers, 𝐴𝑆 – set of points belonging to the Allies. Each 

one is the closest such point to at least one Enemy. If 

necessary, the set is replenished with the extreme points in the 

Allies; 

𝑎𝑆 ∈ 𝐴𝑆 ⇔ 𝑎𝑆 𝑖𝑠 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑖𝑛 𝐴      ∨       ∃𝑒 ∈ 𝐸      ∀𝑎
∈ 𝐴      𝑑𝑖𝑠𝑡(𝑎𝑆, 𝑒) ⩽ 𝑑𝑖𝑠𝑡(𝑎, 𝑒) 

• EnemySoldiers, 𝐸𝑆  – set of points belonging to the 

Enemies. Each one is the closest such point to at least one 

Ally; 

𝑒𝑆 ∈ 𝐸𝑆 ⇔ ∃𝑎 ∈ 𝐴      ∀𝑒 ∈ 𝐸      𝑑𝑖𝑠𝑡(𝑒𝑆, 𝑎) ⩽ 𝑑𝑖𝑠𝑡(𝑒, 𝑎) 

• Soldiers, 𝑆  - sum of the AllySoldiers and the 

EnemySoldiers sets; 

𝐴𝑆 ⊂ 𝐴;       𝐴𝑆 ∪ 𝐸𝑆 = 𝑆
𝐸𝑆 ⊂ 𝐸;       𝐴𝑆 ∩ 𝐸𝑆 = ∅

 

• AllySoldierFriends, 𝐴𝑆𝐹 – set of points belonging to the 

Allies yet not belonging to the AllySoldiers. Each one is 

the closest such point to at least one AllySoldier; 

𝑎𝑆𝐹 ∈ 𝐴𝑆𝐹 ⇔ ∃𝑎𝑆 ∈ 𝐴𝑆      ∀𝑎 ∈ 𝐴 ∖ 𝐴𝑆      
 𝑑𝑖𝑠𝑡(𝑎𝑆𝐹 , 𝑎𝑆) ⩽ 𝑑𝑖𝑠𝑡(𝑎, 𝑎𝑆) 

• EnemySoldierFriends, 𝐸𝑆𝐹  – set of points belonging to 

the Enemies yet not belonging to the EnemySoldiers. Each 

one is the closest such point to at least one EnemySoldier; 

𝑒𝑆𝐹 ∈ 𝐸𝑆𝐹 ⇔ ∃𝑒𝑆 ∈ 𝐸𝑆      ∀𝑒 ∈ 𝐸 ∖ 𝐸𝑆      𝑑𝑖𝑠𝑡(𝑒𝑆𝐹 , 𝑒𝑆)
⩽ 𝑑𝑖𝑠𝑡(𝑒, 𝑒𝑆) 

• SoldierFriends, 𝑆𝐹  – sum of the AllySoldierFriends and 

the EnemySoldierFriends sets; 

𝐴𝑆𝐹 ⊂ 𝐴 ∖ 𝐴𝑆;       𝐴𝑆𝐹 ∪ 𝐸𝑆𝐹 = 𝑆𝐹
𝐸𝑆𝐹 ⊂ 𝐸 ∖ 𝐸𝑆;       𝐴𝑆𝐹 ∩ 𝐸𝑆𝐹 = ∅

 

• AllyFrontLines, 𝐴𝐹𝐿 – sum of the AllySoldiers and the 

AllySoldierFriends sets; 

𝐴𝑆 ∪ 𝐴𝑆𝐹 = 𝐴𝐹𝐿;       𝐴𝑆 ∩ 𝐴𝑆𝐹 = ∅ 

Fig. 1. Scheme of sampling division by Front-Line Algorithm 

• EnemyFrontLiners, 𝐸𝐹𝐿 – sum of the EnemySoldiers and 

EnemySoldierFriends sets; 

𝐸𝑆 ∪ 𝐸𝑆𝐹 = 𝐸𝐹𝐿;       𝐸𝑆 ∩ 𝐸𝑆𝐹 = ∅ 

• FrontLiners, 𝐹𝐿  – sum of the AllyFrontLiners and the 

EnemyFrontLiners sets; 

