The paper presents a summary of research on the possibility of influencing the state of residual stresses in railway rails by changing the pass design of vertical and horizontal straightener rollers and optimising their distribution on the rail perimeter. The presented results are devoted to the influence of profiled rollers on the level of residual stresses. A wide range of theoretical considerations were carried out based on the use of the finite element method using the commercial Forge software package. In order to verify the results of the theoretical considerations most reliably, a series of “in situ” experiments were conducted in industrial conditions on an existing production line. The tests were carried out on 120 meters long 60E1 railway rails. A significant reduction in the level of residual stresses compared to the standard requirements was achieved.

Keywords: railway rail; residual stresses; straightening process; straightening rollers; strain gauge method

1. Introduction

Modern rail transport, especially at high speeds, places high demands on the quality of tracks, the most important element of which is the rail, which plays the dual role of both a support and a guide in the track. Modern rails must be characterised by a high level of mechanical properties, including brittle cracking resistance, fatigue strength, fatigue crack growth rate, as well as appropriate geometrical features, primarily low dimensional deviations and straightness along the entire length of the rails [1]. The European standard EN 13674-1 [2] allows a maximum straightness deviation in the vertical plane of 0.3 mm over a measuring length of 3 m. Those special requirements in terms of straightness result from the necessity to reduce the vibration amplitude in the vertical plane of the rail during track operation. Too large deviations from straightness may initiate vibrations leading not only to a reduction in ride comfort, but also to damage to rail vehicles and tracks. After rolling and cooling, the rails do not meet the specified straightness parameters, therefore the required value of straightness of the rails is obtained by straightening using roller straighteners. The greatest residual stresses are introduced into the finished product during this process.

Most of the standards and specifications of railway companies [2-6] include the necessity to measure residual stresses of the rail and their maximum allowable level is set not only at one point, but often also at precisely defined locations around the perimeter of the rail. In accordance with the European standard EN13674-1 [2], stress measurement is performed in the axis of the rail foot, and the maximum allowable value cannot exceed 250 MPa for all types of rails and rail steel grades produced. The high criteria set by railway companies for stresses in rails result from the overlapping of residual stresses with quasi-static thermal stresses and dynamic stresses from operation, which may lead to the formation of cracks starting from single surface material discontinuities or subsurface microcracks located in rail head or foot. In a finished rail, after successive production stages, i.e. rolling, cooling and straightening, the following characteristic distribution of stresses is determined: tensile stresses occur in the head, which then change their character into compressive stresses, reaching the highest value in the neutral axis of the rail and reverting into tensile stresses in the foot area. After a certain period of operation, as a result of crushing the surface layer, tensile stresses in the rail head change their character and transform into compressive stresses, but only to a depth of about 7-10 mm [7]; tensile stresses occur in the rest of the head, while the state of stress in the rail foot remains constant throughout its operation. By lowering the level of residual stresses in the rail foot, the critical depth of the crack originating in this area is also...
Hatfield, UK, about 50 km north of London, where a train at the station of a rail fracture, as was the case in the railway disaster in extreme cases, the cumulated stresses may lead to the formation of track stiffness and its buckling. Buckling of the track occurs as a result of the stress release and is combined with overcoming of the resistance of ballast and the track frame stiffness – an example illustration of this phenomenon is shown in Fig. 1. In extreme cases, the cumulated stresses may lead to the formation of a rail fracture, as was the case in the railway disaster in Hatfield, UK, about 50 km north of London, where a train at a speed of about 185 km/h derailed. The locomotive and the first two cars remained on the rails in an upright position; all subsequent cars derailed, and the train was split into three parts. The dining car, which was the eighth in the set, overturned on its side and stuck into the poles of the traction line, as a result of which it was practically crushed. The entire accident happened 17 seconds after the rail broke – see Fig. 2. The rail cracking was associated with the co-occurring small surface cracks resulting from the development of rolling contact fatigue defects, mainly of the head checking type.

The level of residual stresses translates into the operational durability and reliability of rails, which are the most expensive component of railway routes, and thus affect the economic results of railway companies, but above all, it has a direct impact on the safety of railway traffic. The total value of residual, operational and thermal stresses cumulated in the rail may lead to the loss of track stiffness and its buckling. Buckling of the track occurs as a result of the stress release and is combined with overcoming of the resistance of ballast and the track frame stiffness – an example illustration of this phenomenon is shown in Fig. 1. In extreme cases, the cumulated stresses may lead to the formation of a rail fracture, as was the case in the railway disaster in Hatfield, UK, about 50 km north of London, where a train at a speed of about 185 km/h derailed. The locomotive and the first two cars remained on the rails in an upright position; all subsequent cars derailed, and the train was split into three parts. The dining car, which was the eighth in the set, overturned on its side and stuck into the poles of the traction line, as a result of which it was practically crushed. The entire accident happened 17 seconds after the rail broke – see Fig. 2. The rail cracking was associated with the co-occurring small surface cracks resulting from the development of rolling contact fatigue defects, mainly of the head checking type.

