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Abstract. The article proposes an adaptive algorithm that generates all object signals, including those for which measurements are not performed
due to the difficulties associated with online measurements. The algorithm is modeled on the idea of the Kalman filter using its equation; however,
the selection of gains is optimized differently, i.e. the constant values depend on the adopted ranges of adaptation errors. Moreover, the knowledge
of the statistics of all noise signals is not imposed and there is no linearity constraint. This approach allowed us to reduce the complexity of
calculations. This algorithm can be used in real-time systems to generate signals of objects described by non-linear differential equations and
it is universal, which allows it to be used for various objects. In the conducted research, on the example of a biochemically contaminated river,
only easily measurable signals were used to generate the object signals, and in addition, in the case of the absence of some measurements, the
functioning of the algorithm did not destabilize.
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1. INTRODUCTION
Issues related to ecology and production processes with the use
of chemical processes play a significant role in the development
of society in the world. It is related to the support of monitor-
ing and control by means of real-time IT systems. In particular,
it covers, among others, the monitoring of a polluted river or
a continuous stirred-tank reactor (CSTR) [1].

The issues of online monitoring for polluted rivers are still
present to solve as the development of agriculture, industry and
cities has resulted in the deterioration of water resources of
rivers and reservoirs in terms of their quality and quantity [2–4].
The purpose of monitoring water quality in rivers is to reduce
the risk of pollution and ensure appropriate economic policies
that take into account water protection [5]. The approaches to
them vary, among others, there is the one which involves using
a mobile measuring station [6]. The authors assure that this ap-
proach enables us to identify various situations of small and av-
erage river pollution. Another type is proposed in [7]. The adap-
tive algorithm of sampling is applied in order to improve the en-
ergetic efficiency of the automatic monitoring system with the
simultaneous assurance of the precision of sampled data. As
a measurement, there were used data of dissolved oxygen (DO)
and water turbidity. The use of chemical sensors in the online
monitoring of water quality is presented in [8]. It is indicated
that systems based on chemical detection or a combination of
them with other methods lead to the best results. The authors
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claim that the accuracy of monitoring certain water pollutants
in real-time monitoring systems is best when using molecularly
imprinted polymers.

Quite often in real-time monitoring systems, it is not pos-
sible to measure signals online. For a biochemically polluted
river, such a signal is the biochemical oxygen demand indicator
(BOD). The determination of BOD is usually carried out using
laboratory service. Some studies use a method based on biosen-
sors and correlation calculations to obtain representative infor-
mation on this indicator [9, 10]. Another way is to use a modi-
fied observer by introducing additional coupling (for both adap-
tive and non-adaptive law) which facilitates a stable operation
of the object [11].

In [12] the authors propose the use of optical sensors to es-
timate the BOD value, which allows for quick measurements
for the water quality monitoring system, but the final result
is obtained not directly but with a slight delay and a certain
correlation coefficient. Machine learning methods, time series,
statistical models, and environmental decision support systems
are used to address monitoring issues in ecological systems to
make water management more objective, dependable, and effi-
cient [12–16]. Monitoring systems can also be targeted to meet
the needs of different end-users, e.g. agriculture. The use of an
Android-based monitoring system is presented in [17]. The pol-
lution information obtained in this way is used by farmers.

In addition to the difficulties associated with estimating BOD
for a river, there is also the impact of sudden weather anomalies,
which can imply various sources of pollution with negative im-
pacts on aquatic ecosystems [18]. Difficult tasks related to the
influence of randomness, which are characterized by paramet-
ric uncertainty and chaotic responses to certain specified pa-
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rameter values in addition to ecosystems, include networks of
permanent magnet synchronous motor systems [19]. The use of
monitoring systems facilitates the immediate detection of un-
expected changes in pollution, enabling us to take appropriate
decision-making steps.

2. MATHEMATICAL DESCRIPTION OF THE OBJECT
Depending on the purpose of the water, its quality is determined
by industry standards. In a standard analysis of water quality,
indicators characterizing the state of water pollution are used.
The relevant legal regulations for determining water quality use
a description in the form of water class based on the values
of the indicators used. One such indicator is BOD5, the value
of which for water taken for consumption purposes should not
exceed 4 mg O2/l [20]. The article assumes that the state of river
pollution determines the appearance of non-zero values of the
BOD indicator.

