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Abstract. An iterative neural network framework is proposed in this paper for the human-induced Ground Reaction Forces (GRF) replication
with an inertial electrodynamic mass actuator (APS 400). This is the first approach to the systematization of dynamic load tests on structures
on a purely objective, repeatable and pedestrian-independent basis. Therefore, an inversion-free offline algorithm based on Machine Learning
techniques has been applied for the first time on an electrodynamic shaker, without requiring its inverse model to tackle the inverse problem of
successful force reconstruction. The proposed approach aims to obtain the optimal drive signal to minimize the error between the experimental
shaker output and the reference force signal, measured with a pair of instrumented insoles (Loadsol©) for human bouncing at different frequencies
and amplitudes. The optimal performance, stability and convergence of the system are verified through experimental tests, achieving excellent
results in both time and frequency domain.
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1. INTRODUCTION
The effects of human induced forces over structures are increas-
ingly gaining importance as modern structures become lighter,
slenderer and with lower natural frequencies that are excited
by regular human activities, such as walking or running [1, 2].
Therefore, it becomes necessary to periodically assess the struc-
tures with serviceability tests. Nonetheless, the tendency of
pedestrians to modify their walking pattern when walking on
a vibrating surface, with the aim of maximizing their comfort,
causes a great lack of repeatability in the transits, even when
conducted in a controlled environment, or when a timing de-
vice is used to perform repeated experiments [3]. This issue
considerably hampers the execution of these tests, preventing a
direct comparison between structures or the evaluation of the
installation of vibration mitigation devices.

This paper arises as a response to this issue, establish-
ing a preliminary approach to the systematization of dynamic
load tests on structures on a purely objective, repeatable and
pedestrian-independent basis. To this end, an electrodynamic
shaker [4] has been used to recreate the Ground Reaction Forces
(GRFs) produced by humans, whose temporal signals were
previously acquired with a pair of instrumented insoles. This
shaker consists of an inertial actuator, which works by gener-
ating inertial forces on the structure on which it is placed. The
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replication of the dynamic component of the GRF is precisely
the interest of this work. The inertial shaker employed rep-
resents an inherently nonlinear electro-mechanical system [5]
whose dynamics are modeled with a non-invertible model [6].
This causes the inverse problem of obtaining the shaker drive
target signal (the one which makes the actuator behaves as de-
sired) to be not straightforward.

Solutions to similar problems may be found in the litera-
ture. First of all, adaptive control techniques have been exten-
sively applied in earthquake simulations by means of shaking
tables [7–10]. These adaptive techniques have also been ex-
plored in the field of humanoid robots [11–14]. Another clas-
sical alternative consists of using an iterative learning control
system (ILC) [15, 16]. The application of this control method
to shaking tables has been explored in [17–19]. Regarding the
model inversion, the possibilities present in the literature in-
clude classical inversion [20, 21], stable inversion [22], adjoint
systems [23], robust ILC designs [24] or some modeling-free
inversion-based approaches [25]. Recently, a new trend has
emerged, in which data-driven techniques are employed as an
alternative to the classical control methods. This represents the
possibility of avoiding a complex model inversion by means of
Machine Learning (ML) algorithms [26–28, 28, 29].

The approach adopted in this paper consists of the develop-
ment of an iterative ML data-driven framework. Specifically,
an Artificial Neural Network (ANN) is used as a regressor to
generate off-line the optimal drive signal that makes the shaker
follow a specific reference force signal. As the shaker is an in-
ertial mechanical system, in order to output the voltage signal
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at each temporal instant, the ANN is fed with data relative to
both the future reference force and the conditions of the mov-
ing mass at previous instants. Iteratively, the simulated force
signal is compared to the reference, and the most optimal points
(those whose error is below a previously defined threshold) are
selected as training data for the following iteration. This way,
the ANN weights are updated at each iteration, allowing the
drive signal to converge to an optimal value, as demonstrated
via experimentation. Since the network is only trained with data
within the optimal operating range of the shaker, its output will
be constrained within this range, ensuring the stable operation
of the system.

The main contributions of the manuscript are described as
follows: first, an inversion-free, offline control methodology
based on ML has been applied to an electrodynamic shaker for
the first time, achieving very convincing results in both time
and frequency domain. Second, the work presented in this paper
supposes a first step in the systematization of dynamic load tests
on structures on a purely objective, repeatable and pedestrian-
independent basis.