The technological process of cooling rails is the stage in the production of rails, where the level of residual stress is already introduced into the product, it arises as a result of temperature differences between the rail head, web and foot. Temperature differences are related to a different weight distribution on the rail cross-section, e.g. for the 60E1 profile, the head is 40.75% of the total rail weight, the web 22.02% and the foot 37.23% respectively, and the shape of these elements, and thus the amount of cumulated thermal energy resulting in the delayed onset of the phase changes occurring first on those parts of the rail that have the lowest temperature. The literature data [10] shows that the rail after cooling, and before straightening, has relatively low residual stresses varying along its height in the range from about -50 MPa in the rail web to about +50 MPa in the rail head and foot. These values partially coincide with the authors’ own experiments, during which the measurements of the residual stresses for rails after cooling without and with initial bending were performed using the cutting method for the entire range of curvatures occurring after cooling were performed \(R = 73.5 \text{ m to } R = 3330 \text{ m} \). Residual stresses were determined in the foot axis, on both sides of the web in the neutral axis and on the running surface in the head axis. The residual stresses in the rail foot after cooling were tensile and the values ranged from 95 to 120 MPa, in the web compressive and the values ranged from -5 to -55 MPa, and rather compressive from -30 to 2 MPa in the head. Compared the authors’ results to the work [10], where the following distribution of residual stresses is given after cooling the rails: in the head from 30 to 55 MPa, in the web from -40 to -50 MPa, and in the foot from 30 to 50 MPa, the obtained measurements showed an identical character and a similar range of stresses in the rail web, while in the rail foot, an increased value of tensile stresses was observed with a simultaneous decrease in their value in the rail head. The differences in the residual stress distribution in the discussed examples could result from unequal cooling conditions of the rails, the use of different bending values in the cooling beds or the length of the tested rails. As a result of the plastic deformation of the rail, during the straightening process, stresses are introduced into the rail that overlap with the residual stresses after cooling, and this is the technological stage of rail production that introduces the highest stresses into the product. After straightening, high tensile stresses appear in the head and foot of the rail, which decrease towards the center of the rail and transform into compressive stress in the web. By using appropriate straightening technologies, rail manufacturers are able to keep the residual stress in the rail foot below the permissible...
value of 250 MPa of standard EN13674-1:2011+A1:2017 [2]. To maintain a low level of residual stresses, it is essential to use 9-roller straighteners with a variable distance between rollers in a wide range of values, which can significantly reduce the level of residual stresses in the rail. For a given distance between the rollers, there are many sets of setting values which result in a straight rail. With appropriately optimized settings, it is possible to reduce the level of residual stresses in the rails, which has been confirmed both by numerical simulations and tests in industrial conditions [10-18]. Literature analysis did not reveal any publications devoted to the research on changing the pass design of straightener rolls to the residual stress level. The own research on the influence of changes in the shape of the straightening rollers and various combinations of their settings, discussed in this paper, proved their significant influence on the reduction of residual stresses in rails after straightening operation.

2. The concept and scope of study

The discussed results of the work on reducing residual stress in the rail foot are a summary of three stages of research on the impact of pass design of straighteners to the stress level [19-21] and were carried out as part of the project co-financed by the National Centre for Research and Development Poland entitled “Innovative and safe rails with a low level of residual stresses in the foot of the rail” – POIR.01.02.00-00-0167/16. The studies were carried out in the following scope:

– development of a new pass design of vertical and horizontal straightener rollers,
– development of a research programme including three variants of the roller system in a set of straighteners,
– numerical simulations of the straightening process for individual variants of the straightening roller system,
– conducting tests in industrial conditions in a vertical and horizontal straightening machine of a heavy section mill at ArcelorMittal Poland S.A. for the assumed variants of the straightening rollers installation,
– carrying out measurement of residual stresses in rails after straightening, carrying out mechanical tests and evaluation of geometric parameters, shape and straightness of the rail.

The above theoretical assumptions were reflected in the development of technical documentation for pass design of the straightening rollers. They were then fully applied to industrial research.

2.1. Pass design of straightening rollers

The following theoretical assumptions were adopted when developing a new, innovative pass design of vertical and horizontal straightener rollers, which were aimed at:

– modifying the shape of the rollers resulting in a reduction of the roller – strand contact stresses and the distribution of these stresses,
– reducing the growth of residual stress in the area of the rail head,
– obtaining the smallest possible strain necessary to straighten the strand,
– reducing the size of the contact surface of the roller and the straightened rail.

The adopted criteria are conditioned by the slight possibility of changing the shape of the head rollers of the vertical straightener, adjusted to the rail head profile. A new method of pass design of vertical straightener foot rollers in two variants characterised by a different shape of the roller-rail contact surface and a new pass design method for horizontal straightener rollers varied by the size of the flange were developed.

2.2. Plastometric tests

In order to develop a mathematical description of the material flow curve during cold strain, plastometric tests were carried out, in which Ø10 × 12 mm samples were deformed at different strain rates and at different temperatures. A diagram of the strain of a cylindrical sample in a Gleeble simulator is shown in Fig. 3.

As part of this study, it was necessary to determine the flow curve for the cold strain conditions and to determine the yield strength of the deformed material in the temperature range corresponding to the cooling of the material after rolling.