A general mathematical description of a biochemically pol-
luted river takes into account the phenomena of advection-
diffusion and self-purification [21–23]. This is captured by the
Gauss-Ostrogradsky theorem given by the equation:

∂x
∂ t

+divq−Ax+δ = 0, (1)

in which: x represents in general the concentrations of various
substances in the water (DO, BOD, chemical oxygen demand
(COD) and other substances), q is the mass flux, δ is the internal
source density, which determines the intensity of generation or
decay of the transported medium, while div is the divergence
operator.

In equation (1), the advective-diffusive flux q, when consid-
ering only the direction of the river flow, will cause the equation
to take the form:

∂x
∂ t

+ v
∂x
∂ z1
−D

∂ 2x
∂ z2

1
−Ax+δ = 0. (2)

Such simplifications involve the elimination of components
from the model that do not significantly affect the accuracy of
the results obtained. This concerns simplifications related to ad-
vection in directions other than in accordance with the direction
of the river axis (z1). Therefore, the description of advection in
the plane perpendicular to the river axis can be omitted in the
equations, as it does not cause a significant change in the con-
centration distribution. In the case of a river, the highest velocity
of pollutant movement (v) occurs along its length (l), and move-
ment in the other directions can be considered insignificant due
to the much smaller object dimension in these directions rela-
tive to the river length.

Equation (2) describing the advection-diffusion transport of
substances in the river can be simplified by omitting the contri-
bution of diffusion to the distribution of pollutants. The condi-
tion, however, is a sufficiently high stream velocity. Elimination
of the segment representing the diffusion phenomenon from the
mathematical model considerably simplifies the complexity of

numerical calculations. For further considerations, a conven-
tional division of the river into sections with known flow ve-
locity in that section is assumed, as presented in Fig. 1.

Fig. 1. Contractual division of the river into sections (vi – speed
ofmovement of pollutants in the river section Li)

The lengths of the different river sections can be normal-

ized by assuming that Lzi ∈ [0, 1], where Lzi =
Dli
Li

normal-

ized length of the i-th segment (i = 1,2,3, . . .), where: Dli is the
length in this river section from 0 to Li [km], Li – the length of
this river section.

After dividing the river into sections and considering the
above assumptions, the equation of the mathematical model for
the i-th section of the polluted river can be expressed by a par-
tial differential equation of the form:

∂xi

∂ t
(Lzi, t)+ v(Lzit)

∂xi

∂Lzi
(Lzi, t)

= A(Lzi, t)xi (Lzi, t)+B(Lzi)wi(t) (3)

with boundary conditions (IC – initial condition, BC – bound-
ary condition):

IC: xi (Lzi, t0) = xi0 (Lzi) , i = 1,2,3 . . . ,

BC: xi(0, t) = Mi−1xi−1(1, t)+ vbi(t), M0 = 0,

where: wi(t) – system disturbance vector in i-th section in
time t, Mi – matrix taking into account the concentration and
flow in the previous section and the current lateral inflow, vbi –
boundary disturbance in the i-th section.

Maintaining the accuracy of the description of phenomena
described by differential equations with distributed parameters
equation (3), an appropriate interpretation is made in order to
obtain a description by differential equations with lumped pa-
rameters. This interpretation allows us to consider the model
described by hyperbolic partial differential equations with the
help of a set of easier-to-solve ordinary differential equations.
The solution thus obtained is then used to construct a solution
for the model with distributed parameters.