The rest of the manuscript has been organised as follows: In
Section 2, the material resources employed in the experimen-
tal work of this paper are detailed. In Section 3, the proposed
methodology is exhaustively described. The experimental val-
idation of this framework is reported in Section 4. Finally, the
discussion and conclusions, together with suggestions for fu-
ture work, are set out in Section 5.

2. MATERIALS AND METHODS
The material resources employed in the realization of this pa-
per are detailed below. These are the instrumented insoles used
for the acquisition of the reference GRFs (Section 2.1) and the
electrodynamic shaker used to replicate the temporal force sig-
nals (Section 2.2).

2.1. Wireless instrumented insoles
The experimental GRF data acquisition for subsequent repli-
cation was performed using a pair of wireless instrumented
insoles recently developed by Novel Gmbh (Munich, Ger-
many) [30, 31]. This Loadsol© insole sensor (Fig. 1) was de-
signed to estimate the GRF by directly measuring the to-
tal normal force at the plantar surface of the foot and the
shoe. Loadsol© uses a highly ergonomic and linearly sensitive
capacitor-based sensor that spans the entire plantar surface of
the foot. This means that force is detected perpendicular to the
foot, irrespective of the location at which it is applied. The sen-
sor is attached by a thin flexible band to a small electronics

Fig. 1. Wireless instrumented insoles

unit clipped to the top or lateral side of the shoe. Force data are
recorded at 100 Hz and transmitted in real-time wirelessly to a
smart device via a Bluetooth connection for storage, review and
app-based analysis. The accuracy and precision of this force
measurement device have been assessed in [32, 33].

2.2. Electrodynamic shaker
The inertial mass electrodynamic shaker APS 400 ELECTRO-
SEIS [4] (Fig. 2) was employed for GRF replication. The main
application of these devices consists of the induction of inertial
forces in structures when undertaking dynamic tests. The actua-
tor consists of a mobile reaction mass attached to a current coil
that moves in a magnetic field created by an array of perma-
nent magnets. The moving mass is connected to the frame by a
suspension system, modeled by a spring stiffness and a viscous
damping. It is fed by an electrical signal that varies in voltage
between ±5 V; this signal is usually either a noise signal or a
sinusoidal one.

Fig. 2. Inertial electrodynamic mass actuator

The dynamics of this type of inertial mass actuators can be
described according to the third order transfer function (be-
tween generated forces and voltage input) given in equation (1),
where KA corresponds to the transducer constant (in N/A), ωA is
the natural frequency associated with the suspended moving
mass system, ξA represents the damping coefficient and the pole
at ε accounts for the low-pass filtering property of these instru-
ments, absorbing frequencies higher than the cut-off frequency
ε (in rad/s) [6].

GA(s) =
(

KAs2

s2 +2ξAωAs+ω2
A

)
·
(

1
s+ ε

)
. (1)

The process of obtaining the model parameters consists of
applying a curve-fitting algorithm (Matlab lsqnonlin function)
so that the experimental and analytical Frequency Response
Function (FRF) presents the minimum possible error. The ex-
perimental FRF was calculated by applying a 60000-point
Blackman window over the experimental data obtained by ap-
plying white noise as the input voltage signal to the shaker in
the range of ±5 V, with a test duration of 10 minutes and a sam-
pling frequency of 1000 Hz. The experimental acceleration was
measured with piezoelectric accelerometers (IEPE) from MMF
(Metra Mess und Frequenztechnik). The manual gain position
of the amplifier corresponds to 25% of the maximum gain.
The values determined for each parameter are (KA = 4113 N/V,
ωA = 15.02 rad/s (2.39 Hz), ξA = 0.23 and ε = 62.08 rad/s
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(9.89 Hz). Figure 3 shows the comparison between the exper-
imental and the modeled FRF. Note the small fluctuation in
the experimental FRF magnitude at frequencies near 0 Hz due
to the measurement range of the accelerometers used, which
starts at 0.16 Hz.
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Fig. 3. Transfer function of the actuator GA(s):
magnitude in dB referenced to 1 N/V

3. PROPOSED FRAMEWORK
This section provides a detailed description of the proposed
methodology, based on an iterative ANN framework, for the
replication of a reference GRF. Figure 4 illustrates the work-

flow of this methodology, where a reference time force signal
is entered as input, and a voltage drive signal is returned as
output. Subsequently, this optimum drive signal is fed to the
inertial shaker to obtain the corresponding experimental GRF.