During plastometric tests, the software controlling the Gleeble 3800 simulator saves the test results in tabular form, in which it calculates the stress from the measured force in accordance with the engineering method:

\[\sigma_e = \frac{F_m}{S} \]

where:

\(\sigma_e \) – the value of stress from the measured force,
\(F_m \) – the value of the force from the measurement,
\(S \) – the current mean cross-section.
However, this approach does not take into account the influence of friction and the inhomogeneous distribution of the strain velocity and temperature field on the value of the yield stress. The inverse analysis method is used to determine the actual stress-strain curve. In order to determine the actual value of the yield stress, the method of initial inverse analysis uses a numerical simulation of the sample compression process. The sample deformation is divided into 100 time steps. At each time step, the value of yield stress is determined while converging the calculated force to the measured force. In order to take into account the inhomogeneous distribution of the strain rate and temperature in the sample, the formula is used:

\[
\sigma = a\sigma_0 \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_n} \right)^m \exp \left[\frac{Q_{\text{def}}}{R} \left(\frac{1}{T} - \frac{1}{T_n} \right) \right] \quad (2)
\]

where:
- \(a\) – correction factor taking into account the friction effect,
- \(\dot{\varepsilon}\) and \(T\) – strain rate and temperature for a given point in the sample,
- \(\dot{\varepsilon}_n\) and \(T_n\) – nominal values of strain rate and temperature (set for the test),
- \(Q_{\text{def}}\) and \(m\) – activation energy and strain velocity sensitivity factor.

For each plastometric test, the relationship “actual stress – strain” is determined in tabular form. In order to simulate the rail straightening process, the FORGE program requires a description of the rheology of the material in tabular form or a developed rheological model. The flow curve during cold deformation is most often described by the Hensel-Spittel model in the form:

\[
\sigma = A \cdot \exp \left(m_1 \cdot T \right) \cdot \dot{\varepsilon}^{m_2} \cdot \exp \left(m_4 \cdot \dot{\varepsilon} \right) \cdot \exp \left(m_5 \cdot \dot{\varepsilon}^{m_6} \right) \cdot \exp \left(m_7 \cdot \dot{\varepsilon} \right) \cdot \exp \left(m_8 \cdot \dot{\varepsilon}^{m_9} \right) \quad (3)
\]

wherein

\[
\varepsilon = \begin{cases}
\varepsilon & \text{if } \varepsilon < \varepsilon_{\text{soft}} \\
\varepsilon_{\text{soft}} & \text{for } \varepsilon \geq \varepsilon_{\text{soft}}
\end{cases}
\]

where:
- \(A, m_1, m_2, m_3, m_4, m_5, m_7, m_8, m_9\) – model coefficients,
- \(\varepsilon_{\text{soft}}\) – softening strain, above which the stress value remains constant.

Based on the preliminary numerical simulation of vertical straightening of the rail, a set of strain parameters occurring in the straightening process was determined. During the tests, the samples were deformed at 20-100°C at a strain rate of 0.01-10.0 s\(^{-1}\). Stress-strain curves were obtained once the samples were deformed. In the next stage, inverse analysis was used to determine the actual flow curve. The determination of the flow curve in a tabular form allowed for the development of a rheological model. Due to the shape of the obtained curves, an approach was applied in which the stress above strain \(\varepsilon_{\text{soft}}\) is a constant value. Such attitude allowed for a more precise fit of the flow curve model. Fig. 4 shows the adjustment of the flow curve model with the coefficients given in Tab. 1.

![Fig. 4. Comparison of flow curve determined using reverse analysis (line) to the curve calculated with the use of engineering method (symbol) for the strain temperature (a) 20°C and (b) 100°C after adjusting with the coefficients. The value of strain rate is given in the key](image)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(m_1)</th>
<th>(m_2)</th>
<th>(m_3)</th>
<th>(m_4)</th>
<th>(m_5)</th>
<th>(m_7)</th>
<th>(m_8)</th>
<th>(m_9)</th>
<th>(\varepsilon_{\text{soft}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2343.23</td>
<td>-1.399 (10^{-3})</td>
<td>0.2989</td>
<td>1.322 (10^{-2})</td>
<td>5.75 (10^{-4})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
</tr>
</tbody>
</table>

where:
- \(A, m_1, m_2, m_3, m_4, m_5, m_7, m_8, m_9\) – model coefficients,
- \(\varepsilon_{\text{soft}}\) – softening strain, above which the stress value remains constant.
2.3. Determination of the material’s yield strength

To determine the yield strength of the material during cooling, plastometric tests were performed, in which the samples were first annealed at 1000°C for 30 s, and then cooled at a rate of 1°C/s to a strain temperature in the range of 900-50°C with a strain rate of 0.01 s⁻¹. Fig. 5 shows the stress-strain curves. Then, the actual rheology of the material was determined using preliminary inverse analysis. The obtained curves are shown in Fig. 6. After filtering, the tabular data were entered into the Forge program.