𝐴𝐹𝐿 ∪ 𝐸𝐹𝐿 = 𝐹𝐿;       𝐴𝐹𝐿 ∩ 𝐸𝐹𝐿 = ∅ 

• AllyCivilians, 𝐴𝐶 – set of points belonging to the Allies yet not 

belonging to the AllyFrontLiners; 
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𝐴𝐶 = 𝐴 ∖ 𝐴𝐹𝐿 

 

• EnemyCivilians, 𝐸𝐶  – set of points belonging to the 

Enemies yet not belonging to the EnemyFrontLiners; 

𝐸𝐶 = 𝐸 ∖ 𝐸𝐹𝐿 

• Civilians, 𝐶  – sum of the AllyCivilians and the 

EnemyCivilians sects; 

𝐴𝐶 ∪ 𝐸𝐶 = 𝐶; 𝐴𝐶 ∩ 𝐸𝐶 = ∅ 

The FLA also introduces the following factors: 

• furthestAllyFrontLiner, furthestAFL – lowest 𝑓(𝒙) value of 

a point in the AFL set; 

𝑓𝑢𝑟𝑡ℎ𝑒𝑠𝑡𝐴𝐹𝐿 = 𝑚𝑖𝑛
𝑥∈𝐴𝐹𝐿

(𝑓(𝒙)) 

• spreadOfAllyFrontLiners, spreadAFL – difference between 

𝑓𝑢𝑟𝑡ℎ𝑒𝑠𝑡𝐴𝐹𝐿  and 𝑦𝑃𝑈; 

𝑠𝑝𝑟𝑒𝑎𝑑𝐴𝐹𝐿 = 𝑓𝑢𝑟𝑡ℎ𝑒𝑠𝑡𝐴𝐹𝐿 − 𝑦𝑃𝑈 

Fig. 2. Front-Line Algorithm pseudocode 

 

• furthestEnemyFrontLiner, furthestEFL – highest 𝑓(𝒙) 

value of a point in the EFL set; 

𝑓𝑢𝑟𝑡ℎ𝑒𝑠𝑡𝐸𝐹𝐿 = 𝑚𝑎𝑥
𝑥∈𝐸𝐹𝐿

(𝑓(𝒙)) 

• spreadOfEnemyFrontLiners, spreadEFL – difference 

between 𝑓𝑢𝑟𝑡ℎ𝑒𝑠𝑡𝐸𝐹𝐿  and 𝑦𝑃𝑈 ; 

𝑠𝑝𝑟𝑒𝑎𝑑𝐸𝐹𝐿 = 𝑓𝑢𝑟𝑡ℎ𝑒𝑠𝑡𝐸𝐹𝐿 − 𝑦𝑃𝑈  

• spreadOfFrontLiners, spreadFL – difference between 

𝑠𝑝𝑟𝑒𝑎𝑑𝐸𝐹𝐿  and 𝑠𝑝𝑟𝑒𝑎𝑑𝐴𝐹𝐿; 

𝑠𝑝𝑟𝑒𝑎𝑑𝐹𝐿 = 𝑠𝑝𝑟𝑒𝑎𝑑𝐸𝐹𝐿 − 𝑠𝑝𝑟𝑒𝑎𝑑𝐴𝐹𝐿  

 

 
Fig. 3. Further Uncertainty Estimation algorithm pseudocode 

 
Fig.2 presents the Front-Line Algorithm. Its performance 

strongly depends on a fast determination of the distances 
between the points. Hence it is recommended to speed-up 
calculations with a pre-prepared triangular matrix of distances. 

The points, belonging to the S set, lie in direct neighborhood 
of the uncertainty contour. This set of points is extended with 
the SF set and forms the FL set. 

The enhanced set of points (FL) contains information about 
the shape of the uncertainty contour. The vertical spread of 
points in the FL set (visible in 3D plots) represents the degree 
of their scattering around the contour and thus delivers 
guidelines about the accuracy of the uncertainty estimation. 

In stage H of the AH Method the uncertainties are 
determined. 

• The min-max values among the extreme points in the set 

A are adapted as the uncertainty intervals of the particular 

parameters. 

• The spreadFL factor value (together with the 4 remaining 

auxiliary factors) is adapted as the information about the 

accuracy of the uncertainty determination. 