The idea of this method is to observe the distribution of pol-
lutants in the river along the so-called characteristics (ch) in the
spatial-temporal domain. These characteristics will be the lines
determined by the known flow velocity as illustrated in Fig. 2,
where one of such characteristics is shown (red color) taking
into account pollution inflows distributed along the river length
(influence of interference signals). The presented approach fa-
cilitates the observation of pollutant concentrations in the con-
sidered domain (time, length).
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Fig. 2. Characteristics for partial differential equations

In Fig. 2, equal river current velocities are assumed in the
color-coded areas. This approach is based on the interpretation
of the description of the pollutant concentration distribution in
the river observed for a freely moving volume of water. As a re-
sult of this interpretation, for flow velocity vi in a river section
the distribution of pollutants depends only on time, so the char-
acteristics for the i-th river section are determined by the rela-
tion:

d
dt

li(t) = vi(li(t)) (4)

whose limit points satisfy the condition:

t0,i+1∫
t0,i

vi (li(t))dt + l0i = 1 (5)

for l0,i ∈ [li, li+1].
In this way, a set of characteristics covering the entire solu-

tion domain is obtained, and the equation for each characteristic
takes the form:

d
dt

x(t) = Ax(t)+Bw(t), (6)

where: x – state vector x = col[x1, x2], A =

[
k1 0
k2 k3

]
– coeffi-

cient matrix ki, i = 1,2,3, B – interaction matrix of interfering
signals, w – system disturbance vector [w1, w2].

The coordinates of the vector x represent respectively: x1 –
concentration of organic pollutants expressed as BOD, with an
initial condition x1(0) [mg/l], x2 – the dissolved oxygen con-
centration deficit DO which is the difference x2 = x2S − x2N
between the dissolved oxygen concentration x2S and the oxy-
gen content of the water at a saturation state x2N with an initial
condition x2(0) [mg/l].

The coefficients k1, k2 and k3 in equation (6) describe the dy-
namics of the natural self-purification process of the river and
depend primarily on temperature, in particular they mean: k1
– coefficient of the rate of reaction of BOD [1/day], k2 – co-
efficient of the influence of BOD on DO [1/day], k3 – coeffi-
cient of the rate of change of DO [1/day]. In equation (6) the

coordinates of the disturbance vector represent: w1 – the inten-
sity of pollutant inflow [mg/l/day], w2 – the intensity of oxygen
uptake/supply from/to the water [mg/l/day].The values of co-
efficients k1, k2 and k3 depend mainly on temperature, which
implies also a time dependence. The above assumptions make
equation (6) a nonlinear ordinary differential equation, which
will be used in further considerations.

For the purposes of online monitoring, such measurements
are selected as can be performed directly and will not cause de-
lays in obtaining them. For the issues under consideration, such
a signal is the second coordinate of the vector x, i.e. DO – x2(t).
Therefore, the general notation of the measurement equation
takes the form:

yi = Cxi + vpi, (7)

where: C = [0 1] – measurement matrix, vp – measurement dis-
turbance.

It should be noted that it is treated that both the measurement
and the x-signals are subject to a disturbance with a Gaussian
distribution [24]. It is further assumed that the measurements
may be infrequent or even random.

3. CONCEPTION AND IMPLEMENTATION
OF THE LOOK-UP ALGORITHM

The idea of the presented adaptive look-up zonal algorithm is
based on the structure of the Kalman filter, which takes the
form:

ˆ̇xi = Ax̂i +Ki[yi−Cx̂i]. (8)

The proposed algorithm resigns from Kalman’s optimal se-
lection of gain and does not impose the necessity to know the
statistics of forcing signals. It should be noted that the deter-
mination of the gain Ki in equation (8) is performed in a dif-
ferent way, i.e. an incremental method is used with fixed val-
ues of corrections depending on the magnitude of the adapta-
tion error (see Fig. 3). The algorithm is characterized by lower
computational complexity and the lack of limitations related to
linearity and statistical knowledge of signals and acquires uni-
versal features. In the proposed algorithm, it has been assumed

Fig. 3. Schematic of the look-up algorithm estimation idea
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that the modification of the gain coefficient is performed after
each measurement on the basis of the continuously determined
adaptation error εi defined as the difference between the current
measurement yi and the corresponding coordinate of the gener-
ated estimation vector x̂i. The adaptation error is defined by the
relation:

εi = yi−Cx̂i . (9)

The current value of the gain will be determined at each mea-
surement step according to the rule defined by the expression:

Ki+1 = Ki +∆K j, (10)

where: Ki+1 gain coefficient for the next step, Ki – gain coeffi-
cient in the i-th step, ∆K j – gain coefficient correction for the
j-th zone.

