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 The article presents the results of diameter mapping for circular-symmetric disturbance of 

homogeneity of epitaxially grown InAs (100) layers on GaAs substrates. The set of acceptors 

(beryllium) doped InAs epilayers was studied in order to evaluate the impact of Be doping 

on the 2-inch InAs-on-GaAs wafers quality. During the initial identification of size and 

shape of the circular pattern, non-destructive optical techniques were used, showing a 100% 

difference in average roughness between the wafer centre and its outer part. On the other 

hand, no volumetric (bulk) differences are detectable using Raman spectroscopy and high-

resolution X-ray diffraction. The correlation between Be doping level and circular defect 

pattern surface area has been found. 
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1. Introduction  

The “wafer homogeneity” test is often used as a good 

decent measure of the qualitative material growth character 

[1]. However, this term is difficult to define precisely [2] 

because of the multitude contexts of technological 

processes and measurements. These may result in local 

differences of electrical [3], optical [4], surface 

morphology and topography [5, 6], chemical composition 

[7], structure [8], temperature [9], and many other 

measurable parameters. In addition, a quantitative “result” 

of the homogeneity tests frequently depends on the 

arbitrarily adopted grid and its resolution in the 

measurement technique used. Therefore, more advanced 

approaches, supported by big data analytics and machine 

learning methods, have been used [10, 11]. There is a 

common agreement that the epitaxial structures 

homogeneity should be as high as possible at least on the 

device scale that one wants to produce. Generally, the 

larger area of the device structure, the greater the difficulty 

in controlling homogeneity during growth and crucial steps 

of processing [12, 13]. This is especially important in a 

production of detector arrays even for relatively thick 

layers [14, 15], and obviously a degree of difficulty in 

achieving high wafer homogeneity increases with a 

decrease of a layer thickness. In the case of monoatomic-

like layer (so-called “2D materials”), there is a lack of 

efficient and stable approaches to the synthesis of thin films 

with a large area accompanied with excellent homogeneity 

[16, 17]. However, some impressive successes for few 

material systems have already been reported in this regard 

[18, 19]. *Corresponding author at: jacek.boguski@wat.edu.pl  

Article history:

Received  17 Oct. 2022

Received in revised  from 06 Dec  2022

Accepted  30 Dec. 2022

Available  on-line  24 Feb.  2023



 J. Boguski et al. /Opto-Electronics Review 31 (2023) e144564 2 

 

For AIIIBV semiconductor compounds, especially 6.1 

Å-family materials, there has also been great progress in 

uniformity improvements and mapping techniques 

developments. Many recent research studies on thick layers 

of arsenides (e.g., InAs, GaAs), antimonides (e.g., InSb, 

GaSb), and their ternary alloys (e.g., InAs1-xSbx) [20–23], 

as well as low-dimensional structures composed of 

aforementioned compositions, like quantum dots (QDs) 

[24–26], nanowires [27, 28], quantum-well infrared 

photodetectors (QWIPs) [29], or type-II superlattices 

(T2SLs) [30–32], indicate strong interest in the topic. 

Considering mapping, the aim is to obtain as much 

information as possible using non-destructive techniques. 

For this reason, the optical or semi-optical methods such 

as: high-resolution X-ray diffraction (HR-XRD) [24], 

photoluminescence (PL) [22, 24, 25, 30, 31, 33], local 

photocurrent mapping (LPM) [32, 34], spatially separated 

pump-probe (SSPP) spectra [21], lock-in thermography 

[20], scanning thermal microscopy (STM) [28] are mostly 

preferred. In many cases, however, contactless electric [35] 

or non-destructive tactile methods such as atomic force 

microscopy (AFM) [23] are also used. Unfortunately, in 

most of such studies, measurements are normally carried 

out for very small, selected areas, or the analysis is only 

qualitative for a full wafer scan. For this reason, sample 

preparation for destructive measurement techniques is 

sometimes needed [26, 29, 36]. In this work, the authors 

present both described approaches for a 2-inch epitaxially 

grown indium arsenide (InAs) undoped and intentionally 

Be-doped on GaAs substrates. First of all, non-destructive 

methods were implemented in order to determine basic 

surface and bulk parameters, and precisely select a large 

sub-area of homogeneity (LSAH) with systematic pattern. 