In this workflow, an external loop and an internal loop can
be differentiated. First, the ANN training is performed with a
backpropagation algorithm in the outer loop. Initially, the net-
work is trained with random values and ramps between the
maximum and minimum voltage (±4 V), generating a volt-
age data buffer that will be updated at each iteration in or-
der to train the network with increasingly specific data (with
a maximum buffer size of L = 50000 samples to avoid exces-
sive training time when accumulating several iterations). The
structure of the ANN input is defined as follows: the first m en-
tries (X1:m) provide the ANN with information about the future
actions that will be demanded and the remaining inputs pro-
vide the ANN with information about the shaker status in the
previous instants, both in voltage (Xm+1:2m) and force gener-
ated (X2m+1:3m), where m is a tunable parameter of the algo-
rithm. The processing treatment of the voltage time signal for
acquiring the (Xtrain,Ytrain) pairs is depicted in Fig. 6 and in-
volves: (1) the simulation of the shaker direct model to obtain
the simulated force signal; (2) the generation (from i = m+ 1
to i = L−m) of a matrix of output data (Vi) associated to the
corresponding matrix of input data (Fi:i+m, Vi−m:i−1, Fi−m:i−1).

Then, the process consists of iteratively feeding an ANN with
data relative to both the reference signal at future points and the
previous instants of the inertial shaker (voltage and simulated
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Fig. 4. Iterative Neural Network framework proposed for GRF replication
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force). This is accomplished inside the inner loop from i = 0
to i = N, N being the number of points of the reference GRF
signal. The selected architecture for the ANN is a MultiLayer
Perceptron (MLP) [34] with a hidden layer. This ANN oper-
ates as a regressor where, at each call of the inner loop, the
voltage value of that specific point (Vi) is retrieved. The inputs
of this network are defined as: the reference force between in-
stants i and i+m and the previous voltage, and the simulated
force between instants i−m and i− 1, where m has been set
at 500 after several tests. Figure 5 displays the architecture of
the ANN implemented (with m = 5 for legibility purposes), in-
dicating which information corresponds to each ANN input. In
this loop, the simulated force is calculated by simulation of the
shaker direct model (equation (1)) after applying the voltage
between 1 and i for that iteration.

Input Layer

(3m neurons)

Hidden Layer
(m neurons)

Output Layer
(1 neuron)

Voltagei

Reference Force (i:i+m)

Voltage (i-m:i-1)

Simulated Force (i-m:i-1)

Fig. 5. Implemented ANN structure

Once the entire drive signal (from 1 to N) has been ob-
tained, the corresponding simulated force signal is compared

with the reference GRF, the framework variables are updated
(minimum error, optimum drive signal and number of iterations
without improvement), and the stop condition is evaluated, this
being the comparison of the maximum number of iterations
without improvement regarding the established limit (5 itera-
tions). The Root Mean Square Error (RMSE) (Equation (2))
between the two force signals is considered as the performance
criterion.

RMSE =

√√√√√ N

∑
i=1

(Frefi −Fsimi)
2

N
. (2)

If the stop conditions are not met, we then proceed to the
refinement of the ANN training data by selecting the optimal
points of that iteration (those in which the error committed is
below a threshold set at ±10 N).These points are added to the
training data buffer, and the network is trained again with the
new data prior to entering the next iteration. The role of this
buffer is to limit the number of training data so that the train-
ing time does not drastically rise as the number of iterations
increases. In this way, a maximum buffer size (L = X) is set
and, once it is filled, the new data entering the buffer at each
iteration replaces the oldest data.

Finally, when stop conditions are met, the optimum drive sig-
nal is provided by the algorithm. This signal is then fed to the
shaker in order to obtain the experimental replication of the ref-
erence GRF.

4. EXPERIMENTAL WORK
The experimental work carried out in the development of this
paper is described in this section. First, the process of acquiring
the experimental GRFs is described (Section 4.1), then the sim-
ulation results provided by the developed algorithm are shown
(Section 4.2), and finally, the experimental GRFs replicated
with the shaker are displayed (Section 4.3). Figure 7 shows the
experimental framework carried out in the paper.

Fig. 6. ANN training procedure
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4.1. GRF data acquisition
The black lines in Fig. 8 show the 8 different experimental
GRFs acquired with the Loadsol© insoles. In order to facili-
tate the replication of these signals with the shaker, and bearing
in mind that the shaker can only apply forces in a single loca-
tion, only bouncing movements were captured at different fre-
quencies (ranging from 1 to 2.5 Hz) and different amplitudes
(meaning the force that the subject exerted while bouncing).
All measurements were taken for a duration of 15 seconds by a
male, 192 cm tall and weighing 77 kg.