The values of adjustments ∆K in general were assumed to de-
pend on the value of the adaptation error ε(t), i.e. ∆K = f (ε(t)).
The simplest solution is to assume that the function f is a step
function, i.e. that ∆K values will be constant for certain ranges
of ε(t) changes.

The formal notation of the dependence of the correction ∆K
on the estimation error for two error ranges ε(t) takes the form:

∆K =

{
0 for |ε(t)|< ER1

∆K1 for |ε(t)|> ER1
. (11)

Relationship (11) represents the situation where the interval
from −ER1 to ER1 can be called the insensitivity zone which
means that for small adaptation errors, no gain corrections will
be made.

For a more precise functioning of the algorithm it can be as-
sumed that there can be more zones, so for N zones the ∆K
values will be as follows:

∆K =



0 for |ε(t)|< ER1

∆K1 for ER1 < |ε(t)|< ER2
. . . . . . . . .

∆KN−1 for ERN−1 < |ε (t)|< ERN

∆KN for |ε(t)|> ERN

. (12)

It seems natural that a larger number of zones will produce
more precise results.

For the sake of generality of considerations, in order to check
the correctness of the algorithm, the worst situation was as-
sumed regarding the knowledge of the initial gain and therefore
the value of the coefficient K0 (see equation (8)) in the first step
is equal to zero. Graphical presentation of the zones of adapta-
tion errors and the gain corrections assigned to them are shown
in Fig. 4. In the variant of zone division presented in Fig. 4 three
values of amplification corrections ∆K have been determined.
It means that the ranges of values of the adaptation error ε ob-
tained during the process of approximation of the monitored
signals have been divided into three zones: zone I, i.e. the so-
called insensitivity zone, in which no amplification correction
is made, and two zones (II and III), in which the correction is
made. In all cases, for each zone, a constant but different value

Fig. 4. Error zones and corresponding gain corrections (∆Ki)

of the correction of filter gain coefficient ∆K was assumed. The
magnitude of the correction ∆K in the proposed algorithm de-
pends on the specifics of the object in question and is selected
experimentally on the basis of expert knowledge. This correc-
tion takes different values depending on the zone to which it is
assigned (see Fig. 4).

The detailed description of the algorithm is presented in the
form of pseudo-code in Algorithm 1. The presented algorithm

ALGORITHM 1. Look-up algorithm
x0,K0,∆K1,∆K2,∆K3,ER1,ER2,ER3,s
//setting the initial conditions
Require: yi //measurements
Ensure: x̂

1: while i < n do
2: ˆ̇xi+1← Ax̂+Kiεi;
3: εi← yi−Cx̂i

4: if i < s or yi 6= 0 then
5: if εi ≤ ER1 then
6: Ki+1← Ki

7: end if
8: if ER1 < ε i ≤ ER2 then
9: Ki+1← Ki +∆K1

10: end if
11: if ER2 < ε i ≤ ER3 then
12: Ki+1← Ki +∆K2

13: end if
14: if εi > ER3 then
15: Ki+1← Ki +∆K3

15: end if
16: if i < s then
17: ...//possibility to add more zones
18: if i < s then
19: s← s−1;
20: end if
21: else
22: Ki+1← Ki

23: end if
24: i← i+1;
25: end while

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 2, p. e144603, 2023



The look-up algorithm of monitoring an object described by non-linear ordinary differential equations

selects the appropriate correction of the filter gain coefficient
∆K j depending on the membership of the current adaptation er-
ror ε to the predetermined zone. If the value of the adaptation
error ε is less than the error limit ER1 then the coefficient cor-
rection is zero, i.e. the gain value is equal to the gain value from
the previous step (lines 5–7 – zone I).

If the adaptation error is greater than the error limit ER1 then
the coefficient correction is equal to ∆K1 (lines 8–10 – zone
II). Subsequent zones correspond in Algorithm 1 to lines 11–
13 zone III and 14–16 possible additional zone. The location of
subsequent zones can be implemented from line 17.

The configuration of the algorithm includes a self-tuning pro-
cess, which always occurs after the algorithm has been started
and where the initial gain value is set based on measurements.
The duration of the tuning period can be freely set but it cannot
be shorter than the period with two measurements (in the algo-
rithm the variable s means the number of measurements nec-
essary to perform the tuning process). Then in this period, the
initial values of the gain coefficients are determined. The actual
operation of the algorithm starts after the self-tuning period.