These observations seem to be a good complement to other 

interdisciplinary studies in the field of triboelectrochemical 

effects, in which one tries to find correlation between 

surface topography and electrochemical processes on the 

surface [37], including electrical field under contacts 

effects [38]. The authors are convinced that the presented 

research gives an insight on better understanding the 

parasitic effects in micro- and nanoelectronics composed of 

AIIIBV semiconductor structures, for which p+ type InAs is 

often one of the sub-contact layers. It can also be very 

important in the development of plasmonic structures based 

on these materials [39, 40]. 

2. Experiment 

2.1. Growth conditions 

All InAs-on-GaAs (listed in Table 1) were grown in a 

RIBER Compact 21-DZ solid-source molecular beam 

epitaxy (MBE) system. Before each growth process, 

degassing of a GaAs substrate was performed for thermal 

desorption of oxides. A 250 nm thick GaAs buffer layer 

was initially grown with a 0.6 μm/h growth rate, to improve 

the substrate surface quality after degassing process. The 

InAs layers were grown with a ~0.4 μm/h growth rate at 

450 °C. An acceptor concentration was controlled by 

temperature of a Be effusion cell. A manipulator rotation 

was set at 10 rpm during each growth. The specification of 

MBE system applied is described in more details elsewhere 

[41, 42]. 

Table 1.  

The list of examined InAs on-GaAs. 

Wafer no. 
InAs layer  

thickness [µm ] 

Assumed Be 

concentration [cm−3] 

#1 5.15 - 

#2 4.40 1.0·1016 

#3 4.30 5.0·1016 

#4 4.57 1.0·1017 

#5 4.58 5.0·1017 

#6 4.55 1.0·1018 

#7 4.55 5.0·1018 

2.2. Non-destructive wafers characterisation methods 

Initial macroscopic assessment of morphological 

differences was conducted by an optical microscope 

(Nikon Eclipse LV 150N with active vibration isolation 

table). The morphology measurements of Be-doped InAs 

layers were performed using the NT-MDT atomic force 

microscope (AFM) in the intermittent contact mode. The 

measurements were conducted with the use of µMash 

measuring probes HQ: NSC15/AlBS with the following 

specification: resonance frequency of 325 kHz, force 

constant of 40N/m, tip radius approx. 8 nm. AFM was 

performed on 9 samples (5 × 5 mm each) cut along one line 

of the InAs-on-GaAs wafers; marked from A1 to A9  

(see Fig. 1). During the measurements, the orientation of  

the X-Y samples and their order were kept as in the original 

wafer. Moreover, the measurements were made at 3  

regions on each sample with the following coordinates:  

i) X = 2.50 mm, Y = 2.50 mm, ii) X = 0.85 mm, Y = 2.50 mm, 

and iii) X = 4.15 mm, Y = 2.50 mm. As a result, keeping 

the order of the samples, the measurements were taken 

along a straight line with a step of 1.65±0.05 mm. A 

scanning area was set at 30 × 30 µm. The selected area is 

optimal in terms of determining the surface roughness of 

samples and gives a good average roughness result and its 

repeatability. To estimate the accuracy of the obtained 

roughness parameters, the additional measurements and 

analysis of the repeatability of root mean square roughness 

(Sq) determination were performed. Five consecutive 

measurement probes were used to perform the measure-

ments in the centre of the sample A2 and A5 and a total of 

10 scans per sample were made. The conducted analysis 

allows to estimate the influence of parameters of the 

measuring probe (probe radius) on the roughness value, 

however, a strong influence of the measured structure 

dimensions on the determined standard deviation is also 

visible. For sample A2 with smaller structures, the relative 

measurement error calculated as the ratio of the standard 

deviation to the average roughness value is approximately 

2.3%, while for sample A5, with higher and larger 

structures in the XY axes, this parameter is between 9.9% 

and 10.7%. The results obtained for sample A2 clearly 

show that the repeatability of measurements with the use of 

several measuring probes is very high. In the case of larger 

structures on sample A5, the roughness dispersion increases 

significantly, but it also depends on the boundaries of the 

measurement area (the repeatability of the measurement 

area in subsequent measurements was about ±20 µm). 
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Consequently, for all measurements, it can be assumed that 

the maximum measurement error is at the level of 10.7%. 