The determined uncertainty intervals are apparently always 

slightly underestimated due to the finite size of the repository. 

To tackle this issue, we propose the Further Uncertainty 

Estimation (FUE) algorithm (Fig.3). 
The FUE algorithm makes an attempt to extend the 

potentially underestimated uncertainty intervals by finding a 
point (from outside of the repository) for which 𝑓𝑎𝑝𝑝𝑟𝑜𝑥(𝒙) ≤
𝑦𝑃𝑈. The search is conducted along the half-line 𝑝𝐵𝐸𝑆𝑇  𝑝𝐴𝑆. The 
calculation of the approximated function value for a parameter 
vector, x, is carried out using the linear approximation. The 
weighted mean of the neighbor points’ function values is 
adapted as 𝑓𝑎𝑝𝑝𝑟𝑜𝑥(𝒙) value. The distances from x are used as 

weights. 

Operations of the AH Method are exemplified with its test-

case results in Section V. 

1. Create an etiquette vector based on the length of the 

point number. 

2. On the grounds of the yPU value and the f(x) values of 

particular points, divide the points into the A and the 

E sets. Mark the BEST point. 

3. On the strength of distances between the points in the A 

and the E sets, assign the points to the AS and the ES 

sets. If necessary, replenish the AS set with the extreme 

points from the A set. 

4. Allocate the points, which belong to the A set yet do not 

belong to the AS set, into the AC set. Allocate the 

points, which belong to the E set yet do not belong to 

the ES set, into the EC set. 

5. Based on the distances between the points in the AC and 

the AS sets, find and label the points belonging to the 

ASF set. Remove from the AC set, the points ranked as 

belonging to the ASF set. 

6. Based on the distances between the points in the EC and 

the ES sets, find and label the points belonging to the 

ESF set. Remove from the EC set, the points ranked as 

belonging to the ESF set. 

7. Recognize the sets: Ω, S, SF, FL, C as the sums of the 

appropriate sets. 

8. Determine the values of the factors: furthestAFL, 

furthestEFL, spreadAFL, spreadEFL, spreadFL. 

x
BEST

 = p
BEST

.x; x
AS
 = p

AS
.x; x

CURRENT
 = x

AS
; y

CURRENT
 = p

AS
.y; 

step = unitVector(x
BEST

, x
AS
); 

if (|step
i
| < step

min
) step *= step

min
 / |step

i
|; 

while (1) 

  x
NEXT

 = x
CURRENT

 + step; y
NEXT

 = f
APPROX

(x
NEXT

); 

  if (y
NEXT

 > y
PU
 || y

NEXT
 < y

CURRENT
) 

    if (step
i
 = step

min
) break; //ends while loop 

    else 

      step /= 3; 

      if (|step
i
| < step

min
) step *= step

min
 / |step

i
|; 

  else 

    y
CURRENT

 = y
NEXT

; 

    x
CURRENT

 = x
NEXT

; 

if (x
CURRENT

 != x
AS
) p

APPROX
 = Point(x

CURRENT
, y

CURRENT
); 

else p
APPROX

 = NULL; 
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Fig. 4. Outline of the Genetic Algorithm 

IV. THE GENETIC ALGORITHM AND THE TEST-CASE 

DEFINITIONS 

The GA in this paper is considered as an intelligent space 
sampler, able not only to find the optimum but also to deliver 
the sampling for function shape investigation. It is of traditional 
structure (Fig.4) and all its parameter values have been adjusted 
to the two-dimensional test-case. The population size remains 
constant in subsequent generations, and has been set at 40 
individuals. Each new generation results from selection, 
crossover and mutation. 

The chosen selection and mutation are standard operators. 
The truncation selection concentrates the searching process on 
the interesting areas of the space. It focuses on the previously 
revealed attraction regions. The gaussian mutation introduces 
new genetic material to the population. It increases its diversity 

and prevents the algorithm from getting stuck in a local 
optimum attraction region. The detailed description of these two 
genetic operators is presented in Fig.4. 