3.1. Quality indicators for estimated signals
In the conducted research, there is a need to compare and eval-
uate the accuracy of the results generated by the proposed al-
gorithm for the considered signals of the object, both measured
and unmeasured. For this purpose, measures in the form of in-
dices are used to assess the quality of the estimates [25, 26]. In
research papers, various measures, both absolute and relative,
can be used to analyze the errors in the obtained results.

In the research presented in this paper, two indices, i.e. root
mean square error (RMSE) and mean absolute percentage error
(MAPE), were used to assess the quality of the estimation pro-
cess. The purpose of taking two different indices is intended to
more accurately characterize the quality of the generated sig-
nals.

The first of the taken indicators RMSE in further considera-
tions takes the form:

RMSEi =

√
1
n

n

∑
j=1

e2
i, j, (13)

where: ei, j = xi, j− x̂i, j – estimation error of the i-th coordinate
of the signal vector x in the j-th time step, n – number of simu-
lation time steps.

The second taken indicator MAPE takes the form:

MAPEi =
1
n

n

∑
j=1

∣∣∣∣ei, j

xi, j

∣∣∣∣ ·100%. (14)

The RMSE indicator for an individual signal represents the
absolute error, while the MAPE indicator is a measure of the
percentage relative error. The RMSE indicator value captures
a measure of error measured in units of a given signal and is
not sensitive to small absolute errors. The MAPE indicator, on
the other hand, represents percent error values and is sensitive
to values close to or equal to zero.

4. EXPERIMENTAL STUDIES
The research of the proposed algorithm was carried out by sim-
ulating a mathematical model of a river described by ordinary
differential equations. Both the simulation of the model and the
implementation of the algorithm were carried out in the MAT-
LAB environment. The simulation tests concerned in particular
the time courses of BOD and DO signals with the participation
of different values of system and measurement disturbances.
The values of the noise signals affecting the model were ob-
tained from a pseudorandom number generator with various
parameters in the form of expected values and standard devia-
tions determined from their assumed covariances. However, the
designed monitoring algorithm does not use any information
about the characteristics of these interfering signals. The quality
of the generated signals was also tested at various frequencies
of measurements, obtaining rare measurements. The obtained
results were assessed using the RMSE and MAPE quality indi-
cators.

The study was conducted for a river conventionally divided
into three sections with side tributaries with higher pollution
than the river. The average river current velocity in the sec-
tions is 35, 28 and 30 [km/day] respectively. The observation
time is 36 days, which means that the river is 1116 km long.
The values of BOD and DO indices vary within (70÷5) and
(−12÷− 2) [mg/l], respectively. The lower values of these in-
dices are similar to those of the Wisłok River near Rzeszów
measured in summer.

The initial condition for the Kalman filter and adaptive al-
gorithm estimations is for BOD: x̂1 = 10 [mg/l], and for DO:
x̂2 = −5 [mg/l], while in the simulated facility the initial val-
ues for each section were assumed to be: x1 = 70 [mg/l] and
x2 = −10 [mg/l], respectively. The values of the estimates at
the beginning of subsequent sections (2 and 3) were not known
but generated by the algorithm.

The following values for the parameters describing the dy-
namics of the self-purification process were used in the study:
k1 = −0.23 [1/day], k2 = −0.18 [1/day], k3 = −0.72 [1/day].
Furthermore, in the simulation experiments conducted, it was
assumed that the river would be affected by different values
of object and measurement disturbances expressed by their co-
variances W and V with values of [3,−2;−2,1], [6,−4;−4,2],
[9,−4;−4,6] and [18,−6;−6,9], respectively, as well as [0.1],
[0.3] and [0.6]. Experiments were performed for different com-
binations of these covariances in order to verify the influence of
changes in the intensity of disturbances affecting the object on
the correct functioning of the algorithm proposed in this paper,
which means that the tests were performed for low and high
disturbance intensities.