An HR-XRD analysis was performed using a 

PANalytical X’Pert MRD (Cu Kα1 radiation). The initial 

2θ-ω scans for symmetric (004) have been performed 

[Fig. 5(a)] for a general verification of the crystallographic 

quality of the tested layers. Next, 2θ-ω scans and ω-scans 

for symmetric (004) and asymmetric (115) planes were 

recorded in seven separated spots marked in Fig. 1 – three 

centrally located in an internal texture, two others at a 

boundary of the identified textures and side ones in external 

texture for #3. Moreover, a full width at half maximum 

(FWHM) of (004) and (115) diffraction lines was 

estimated. 

Raman spectra were carried out using a Renishaw inVia 

Reflex Raman microscope equipped with an EMCCD 

detector (Andor Technology Ltd, Oxford Instruments, 

Belfast, UK). The Raman signals were recorded in the 

spectral range of 18−1754 cm−1 with a 532 nm laser 

radiation coupled to an Eclipse filter (100 μm slit). The 

laser excitation power was ca. 20 mW on the sample. The 

laser beam was directed to the sample through a 20x 

(N.A. = 0.4) objective lens from Leica. A 15 s integration 

time and a 25 s accumulation time at point were applied. 

Raman spectra were measured along the wafer diameter (2 

lines) with a step of 0.5 mm in air and at room temperature. 

The wavelength of the instrument was calibrated using an 

internal silicon wafer, the spectrum was centred at 

520.5 cm−1. Collected Raman spectra were processed in a 

WiRE 5.4 software. 

2.3.  Destructive wafers characterisation methods  

Secondary ion mass spectrometry (SIMS) depth 

profiles were performed using a CAMECA SC Ultra 

instrument under ultra-high vacuum (UHV), usually of 

4·10−10 mbar. Cs+ primary beam rastered over 80  × 80 μm2 

(the analysis area was limited to 40  × 40 μm2) and positive 

ions detection mode was used for detection of Be. SIMS 

analysis was performed to evaluate in-depth Be content in 

InAs layers.  

3. Results and discussion 

The central circular pattern, often visible in a blue light, 

is common in mass production [12] and, therefore, it is 

sometimes called “a circle defective wafer bin map” [43]. 

Its presence might be related to the release of defects from 

nonideal substrate or might result from the method of wafer 

surface polishing [44]. The heterogeneous stress 

distribution during mechanical planarization [45] or 

temperature distribution during this process [46] may also 

play a role. The circular shape of a pattern probably results 

from the lack of perfect flat parallelism of the wafer, which 

in turn affects the heat flows [47] or reflects difficulties in 

uniform heating of the wafer in the growth reactor [48]. In 

addition, wafer bowing, connected with different growth 

conditions might have an impact on the wavelength 

homogeneity [49] or uniformity of the particle streams 

during growth [50].  

In this work, the authors did not focus on the 

identification of the exact source of such “defective circle”. 

Instead, they performed the number of local tests and 

measurements, as listed in Fig. 1 legend, to correlate 

positions on the wafer with bulk and surface properties of 

the underlying InAs epilayer. In Fig. 1, the boundaries of 

defect patterns areas (dashed lines) and the measurement 

areas have been marked (light brown rectangles for XRD 

measurements, blue rectangles for AFM analysis, arrow 

along the diameter parallel to the primary orientation flat 

for the Raman spectroscopy analysis). 

3.1. Non-destructive characterisation 

3.1.1. Surface disturbance  

Primarily, the textures, which are visible across the 

wafer, were examined using optical microscope (Fig. 2) 

and AFM imaging (Fig. 3). From the photos shown in 

Fig. 2, it is evident that surface texture changes across the 

wafer as it approaches the dashed borderline (marked in 

Fig. 1).  

 

 

Fig. 1. The schematic arrangement of measurement lines and points for different measurement techniques 

performed on the InAs-on-GaAs wafer. Inset presents a photo of a real wafer with a circular shape surface 

pattern, visible sometimes under intense blue lighting and selected angle. The pattern borders are marked 

with a dashed line. 
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Moreover, the surface textures are slightly different on 

the opposite sides of the inner circle. Therefore, the 

common mapping process, which is taken from the centre 

along the radius towards one edge only, would be insuffi-

cient to obtain an overall overview of the investigated 

wafer. To further emphasize this point, the authors 

performed detailed tests using the AFM technique. Surface 

micrographs were taken along the wafer diameter, which 

was parallel to the primary flat. Results obtained at equally 

spaced points (A1 to A9, see Fig. 1) are shown in Fig. 3.  