![Flow curve](image1)

Fig. 5. Determined tension-strain curves with the use of engineering method for the strain rate of 0.01 s⁻¹ at a strain temperature given in the key

![Flow curve](image2)

Fig. 6. Comparison of the flow curve determined using reverse analysis (line) to the curve calculated with the use of engineering method (symbol) for the strain rate of 0.01 s⁻¹, the level of strain temperature is given in the key

2.4. Computer simulations of the rail straightening process

The input data for the straightening simulation in both vertical and horizontal straighteners was the state of residual stresses in the rail after cooling it from the rolling end temperature to the temperature enabling the straightening of the rails, i.e. a maximum of 60°C. For this purpose, a numerical simulation of rail cooling from 900°C to ambient temperature (20°C) was performed on the basis of plastometric tests. As a result of uneven cooling of the rail (thicker parts of the rail cool down more slowly), it bends first towards the foot and then towards the head. As a result, tensile stresses arise in the rail foot. The result of the numerical simulation of the rail cooling process is shown in Fig. 7. The material data determined in plastometric

![Distribution of residual stresses after cooling](image3)

Fig. 7. Distribution of residual stresses after cooling
tests and by calculations in the JMatPro program together with the constructed three-dimensional model of the rail strand and straightener rollers constituted the data for simulation in the commercial program Forge. The numerical simulations of the straightening process included the basic variant with the previously used rollers of both straighteners and three variants of the arrangement of new profiled rollers:

- variant 1 assumed the use of profiled rollers with different concavities on the R3 and R5 shafts of a vertical straightener and rollers on a horizontal straightener with the shape used so far. The schematic arrangement of the shafts in the vertical straightener is shown in Fig. 8, the shaped rollers were mounted in a traverse arrangement on the shafts R3 and R5, they influenced the bottom surface of the rail foot. The shaped roller used on the R5 shaft had an increased concavity by 66% compared to the roller mounted on the R3 shaft. The remaining foot rollers, i.e. those used on the R1 and R7 shafts, had a flat surface.

- variant 2 included the same installation of profiled rollers on a vertical straightener as in variant 1 and additionally the use of new rollers with a small flange and without a flange on a horizontal straightener. In this system, on the horizontal straightener, the standard introducing roller on the R1 shaft has been used so far, while on the R2 to R7 shafts, rollers with a small flange reduced by 5 mm compared to the currently used ones were used, while the rollers on the last two shafts, R8 and R9, were equipped with new shaped rollers in whose collar has been completely removed. The arrangement of the individual shafts of the horizontal straightener is shown in Fig. 9.

- variant 3 with the use of profiled rollers with a small concavity on all shafts of the vertical straightener located on the side of the rail foot, i.e. R1, R3, R5 and R7, and the use of rollers with a small flange and without a flange on the horizontal straightener. In this variant, the same foot rollers with a smaller concavity were used on the vertical straightener, i.e. the same as the R3 roller in the first variant of the described tests.

In the numerical simulation of straightening process, it was assumed that the rails before straightening had their residual stress state as determined in the numerical simulation of the cooling process. For the purposes of the straightening simulation, it was assumed that the rail before entering the straightener did not show any significant curvature on the modeled 6 meter section. In the straightening simulation, the rollers were treated as rigid tools - the simulation does not take into account their deformation. During straightening, small plastic deformations of the material occur \(\varepsilon = 0.1 \), it is simplified that the roller does not deform.

A mesh consisting of 138,000 nodes and 751,000 elements was used to simulate the straightening. The simulations were carried out on a 6 meter section of the rail, the deformed elements were filled with tetrahedral elements (a triangle at the base), and the non-deformed elements with surface elements (triangles). The mesh size was assumed to be 9 mm, and in the areas of contact of the straightening rolls, the density was increased to 5 mm. How many steps was the simulation performed in?

In the straightening simulation, the Treska friction model was used (friction coefficient \(\mu = 0.45 \); heat exchange coefficient with the environment \(h = 10,000 \text{ W/K·m}^2 \) and with the tool \(20,000 \text{ W/K·m}^2 \). The Coulomb friction model was used in the rolling simulation (coefficient of friction \(\mu = 0.25 \); heat exchange coefficient with the environment \(h = 10,000 \text{ W/K·m}^2 \) and
with the tool 20,000 W/K·m². The numerical simulation of the straightening the rail in the vertical straightener was performed in 2603 steps, and the simulation of straightening in the horizontal straightener was performed in 2795 steps.

The results of the simulations carried out were the calculated residual stresses in the individual stages of straightening, i.e. after the rail exited each roller of the vertical and horizontal straightener. To compare the changes in residual stresses in the longitudinal direction, a simulation stage was selected in which the rail was subjected to all straightening rollers simultaneously, and an additional simulation consisting in removing the load was performed for this state of deformation. Fig. 10 shows an example of a selected simulation stage, in which, after unloading, residual stresses were determined on the cross-section after

Fig. 10. Distribution of residual stresses in the longitudinal direction during straightening a), and after removing the load b), calculated for variant 3
each straightening roller. Fig. 11 shows the distribution of stress components in the vertical and horizontal directions for the cross-section for variant 3 after roller 9 of the horizontal straightener. When analysing the obtained stress distribution, it was found that compressive stresses arise in the rail head for the vertical direction. In the case of the foot, residual stresses were observed in the rolling direction, i.e. perpendicular to the cross-section; for variant 1, the calculated values are compressive, and in the remaining variants, tensile values were obtained.