Most crucial is the heuristic crossover2 [5] (Fig.5). It aims at 
moving the searching process towards the prospecting areas of the 
space. Based on the objective function values of the parents, an 
offspring is created in a place where it has potentially better fitness 
than either of its parents. 

The genetic algorithm terminates after 120 generations. This 
means that repository assembled from one of its runs contains, 
on average, 3112 points. 

The AH Method is dedicated for multidimensional function 
shape investigation problems. In this paper, they are represented 
by the F7 function by Schwefel [2]. The two dimensional test-
case was selected for presentation purposes. Each point in the 
search space is then a two-valued vector with coordinates 
𝒙 𝜖 [−40.0, 15.0]2. Fig.6 presents the F7 function shifted up by 
50.0. The appropriate formula is: 

𝑓(𝒙) = 𝐹7(𝒙) + 50.0 = 

 −𝑥1  ∙ 𝑠𝑖𝑛 √|𝑥1| − 𝑥2 ∙ 𝑠𝑖𝑛√|𝑥2| + 50.0 (8) 

During the minimization process the best solution 𝒙𝑚𝑖𝑛 =
(−25.877, −25.877)  can be found with the value of the 
function 𝑓(𝒙𝑚𝑖𝑛) ≈ 1.834. 

The position of the threshold plane for parameter uncertainty 
determination can be defined in two analogous ways: absolute 
and relative. In the first case the threshold level is set as a single 
value, e.g. 𝑦𝑃𝑈 = 10.0. Similarly, the threshold may be selected 
with reference to its distance to the function value in the found 
optimum, e.g. 𝑦𝑃𝑈+= 8.166  which together with 𝑓𝑚𝑖𝑛 =
1.834  totals 10.0. The tolerance boundaries for the given 
threshold plane 𝑦𝑃𝑈 = 10.0 are: 

 ∀𝒊=𝟏,𝟐         𝒙𝒊 ∈ [−𝟑𝟑. 𝟓𝟎𝟐, −𝟏𝟕. 𝟗𝟐𝟖] 

 𝒕𝒉𝒂𝒕 𝒊𝒔             𝒙𝒊 = −𝟐𝟓. 𝟖𝟕𝟕−𝟕.𝟔𝟐𝟓
+𝟕.𝟗𝟒𝟗 (9) 

This notation covers the issue of asymmetry in uncertainty 
determination of parameter values. 

 

Fig. 6. Test-case Objective Function  

1. Generate the initial population of 40 points randomly, 

with uniform distribution from search space. 

2. Determine the function value for all points in the 

population. 

3. For 120 generations perform: 

a) truncation selection: remove from the population 

the 24 points (60%) with the worst function value; 

b) heuristic crossover2: using the remaining 16 points 

as parents, fill the population, i.e. create 24 

offspring: 

• Parents are selected using the roulette-

wheel method. 

• A point cannot be selected as a parent more 

than 5 times in one generation. It also 

cannot be crossed with itself (incest 

prevention); 

c) Gaussian mutation: each of the 40 points has a 10% 

chance of being mutated. The parameter vector of 

the point is modified by a value drawn from the 

Gaussian distribution truncated to the domain of 

the search space. The standard deviation of the 

drawing is equal to 0.20 multiplied by the 

particular parameter range and thus may differ 

between dimensions. 

4. Assemble all points, for which a function value was 

calculated, into the sampling repository of the search 

space. 

foreach dimension 

   if (ffitness(parent1) >= ffitness(parent2)) 

      xi(offspring) = λi(xi(parent2)-xi(parent1)) + 

xi(parent2); 

   else xi(offspring) = λi(xi(parent1)-xi(parent2)) + 

xi(parent1); 

   while (xi(offspring) < mini) xi(offspring) += rangei; 

   while (xi(offspring) > maxi) xi(offspring) -= rangei; 

 

where: 

λi   – random number uniformly drawn from [0,1] 

interval, 

f (∙)  – function value of the individual, 

xi (∙)  – ith parameter value of the individual. 