It is observed that morphology features at positions 

(A1, A2) and (A8, A9) are very similar to each other and 

that their size is smaller as compared to other locations. It 

is evident, that the size of these features, formed during the 

deposition on the GaAs wafer, increases when moving 

from the edges to the centre of the wafer, in agreement with 

optical photos. Interestingly, the AFM micrographs in the 

sequence of A3–A7 clearly show that the features are 

ordered from the lower-left to the upper-right corner. 

Therefore, inner parts of the wafer do not exhibit the 

circular symmetry, which is quite unexpected, but might be 

related to a 2° offcut of the GaAs substrate. 

Figure 3 also shows that a periodic micro-faceting of a 

surface (similar to “step bunching” effect) in the inner part 

of the wafer is not only diagonally ordered but also enlarged 

comparing to near-edge randomly distributed features. 

From AFM data, Sq parameter for different locations across 

diameter was calculated; the results are shown in Fig. 4. 

The obtained area with the highest Sq values (grey dots) 

correlates with the roughly defined texture boundary 

observed using the optical microscopy. The maximum 

value of Sq is 4.7 nm at 0 position, with error estimated to 

be approx. 10%. For comparison, Sq value for an 

homoepitaxially grown InAs on InAs (100) substrate under 

similar growth conditions is one order of magnitude lower 

−0.19 m [51]. It is clearly observed that, the determined Sq 

parameters are evidently the smallest close to the wafer 

edges. The observed slight variability in Sq values is the 

result of a rigid selection of the measurement grid sub-

areas. Some certain randomness in the appearance of a dust 

spot has been minimized by numerically removing small 

sub-areas of extremely large sizes. 

3.1.2. Bulk properties 

The important question arises, whether the observed 

surface morphology is correlated with bulk properties of 

InAs epilayers. To answer it, the authors performed a series 

of HR-XRD scans for each wafer [centre of wafers, 

Fig. 5(a)] and at positions marked with light brown 

rectangles in Fig. 1, for #3 [Figs. 5(b) and (c)]. The authors 

also collected Raman spectra maps for the same locations 

as probed with AFM (A1–A9 range, blue rectangles – 

Fig. 1), for #3.  

Figure 5(a) shows no essential differences in diffracto-

grams between wafers with different Be doping level. In 

order to be more precise, a deeper XRD analysis of the #3 

was performed along its diameter parallel to the primary 

orientation flat, for 9 rectangular areas marked in Fig. 1. 

The results of the analysis are shown in Fig. 5(b). In this 

figure, a set of XRD results solely for symmetrical (004) 

diffraction lines and estimated FWHM of (004) and (115) 

from aforementioned measurement areas is shown. The 

XRD results reveal sharp and overlapped peaks, proving an 

abruptness of p-InAs interface with underlayers and 

uniformity across the wafer. On the other hand, FWHM of 

a layer peak can be used to qualitatively compare the crystal 

quality, associated with threading defect density 

(dislocations), mosaic domain or wafer curvature, as long 

as the samples share identical structure and are measured 

using the same XRD instrument and conditions [52]. The 

average FWHM ω values with standard deviations are 

167.4±2.5 and 159.4±2.2 arcsec for (004) and (115) 

reflections, respectively [Fig. 5(c)]. The obtained ω 

FWHM of (004) are consistent with a previously reported 

InAs grown on (001)-oriented GaAs [42, 53], while FWHM 

 

Fig. 3. Surface topography recorded with an AFM microscope 

at the centre of 9 samples cut from the tested wafer (#3). 

Consecutive samples A1 to A9 are named according to 

the numbering shown in Fig. 1. 

 

(a) (b) 

  

Fig. 2. The high-resolution photos taken for the outside (a) and 

inside (b) of the circular defect pattern for #3 (Table 1). 

Brightness and contrast were selected automatically. 
 

Fig. 4. Root mean square roughness Sq as a function of the 

position on the wafer diameter (distance from the wafer 

centre) for the #3. 
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ω (115) is much lower than reported for InAs on (111) GaAs 

and (111) GaSb [52]. In conclusion, these XRD datasets 

demonstrate slight broadening across the wafer with the 

lowest FWHM values at the centre. Nevertheless, a 

difference of approx. 5 arcsec can be neglected, indicating 

in overall a good film quality and high homogeneity. 