![Fig. 11. Distribution of the stress tensor component for straightening simulation (variant 3) after roller 9 after removing the load in the Y-Y and Z-Z plane of the rail](image)

Tables 2 and 3 show the results of the values of residual stresses obtained in the numerical simulation on each roller of the vertical and horizontal straightener for 3 measuring points located on the lower surface of the foot – Fig. 12. They illustrate the influence of individual straightener rollers on the stress level; the largest increases of residual stresses in the rail foot are introduced on the R3 and R5 shaft of the vertical straightener. The straightening simulations allowed to determine the impact of changes in the pass design of straightener rollers on the obtained stress level, and at the same time confirmed the correctness of the assumptions made regarding the construction of the rollers.

![Fig. 12. Location of measuring points](image)

2.5. Residual stress measurement methodology

The basic document that describes the requirements for rails is the European standard EN 13674-1 [2]. It indicates the strain gauge method for assessing the level of stresses in rails as part of product qualification tests. Residual stresses in rails are measured in the centre of the bottom surface of the foot using the cutting method; it consists in sticking a strain gauge on the surface of the tested sample and cutting it near the attached strain gauge. The thickness of the cut out rail slice is 20 mm. As a result of cutting, strains occur in the longitudinal and transverse directions, related to residual stresses. Residual stresses are calculated on the basis of differences between the first and second set of measurement of released strains by multiplying

<table>
<thead>
<tr>
<th>Point in the rail</th>
<th>Cross-section behind the roller</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-41</td>
<td>46</td>
<td>550</td>
<td>20</td>
<td>650</td>
<td>125</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-92</td>
<td>14</td>
<td>-45</td>
<td>35</td>
<td>-20</td>
<td>25</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-84</td>
<td>-7</td>
<td>-88</td>
<td>41</td>
<td>-55</td>
<td>7</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point in the rail</th>
<th>Cross-section behind the roller</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>165</td>
<td>118</td>
<td>134</td>
<td>76</td>
<td>286</td>
<td>171</td>
<td>167</td>
<td>68</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>99</td>
<td>132</td>
<td>2</td>
<td>-2</td>
<td>79</td>
<td>-53</td>
<td>-246</td>
<td>-98</td>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>-104</td>
<td>-76</td>
<td>-98</td>
<td>-1</td>
<td>-198</td>
<td>21</td>
<td>-32</td>
<td>67</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
by the Young’s modulus constant. The maximum value of the calculated residual stresses must not exceed 250 MPa. The extension of the EN13674-1 standard requirements is the methodology described in the Technical Conditions of German Railway DBS 918 254-1 [3]. It assumes the measurement of residual stresses in 16 precisely defined locations on the perimeter of the rail in order to assess the symmetry of their distribution and to know their size around the perimeter. The results of the measurements are informative, except for measurements in the foot axis, where the value of residual stresses cannot exceed 250 MPa. In the conducted research, the hole drilling method was also used to determine the state of stress in a small area of impact of working surfaces of profiled rollers. It enables the determination of equivalent uniform principal stresses and their inclination angles with respect to the strain gauge axis, as well as the distribution of these stresses in the 1 mm deep subsurface layer. The measurement methodology is described in ASTM Standard E837-13a [22], and detailed requirements are included in Measurements Group Tech Note TN-503-4.

3. Results and discussion

The results of the numerical simulations were verified in real industrial conditions on the existing production line of a heavy section mill of ArcelorMittal Poland S.A. The experiments were carried out on 120 metres long 60E1 rails made of the R260 steel grade, which were subjected to straightening operations in a set of straighteners with different roller configuration. The studies were carried out in 3 tests, varied by the shape of the working surfaces of straightening rollers. Five rails were straightened in each test, from which a total of 45 samples with a length of 1 metre were taken for the measurement of residual stresses using the strain gauge method. Test sections were always marked in the same three places along the length of each rail, i.e. 4 metres from its end and beginning, and in the middle of the rail. For selected test sections, the distribution of residual stresses on the perimeter of the rail was analysed in 16 measurement locations and in the subsurface layer using hole drilling method. The adopted research plan included the following assumptions regarding the system of straightening rollers:

- the first test used a profiled roller with a smaller concavity on the R3 shaft and a roller with a greater concavity on the R5 shaft of a vertical straightener; the horizontal straightener was configured with the rollers used so far,
- the second test involved the use of rollers with a small flange and without a flange on a horizontal straightener and was carried out in two variants of the vertical straightener installation, i.e. in the first – with a roller with a smaller concavity on the R3 shaft and a roller with a greater concavity on the R5 shaft, and in the second variant rollers from shafts R3 and R5 were swapped,
- the third test also included two variants of one profiled roller installation, i.e. in the first one, one concave roller was used on the R3 shaft, and in the second, this roller was mounted on the R5 shaft; rollers with a small flange and without a flange were used on the horizontal straightener, as in the second test.