Fig. 5 Heuristic crossover2 pseudocode 
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V. THE TEST-CASE RESULTS  

In the presented test-case, repositories containing sampling 
through Monte Carlo process (Monte Carlo sampling) and 
points taken from the predefined mesh (sampling on a grid) are 
collated with the set containing the genetic algorithm space 
sampling assembled during a single run. The performance of the 
AH Method at each stage is evaluated based on all datasets. This 
provides an opportunity to scrutinize not only the way the AH 
Method processes a repository but also the quality of function 
shape investigation for different space sampling routines. Table 
II shows the compared types of space sampling. 

To introduce randomness in rand3k and ga3k repositories 

each was generated ten times. The precision of minimum 

indication and the number of points in the global optimum 

attraction region were applied as comparison criteria and the 

best repository from each sampling routine was selected for 

further processing. 

Tables III and IV present numbers of points for all 10 

alternative sets of the rand3k and of the ga3k repositories. 

The most attractive ones are indicated by the bold font. The 

benchmark information about the grid3k repository is in the 

rightmost column. Variations within each group are 

insignificant. Results obtained for the selected sets may be 

repeated with any of the others. 

 

 

 
TABLE III  

COMPARISON OF 10 RAND3K REPOSITORIES 
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A 3120 3120 3120 3120 3120 3120 3120 3120 3120 3120 3120.0 3120 3120  3136 

B 986 974 958 951 1008 1008 953 981 1021 999 983.9 1021 951  964 

C 720 694 700 694 724 704 699 700 735 711 708.1 735 694  964 

D 526 513 524 504 533 517 509 507 521 512 516.6 533 504  708 

Mini 

mum 
1.853 1.840 1.923 1.919 1.892 1.907 1.885 1.878 1.864 1.877 1.884 1.840 1.923  1.838 

 

 
TABLE IV  

COMPARISON OF 10 GA3K REPOSITORIES 
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A 3096 3104 3141 3102 3094 3097 3126 3101 3125 3122 3110.8 3141 3094  3136 

B 2934 2947 2934 2946 2948 2930 2951 2951 2970 2960 2947.1 2970 2930  964 

C 380 363 365 340 376 385 360 369 351 380 366.9 385 340  964 

D 362 350 351 326 357 374 349 360 337 368 353.4 374 326  708 

Mini 

mum 
1.834 1.834 1.834 1.834 1.834 1.834 1.834 1.834 1.834 1.834 1.834 1.834 1.834  1.838 

TABLE II  

REPOSITORIES WITH TEST-CASE DATA 

repository sampling routine number of points 

grid3k 
points distributed uniformly, every 1.0 

on a mesh covering whole domain 

562 = 3136 
points 

rand3k 

points distributed randomly with 

uniform probability within the domain 

(Monte Carlo Method) 

3120 points 

ga3k 

points constitute an assembly from one 

run of the genetic algorithm defined in 

Fig.4 

approx. 3112 
points 

 

 

 

 
TABLE I 

[TABLE TITLE] TABLE NAME 

Column 1 Column 2 Column 3 a 

xx1 yyy1 zzz1 

xxx2 yy2 zzz2 

xxx3 yyy3 zz3 
xxx4 yy4 zzzzz4 

xxx5 yyyyy5 zz5 

a[Footnote Text] Content. 
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Fig. 7. Outcome of the AH Method: stage A – grid3k (left), rand3k (center), ga3k (right) 

 
Fig. 8. Outcome of the AH Method: stage B – grid3k (left), rand3k (center), ga3k (right) 

Fig. 9. Outcome of the AH Method: stage C – grid3k (left), rand3k (center), ga3k (right) 
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Fig. 10. Outcome of the AH Method: stage D – grid3k (left), rand3k (center), ga3k (right) 

 

Fig. 11. Outcome of the AH Method: stage E – grid3k (left), rand3k (center), ga3k (right) 

 

 

A. Preprocessing Module 

The isolation of the points located in the attraction region 

of the optimum is divided into four stages with different 

objectives. The outcomes of each stage are presented in triplets 

to facilitate comparison in Figs 8÷11. 3D plots are shown below 

each 2D counterpart. The values of three preprocessing module 

arguments have been specified as following: 

• the threshold cut value has been set as: 

 𝑦𝐶𝑈𝑇 = 28.0 (10) 

• the minimum distance between points has been set as: 

 𝑑𝑚𝑖𝑛 = 0.5 (11) 

• the cardinality of the k-nearest neighbors set has been 

set as: 

𝑘 = 5            for the grid3k repository (12) 
𝑘 = 40          for the rand3k and ga3k repository 

 

B. Sampling Analysis Module 

The quantitative description of the sampling distribution is 

done in two stages: E and F. The pivotal question addressed by 

the sampling analysis module is whether the sampling of the 

optimum attraction region is sufficient for parameter 

uncertainties estimation. 