The lack of correlation between structural quality and 

surface roughness was supported by Raman spectral 

mapping [54], shown in Fig. 6(a)–(c). This type of Raman 

measurements of large sample areas, performed for 

determination of their homogeneity, are rarely described in 

the literature [23, 55]. 

 The representative Raman spectra recorded at distinct 

spots are shown in Fig. 6(a). The most intense peak at 

230.3 cm−1 corresponds to the longitudinal optical (LO) 

phonons from the top strain-free InAs layer. The double 

transverse acoustic (2TA) band at 105.2 cm−1 corresponds 

to the second-order Raman scattering by acoustic phonons 

of bulk InAs. The second-order peaks and combinational 

modes, which are related to optical and acoustic phonons, 

appear in the spectrum in the range of 415–485 cm−1. All 

the mentioned Raman bands indicate the high quality of the 

sample [42, 56–58]. The changes of 2TA and LO bands 

positions and normalised intensities across the wafer 

diameter are shown in Figs. 6(b) and 6(c), respectively. The 

position of 2TA peak and its intensity are constant across 

the entire diameter of the wafer. It proves again a high 

structural quality and bulk homogeneity of the epilayer. 

Moreover, there are no additional peaks in the entire Raman 

spectrum range, which proves the high chemical purity of the 

samples [59–61]. Small fluctuations of the intensity in the 

LO peak are attributed to the laser stability, which generally 

may not be perfect for long-lasting measurements [62]. 

3.2.  Destructive characterisation 

Finally, the SIMS measurement for each wafer was 

performed (Fig. 7). It is clearly detectable that Be 

concentration is rather constant across the layers, proving 

that the intentional Be dopant is well distributed. However, 

there is a slight difference between assumed content (dash 

lines) and real concentration (SIMS results). In all cases, 

the ratio of the real Be content to the assumed one in the 

growth varies between 1.51 and 1.13, being the smallest for 

the highest Be concentration (5·1018 cm−3). These results 

indicate a constant Be distribution across the layers.  

(a) (b) (c) 

   

Fig. 5. A list of X-ray diffractograms on 2 Theta–Omega angle at the centre of each wafer in form of a 3D collection chart (a); XRD ω-scans 

of the (004) InAs reflections measured across the 2-inch wafers in seven spots marked in Fig. 1(b); FWHM of (004) and (115) estimated 

from the aforementioned areas (c). 

 
(a) 

 

(b) 

 

(c) 

 

Fig. 6. Intensity vs. Raman shift obtained at seven points, as 

indicated in Fig. 1(a), for #3. Diameter scans of the 

normalized Raman spectra for 2TA and LO bands, 

respectively (b)–(c). 
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Regarding the SIMS data, a correlation between the 

designated surfaces of the circular defect areas and the 

concentration of Be was carried out (Fig. 8). 

It should be stated that there is a downward trend in 

defect pattern area vs. Be concentration in the range of 

1·1016 and 1·1018 cm−3. Results above this range 

significantly deviate from the observed trend. This may be 

due to the abrupt change in electrical properties for that Be 

concentration for which the layer under investigation 

acquires metallic properties. Taking into account the even 

distribution of Be deep into the layer (Fig. 7), it can be 

assumed that, in this case, deviation from the observed 

trend may be due to surface phenomena. Possibly, an in-

depth examination of the layers for their electrical 

properties could explain these observations. However, it 

will be a challenge for the future.   

4. Conclusions 

The XRD and Raman spectroscopy mapping results 

show no noticeable differences in the wafer volume 

regardless of the position along the diameter. This means 

that the observed texture distortion is only a surface effect. 

The homogeneous distribution of impurities in the in-depth 

profile eliminates other potential volumetric effects. The 

inner texture of the wafer surface has a roughness of about 

100% greater than the outer texture. Additionally, the inner 

one seems to be more directional. It should be noted that 

only the results of the SIMS analysis allowed to determine 

the correlation between the level of Be doping and the 

surface of the observed defect patterns. The conclusions 

from the discussion allow for a hypothesis that the uneven 

distribution of heat during the MBE epitaxial growth may 

be responsible for the presence of these defects. It can be 

proved by a decreasing tendency of the determined 

correlation. The increasing concentration of acceptors 

increases the electrical conductivity, and, therefore, also 

increases the thermal conductivity. The performance of 

thermal conductivity tests at the epitaxial growth 

temperature (450 °C) would allow for the verification of 

the hypothesis.  
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