The same settings of straighteners and a constant straightening rate of 2.5 m/s were used during each rail straightening experiment, and the rate of rail introduction was 1.0 m/s. The rail temperature during the tests was in the range of 1-8°C. The material for the tests was R260 rail steel grade originating from three different heats, for which a control analysis of the basic elements was performed and the tests of mechanical properties were carried out; the structure of the steel was also checked. The results of these tests are shown in Tables 4 and 5 respectively; there was no significant difference between them, thus allowing the assumption that the material was homogeneous.

TABLE 4

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>941</td>
<td>579</td>
<td>13,4</td>
<td>av. 289</td>
<td>22</td>
<td>pearlite</td>
</tr>
<tr>
<td>Test 2</td>
<td>964</td>
<td>585</td>
<td>12,8</td>
<td>av. 280</td>
<td>21</td>
<td>pearlite</td>
</tr>
<tr>
<td>Test 3</td>
<td>973</td>
<td>603</td>
<td>13,8</td>
<td>av. 286</td>
<td>22</td>
<td>pearlite</td>
</tr>
</tbody>
</table>

TABLE 5

<table>
<thead>
<tr>
<th>R260 steel grade</th>
<th>Element content in weight [%]</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>Mn</td>
</tr>
<tr>
<td>Test 1</td>
<td>0.72</td>
<td>1.08</td>
</tr>
<tr>
<td>Test 2</td>
<td>0.74</td>
<td>1.07</td>
</tr>
<tr>
<td>Test 3</td>
<td>0.73</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Figs 13-15 show a graphical presentation of the results of average residual stresses calculated from all measurements taken in the rail foot, on both sides of the web in its neutral axis and in the head, obtained in individual rail straightening tests. Fig. 16 shows the distribution of residual stresses along the entire perimeter of the rails randomly selected from each straightening experiment in accordance with the methodology described in the standard [3], i.e. rail number A505 from the first experiment, rail number A303 determined from the first variant of the second test, and rail A404 selected from the third stage of the research (variant 1). The analysis of the stress distribution on the perimeter of the presented rails reveals their significant differences in the most important measurement points, i.e. the foot and head of the rail in their axis of symmetry and on both sides of the neck in its neutral axis. The A505 and A303 rails show the lowest values of residual stresses in the rail foot with a relatively high level in the rail head, while the A404 rail has a more favorable stress distribution at the main measuring points. The residual stresses for the described tests, recorded in the area from the bottom surface of the rail foot to the lower inclinations of the rail head,
are consistent in type and differ in the values of the results to a small extent. The greatest differences in the symmetry of the residual stress distribution with respect to the vertical axis of rail symmetry for the presented rails are observed on the side inclinations of the rail heads. In the A505 rail this difference amounts to a maximum of 99 MPa, for the A303 rail it was at a much lower level and amounted to 17 MPa, while in the A404 rail the difference in both measuring points was 38 MPa.

Fig. 13. Distribution of average residual stresses in the rail foot in individual tests

Fig. 14. Distribution of average residual stresses in the rail web in individual tests

Fig. 15. Distribution of average residual stresses in the rail head in individual tests

Measurements of equivalent uniform residual stresses were also carried out by drilling a hole in the axis of the foot of the rail A505 straightened in the first test, A303 straightened in the second test (variant 1) and A404 straightened in the third test (variant 1).

Fig. 16. Distribution of residual stresses [MPa] on the perimeter of rail A505 straightened in the first test, A303 straightened in the second test (variant 1) and A404 straightened in the third test (variant 1)
rail; results of the obtained strains (ε1, ε2, ε3) for the subsequent drilling steps are given in Table 6. The test section originated from straightening test 1. Fig. 17 shows the dependence of the released strains on the hole depth. Table 7 shows the determined components of the state of residual stresses of the tested rail, required by the ASTM E837-13a standard, where:

- **P** – uniform isotropic (equally biaxial) stress,
- **Q** – uniform 45° shear stress,
- **T** – uniform x-y shear stress,
- **σx**, **σy** – uniform normal stress in the direction of x and y,
- **τxy** – uniform shear stress in the x-y plane,
- **σmax** – maximum (more tensile) principal stress,
- **σmin** – minimum (more compressive) principal stress,
- **β** – clockwise angle from the x-axis to the maximum principal stress **σmax** direction.