The recorded signals were imported into MATLAB© and
preprocessed by summing the signals from both feet and resam-
pling the resulting force signal to 1000 Hz. Also, since the inter-
est of the work resides in the dynamics of the structure on which
the force is applied, the static part of the GRFs is removed by
subtracting an offset and centering the signals at 0 N. This al-
lows the shaker to accurately reproduce the dynamic loads of
the signals.

4.2. Simulation work
The proposed framework was implemented through a
MATLAB© R2020a script, where user interface consists of
defining the required algorithm parameters (ANN hyperparam-
eters, number of points for each input (m), training voltage
buffer length (L), error tolerance, number of maximum itera-
tions and maximum voltage) and inputting both the shaker dy-
namics model and the file (.txt) with the reference force to be
replicated directly extracted from the Loadsol© app. The pa-
rameters used for the execution are shown in Table 1, including
both the ANN hyperparameters and the algorithm parameters.
The maximum voltage value is determined by computing the
shaker moving mass displacement, integrating twice the simu-
lated acceleration signal obtained by simulating the model with
the drive signal as input. Hence, a maximum voltage is cho-
sen that makes the moving mass move within the limited dis-
placement range of the shaker (±8 cm), avoiding the collision
of the moving mass with the end of the stroke limits. Figure 9
shows the expected displacement for each of the experiments
compared to the experimental displacements (computed by in-
tegrating the measured acceleration twice).

Table 2 shows the results of the algorithm execution, where
the RMSE, the OPR (Optimal Points Ratio) (meaning the per-
centage of points of the simulated signal within the error tol-
erance of ±10 N), and the iteration number in which the most
optimal solution was obtained are shown for each experiment.

Table 1
Implemented algorithm parameters

ANN hyperparameters Value

Number of layers 1
Neurons per layer 500
Training function Resilient Backpropagation

Maximum training epochs 10000
Training maximum fails 500

Training ratio 85%
Test ratio 15%

Activation function Log-sigmoid
Perform function MSE

Algorithm parameters Value

Number of points for each input (m) 500
Training data buffer length (k) 50000

Error tolerance [N] 10
Number of maximum iterations 7

Assessment criteria RMSE
Maximum voltage [V] 3.7

Table 2
Simulation results

Exp RMSE OPR Iter. RMSE slope OPR slope

Exp 1 51.06 21.98 1.90 –41.11 –6.48
Exp 2 82.07 14.78 4.20 –40.96 1.52
Exp 3 19.36 58.72 13.60 –35.56 3.62
Exp 4 118.20 5.21 3.80 –92.55 –0.39
Exp 5 34.14 24.24 1.50 –13.45 3.42
Exp 6 38.33 35.40 21.00 –25.52 1.54
Exp 7 38.80 21.27 5.50 –29.05 2.49
Exp 8 44.14 26.34 9.40 –32.44 2.53

Mean 53.26 25.99 7.61 –38.83 1.03

In order to ensure the repeatability of the results, and consid-
ering the heuristic nature of the training algorithm selected for
the ANN, the algorithm was executed 5 times for each experi-
ment, showing the average values in the table. An average value
of 62.72 N of RMSE, 25.99% of optimal points, and 7.61 it-
erations are achieved. In addition, aiming to assess the con-
vergence ratio of the iterative framework, the table shows the

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 3, p. e144615, 2023 5



C. Peláez-Rodríguez, Á. Magdaleno, S. Salcedo-Sanz, and A. Lorenzana

evolution of the RMSE and the OPR throughout the iterations,
observing an average improvement of -38.83 N and 1.03% per
iteration, respectively. (Note that the negative evolution in the
OPR metric is explained by the fact that the assessment crite-
ria in the iterative algorithm is defined as the RMSE, so it is
possible that an iteration could present a better RMSE than the
previous one, but a worse OPR).