Stage E is a statistical analysis of the repository, presented 

in the form of printouts from the program ScanRep, which 

implements the AH Method. The outcome is shown in Fig. 12. 

Results of stage E prove that the quality of the ga3k 

repository is comparable with the grid3k and the rand3k. 

The use of genetic algorithm space sampling for parameter 

uncertainty estimation in the test-case should bring similar 
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Fig. 12a Outcome of the AH Method: stage F – SSH histogram: grid3k (left), rand3k (center), ga3k (right) 

 

Fig. 12b Outcome of the AH Method: stage F – DBH histogram: grid3k (left), rand3k (center), ga3k (right) 

 

Fig. 12c Outcome of the AH Method: stage F – VDH histogram: grid3k (left), rand3k (center), ga3k (right) 

 

 

effects to classical sampling routines. This assumption has been 

found true with the outcomes of the uncertainty determination 

module. 

Stage F follows up the sampling study with histogramic 

analysis of the repository. Its outcome is presented in Figs 13a-

c. The results confirm those of stage E. 

C. Uncertainty Determination Module 

In stage G, the points located closest to the plane of 
uncertainty determination are labeled. The outcome is presented 
in Fig.14, where the set S is marked, and in Fig.15, where the 
set FL is marked (sum of the S and the SF sets). The difference 
is easily determined by comparing these two triplets of plots. 
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Fig.13. Outcome of the AH Method: stage G – grid3k (left), rand3k (center), ga3k (right) 

 

 

Fig.14. Outcome of the AH Method: stage G (enhanced) – grid3k (left), rand3k (center), ga3k (right) 
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Fig.15. Outcome of the AH Method: stage H – grid3k (top), rand3k (center), ga3k (bottom) 

 

 

 
 

Fig. 16. Outcome of the AH Method 
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In stage H, the uncertainties are determined. Fig.16 presents 
the outcome of stage H in the from of printouts from the 
program ScanRep. Fig.17 contains similar information but in a 
different, perhaps more readible form. 

The test-case results prove that all three types of sampling 
estimate the uncertainties correctly. The inaccuracies are of the 
third significant digit, whereas the uncertainties are commonly 
rounded to the second one. This leads to the possibility of radical 
downsizing in the necessary point number and thus a remarkable 
reduction in the required computational time for the uncertainty 
estimation task. It makes the AH Method the perfect alternative 
in multidimensional space investigations, where a parameter 
study with classical sampling routines is infeasible due to too 
high a number of necessary objective function calls. 

VI. CONCLUSIONS  

This paper presents a new heuristic method of uncertainty 

estimation regarding the function shape investigation in the 

vicinity of the found optimal solution. The research compares 

three different ways of obtaining a space sampling around the 

region in question and reveals that a repository consisting of a 

sampling with a genetic algorithm run can compete with 

classical sampling routines used in parameter study, i.e., 

uniform and random ones. 

The AH Method consists of eight stages arranged in three 

modules: preprocessing, sampling analysis, and uncertainty 

determination. It creates it a framework where a stage can be 

easily substituted for another analogous algorithm. The possible 

challenges for the user lie in the need to specify the values of 

three preprocessing module arguments. They should be case-

matched and should allow one to isolate from the repository, the 

points located in the attraction region of the optimum. Thus, to 

facilitate this issue, we consider applying Self-Organizing Maps 

to the clusterization task (stage D) in the near future. 

The AH Method has been primarily developed to assist the 

data evaluation in nuclear physics experiments, namely 

Coulomb Excitations [31]. The first real-case results proved the 

AH Method’s fitness for the purpose. Future investigations in 

this field should cover introducing a procedure for 

determination of the proper position of the threshold plane for 

parameter uncertainty estimation based on the particular 

experimental data. 
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