Table 6

Measured released strains depending on the depth of the drilled hole

<table>
<thead>
<tr>
<th>Z [mm]</th>
<th>ε1 [µm/m]</th>
<th>ε2 [µm/m]</th>
<th>ε3 [µm/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>16</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>0.2</td>
<td>23</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>0.3</td>
<td>33</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>0.4</td>
<td>37</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>0.5</td>
<td>38</td>
<td>24</td>
<td>–1</td>
</tr>
<tr>
<td>0.6</td>
<td>40</td>
<td>22</td>
<td>–5</td>
</tr>
<tr>
<td>0.7</td>
<td>43</td>
<td>21</td>
<td>–10</td>
</tr>
<tr>
<td>0.8</td>
<td>44</td>
<td>19</td>
<td>–13</td>
</tr>
<tr>
<td>0.9</td>
<td>46</td>
<td>17</td>
<td>–17</td>
</tr>
<tr>
<td>1.0</td>
<td>46</td>
<td>16</td>
<td>–18</td>
</tr>
</tbody>
</table>

Fig. 17. Dependence of the released strains on the depth of the drilled hole – rail A505

In the hole drilling method, the released strains are measured around the drilled hole from a stress field with a radius of 3 to 4 times greater than **R0**, where **R0** – the radius of the drilled hole. For a drill with a diameter of 1.6 mm used for drilling the holes, the diameter of the hole measured with a microscope was 1.9 mm, so the strains were measured from the stress field with a diameter of about 6-8 mm. The determined components of equivalent uniform principal residual stresses are **σmax** = 15 MPa and **σmin** = –64 MPa, and the angle of inclination **β** of vector **σmax** corresponds to 31° and is directed toward the side of the rail with the roller table imprints. Compressive normal stresses **σz** = –47 MPa in the direction parallel to the axis of the rail have a sign opposite to the measured longitudinal residual stresses in the feet of the rails using the cutting method. This indicates that compressive stresses occur in the small area near the rail axis, while small longitudinal tensile stresses with an average value of 70 MPa recorded in the discussed straightening test number 1 (Fig. 13) dominate in the larger area.

Table 7

Residual stress components P, Q, T; normal stresses **σx**, **σy**; uniform shear **τxy**; principal stresses **σmax**, **σmin** and clockwise angle **β** from x-axis to the maximum principal stress direction **σmax**

<table>
<thead>
<tr>
<th>Rail number</th>
<th>P [MPa]</th>
<th>Q [MPa]</th>
<th>T [MPa]</th>
<th>σx [MPa]</th>
<th>σy [MPa]</th>
<th>τxy [MPa]</th>
<th>σmax [MPa]</th>
<th>σmin [MPa]</th>
<th>β [˚]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A505</td>
<td>–25</td>
<td>22</td>
<td>33</td>
<td>–47</td>
<td>–3</td>
<td>33</td>
<td>15</td>
<td>–64</td>
<td>31</td>
</tr>
</tbody>
</table>
and resulted in a favorable stress distribution on the perimeter of the rail, which is expressed by their low level (especially in variant 2) at all measurement points, i.e. in the foot, in the head and web of rail.

A significant decrease in the value of residual stresses measured in the rail foot in relation to the requirements of the standard [2] was observed for all the straightening tests carried out with the use of the new, innovative profiled roller. The lowest residual tensile stress was observed in test 2. Small concavities of the lower surface of the rail foot up to a maximum value of 0.2 mm, probably resulting from the use of double profiled rollers in a tandem arrangement in the vertical straightener, were observed. This phenomenon was not observed in the remaining tests. It should be emphasised that the highest recorded value of mean stresses from all the tests was 129 MPa (test 3, variant 1), which means a reduction of about 32% compared to the average values obtained on rails straightened with standard rollers.

Considering the stress distribution in all rail components, it should be acknowledged that the most favourable outcomes are the results of variant 2 of test 3, where the average level of residual stresses in the rail foot was 112 MPa, with a relatively low level of residual stresses in the rail head of 223 MPa and low values of compressive stresses in the rail web. The optimisation of residual stresses is a desired phenomenon from the point of view of the rail’s behaviour in the track. The reduced value of residual stresses in the rail inherited from production has a direct impact on the reduction of the total operational stresses of the rail in the track, and thus affects safety by inhibiting the development of cracks initiated by discontinuities or structural changes in the rail.

Railway rails subjected to straightening experiments passed the acceptance test procedure specified in standard [2] for compliance with the level of mechanical properties, chemical composition, straightness in the vertical and horizontal plane and the tolerance of cross-section parameters. All rails from the discussed tests were thoroughly checked for geometric correctness using legalised acceptance gauges and laser measuring devices.

In order to parametrically estimate the state of stresses in the rail after successive straightening experiments, the average stress was calculated, defined as the standardisation of the complex stress state in the rail to one averaged stress described by formula (4) in accordance with the methodology proposed in the dissertation [23].

\[
\sigma_M = \frac{\int S_s \sigma_L dS}{\int S_s dS} \text{ [MPa]}
\]

(4)

where:

\[\sigma_M \] — averaged stress,
\[\sigma_L \] — longitudinal stress,
\[S_s \] — orthogonal surface.