Figure 8 depicts the simulated GRFs compared to the ref-
erences, showing the accurate prediction yielded in all the ex-
periments. It is possible to notice how experiments 2 and 4,
which present RMSE values very superior to the rest of the
experiments, show the least satisfactory results when compar-
ing the time signals, particularly for Exp 4. This is due to the
fact that the reference force signals exceed the working limits
of ±400 N of the electrodynamic shaker in both experiments.
Therefore, the algorithm tries to reach the maximum possible
force without the shaker moving mass impacting the end-of-
stroke limits.
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Fig. 8. Simulated GRFs (red) compared to the reference force signals
(black)

4.3. Experimental results
Once the drive signals have been optimized for each of the ex-
periments, they are fed to the inertial shaker and the experi-
mental output force is calculated by measuring the acceleration
of the shaker moving mass with a piezoelectric accelerometer

and multiplying it by the value of this moving mass (31.2 kg).
Since the shaker direct model is highly reliable (Fig. 3), the er-
ror between the experimental and simulated GRFs is minimal,
exhibiting an average correlation coefficient of 0.96 (Table 3).
Figure 9 displays a comparison between the expected displace-
ment of the shaker moving mass and the experimental displace-
ment, both computed by integrating twice the simulated and
experimental acceleration signals. This demonstrates that both
time signals are very similar and that, during the GRF replica-
tion, the shaker never reaches its end-of-stroke limits.

Table 3
Correlation coefficients between experimental and simulated GRFs

Exp c Exp c

Exp 1 0.95 Exp 5 0.97
Exp 2 0.98 Exp 6 0.98
Exp 3 0.95 Exp 7 0.95
Exp 4 0.94 Exp 8 0.99

Mean 0.96
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Fig. 9. Integrated displacement of the shaker moving mass (green)
compared to the expected displacement computed by simulation (red)

Furthermore, Fig. 10 shows the experimental GRFs perfor-
med with the electrodynamic shaker compared to both the sim-
ulated and reference GRFs. It can be seen how the replication
is extremely accurate for all the experiments, except for Exp 1,
which can be explained by observing the FRF of the shaker
in Fig. 3: there, it is found that the amplitude of the system at
low frequencies is much lower than near the natural frequency
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(2.39 Hz), which reduces the ability to replicate forces at very
low frequencies. In addition, this effect is intensified when per-
forming the bouncing with low amplitudes, resulting in a ref-
erence signal that is far away from a sinusoidal signal, caus-
ing the shaker to struggle when replicating high forces values
starting from values close to zero, since it does not get enough
inertia.
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Fig. 10. Experimental GRFs performed with the inertial shaker
(green) compared with the simulated GRFs (red) and with

the reference force signals (black)

The experimental GRFs are also compared to the reference
signals (the ones measured with the insoles) in the frequency
domain in Fig. 11. Here, it can be appreciated how the fre-
quency content of both signals is similar, despite certain differ-
ences in the amplitudes. Small errors in the time domain signal
replication are translated into the frequency domain by slight
differences in amplitudes. This means that when the GRFs are
reproduced with the shaker on a structure, the same frequencies
are excited as if the forces were applied by the human subject.

5. CONCLUSIONS
An ML-based framework for Ground Reaction Forces (GRFs)
replication using an electrodynamic shaker has been proposed
and successfully implemented in this paper. Its performance
was assessed through the replication of 8 temporal signals ac-
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Fig. 11. Frequency domain comparison: Reference human signals
(black) and reproduced with the shaker (red)

quired via a pair of instrumented insoles during bouncing at
different frequencies and amplitudes. The methodology accu-
rate performance has been accounted both in the time and fre-
quency domain, achieving remarkable results of 53.26 N of av-
erage RMSE, an average percentage of 25.99% points of the
experimental signal within the error threshold of ±10 N, and
proving a very similar frequency content between the reference
GRF acquired with the insoles and the experimental GRF per-
formed with the shaker. This means that when introducing these
forces as excitation in a structure, a similar response will be
produced, which is the final objective of this paper.

The approach adopted in this paper contributes to provide an
efficient alternative to classical control techniques for inverse
problems. It provides an inversion-free solution and ensures the
stability of the system, as long as the direct actuator model is
stable, since the drive signal output from the neural network
will always be within the voltage limits at which the shaker
operates properly.

Furthermore, the proposed framework is a preliminary ap-
proach to the systematization of dynamic load tests on struc-
tures on a purely objective, repeatable and pedestrian-indepen-
dent basis, leading to the possibility of performing serviceabil-
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ity tests without requiring skilled people. Future lines of work
include: (1) the study of human-structure interaction phenom-
ena from a more experimental approach, making it possible to
observe and learn from the differences between the structure re-
sponse when excited by the shaker and by a pedestrian; (2) en-
dowing the electrodynamic shaker with movement along the
structure will allow us to reproduce not only stationary human
activities, but also other movements involving locomotion.
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