The theoretical cross-sectional surface of the 60E1 rail nominal amounting to 76.70 cm² was adopted for the calculations, the rail surface was divided into 16 measurement fields corresponding to the locations where the residual stresses were measured (Fig. 18) and the surface of each of these areas was calculated – Table 8. The determined values of averaged stress are shown in Table 9. The concentration of stress measurements up to 16 points on the perimeter and the associated division into smaller areas of the rail surface gives an accurate image of the complex state of residual stresses in the rail, which can be represented by calculated averaged stress. For the purposes of comparison, the averaged stress for the selected rail straightening test was 129 MPa (Fig. 18) and the surface of each of these areas was calculated – Table 8. The determined values of averaged stress are shown in Table 9. The concentration of stress measurements up to 16 points on the perimeter and the associated division into smaller areas of the rail surface gives an accurate image of the complex state of residual stresses in the rail, which can be represented by calculated averaged stress. For the purposes of comparison, the averaged stress for the selected rail straightening test was 129 MPa (Fig. 18). The concentration of stress measurements up to 16 points on the perimeter and the associated division into smaller areas of the rail surface gives an accurate image of the complex state of residual stresses in the rail, which can be represented by calculated averaged stress. For the purposes of comparison, the averaged stress for the selected rail straightening test was 129 MPa (Fig. 18).

![Fig. 18. Division of measurement areas in rail 60E1 for 16 measuring points for residual stresses on the rail perimeter, source [23]](image)

Table 8

<table>
<thead>
<tr>
<th>Area</th>
<th>Surface area [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>619.64</td>
</tr>
<tr>
<td>S2</td>
<td>464.71</td>
</tr>
<tr>
<td>S3</td>
<td>145.56</td>
</tr>
<tr>
<td>S4</td>
<td>551.97</td>
</tr>
<tr>
<td>S5</td>
<td>776.62</td>
</tr>
<tr>
<td>S6</td>
<td>210.7</td>
</tr>
<tr>
<td>S7</td>
<td>616.85</td>
</tr>
<tr>
<td>S8</td>
<td>604.04</td>
</tr>
<tr>
<td>S9</td>
<td>309.45</td>
</tr>
<tr>
<td>S10</td>
<td>604.04</td>
</tr>
<tr>
<td>S11</td>
<td>616.85</td>
</tr>
<tr>
<td>S12</td>
<td>210.71</td>
</tr>
<tr>
<td>S13</td>
<td>776.62</td>
</tr>
<tr>
<td>S14</td>
<td>551.97</td>
</tr>
<tr>
<td>S15</td>
<td>145.56</td>
</tr>
<tr>
<td>S16</td>
<td>464.71</td>
</tr>
</tbody>
</table>

The theoretical cross-sectional surface of the 60E1 rail nominal amounting to 76.70 cm² was adopted for the calculations, the rail surface was divided into 16 measurement fields corresponding to the locations where the residual stresses were measured (Fig. 18) and the surface of each of these areas was calculated – Table 8. The determined values of averaged stress are shown in Table 9. The concentration of stress measurements up to 16 points on the perimeter and the associated division into smaller areas of the rail surface gives an accurate image of the complex state of residual stresses in the rail, which can be represented by calculated averaged stress. For the purposes of comparison, the averaged stress for the selected rail straightening test was 129 MPa (Fig. 18). The concentration of stress measurements up to 16 points on the perimeter and the associated division into smaller areas of the rail surface gives an accurate image of the complex state of residual stresses in the rail, which can be represented by calculated averaged stress. For the purposes of comparison, the averaged stress for the selected rail straightening test was 129 MPa (Fig. 18).
The works on optimisation of residual stresses in rails presented in this article are part of an important and current research area related to the development of railway infrastructure and increasing its operational reliability and safety of railway transport. The state of stress in rails is a complex phenomenon, characterised by multiple conditions that affect different stages of rail production. First of all, it depends on the curvature of the rail before the straightening process and the bending settings used during it on individual shafts of straightening machines; the construction of the straightening rollers also has a significant influence. The state of residual stress inherited from all technological operations translates directly into the operational properties of the rails.

Numerical simulations, industrial experiments in a set of straighteners and laboratory tests contributed to the extension of knowledge in the field of the influence of the shape of straightener rollers on the value of residual stresses in the rails. The evaluation of the effects of each straightening experiment using re-calibrated rollers included the analysis of the applied stresses after straightening, their distribution on the rail cross-section, averaged stress and parameters of the cross-sectional and straightness tolerances in relation to the requirements of the standard as superior values.

The performed tests of residual stresses distribution in the rail foot by the hole drilling method in straightening tests show that in a small area near the rail axis there are slight compressive or low tensile residual stresses in the direction parallel to the rail axis; the level of these stresses is much lower in relation to the released stresses measured from the entire volume of the foot in the rail slice cutting test according to the EN13674-1 standard. It allows concluding that the use of profiled rollers changes the value of residual stresses in the area of their contact with the rail material. Therefore, it is correct to conclude that it is possible to control the state of stress in a targeted manner by modifying the calibration of straightener rollers.

Acknowledgements

This study was supported by the National Centre for Research and Development, Poland, under the research project entitled “Innovative and safe rails with a low level of residual stresses in the foot of the rail” – POIR.01.02.00-00-0167/16.

REFERENCES

https://alchetron.com/Hatfield-rail-crash
M. Pazdanowski, Residual stresses as a factor of railroad rails fatigue, Technical Transactions – Civil Engineering 4-B, 39-46 (2014).
S. Żak, PhD thesis, The way of controlling the state of residual stresses in railway rails by modifying the roll pass design of rolls and straightening rollers, Silesian University of Technology Poland, (2019).