Figure 5 shows that the quality of the generated signals with
the proposed look-up algorithm is significantly better compared
to the Kalman filter. This difference can be seen in the case of
sudden changes in pollution caused by lateral inflows, where
there is a rapid change in the pollution values. Then, the look-
up algorithm generates signals closer to the signals from the
object. The results obtained apply to the case of measurements
taken infrequently, i.e. in the period every 20-time steps.
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Fig. 5. Time waveforms of BOD and DO signals for
a three-section river (measurements taken every 20-time steps)

The values of RMSE and MAPE indices determining the
quality of algorithm performance at different measurement fre-
quencies are presented in Table 1. The large differences be-
tween the values of indicators of the quality of monitoring for
BOD and DO are due to the measurements made only for DO.
The water quality indicator BOD is not measured, so the mon-
itoring system is not directly provided with information about
this signal, therefore the RMSE and MAPE indicators for it take
on greater values than those for the DO signal. MAPE indicator
is characterized by the fact that it reaches high values for real
signals close to zero. Therefore, at the stage when the state of
the river reaches low concentrations of pollutants, the index val-
ues naturally assume higher values. In simulation experiments,
unusual situations with very large and sudden inflows of pollu-
tants were researched, among others, to test the correct reaction
of the algorithm to such cases. These abrupt changes in BOD
cause the largest errors which have a large share in the values of
the quality indicators used. In a situation where the volume of
sudden pollutants inflows was limited, thus making the natural
conditions for a river more realistic, a significant reduction in

Table 1
Values of monitoring quality indicators

Quality indicators RMSE MAPE

Signal BOD DO BOD DO

frequent 14.1301 1.8992 12.1924 8.346

rare (10 steps) 13.4262 1.7067 13.154 7.82

rare (20 steps) 14.8757 2.1752 13.7328 10.0051

rare (80 steps) 14.9047 2.1491 13.892 10.2211

Kalman 16.6546 1.3296 21.8441 7.3888

Parameters: look-up algorithm:
ER = 0.05, ∆K = [0.85;−0.2],
Kalman filter gain:
KF = [−5.425;2.835]
covariance of system and measurement
disturbances:
W = [3,−2;−2,1], V = [0.1]

the value of the RMSE monitoring quality indicator is achieved.
This is illustrated by the obtained time courses from Fig. 6 for
which the RMSE index values were obtained, respectively, for
BOD and DO with the values 4.5195, 0.91603. The quality of
monitoring, measured by the MAPE indicator, also turns out to
be slightly better.

Fig. 6. Time waveforms of BOD and DO signals for
a three-section river with reduced sudden pollutant inflows

In all investigated cases the look-up algorithm with frequent
and less frequent measurements is superior to the Kalman fil-
ter, but for very rare measurements its quality decreases. The
choice of the correction of filter gain coefficient K is a decisive
element affecting the quality of the generated signals. Example
waveforms of such amplifications are presented in Fig. 7.

Fig. 7. Look-up algorithm gain coefficients (K) for different
measurement realisations

In all cases tested, the initial gain value was zero and the al-
gorithm always generated stable gain values. The amplification
waveforms depend on the changes in the BOD and DO indices,
with amplification values varying by several for DO and minus
a dozen for BOD. With less frequent measurements, smaller
variations in gain values were obtained.

The research carried out included the impact of changes in
the system and measurement disturbances on the quality of
monitoring. In a series of simulation experiments, the values
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of RMSE and MAPE indices were obtained for different sizes
of system and measurement disturbances. Figure 8 presents the
averaged values of the quality indices from 10 runs for the
BOD signals generated with the look-up algorithm in compari-
son with the results obtained with the Kalman filter algorithm.
The observations show that for the BOD signal, both monitor-
ing quality indices always took lower values for the look-up
algorithm even with rare measurements. This indicates better
monitoring quality of the signals, regardless of the combination
of system and measurement disturbances.

Fig. 8. RMSE (A) and MAPE (B) quality indicators for BOD signal
(rare measurements – 20 steps), W, V – covariance of system and mea-

surement disturbances

Figure 9 shows the quality indicators RMSE (A) and MAPE
(B) obtained for the waveforms of the variable DO. In the per-
formed calculations, the monitoring quality indicators for DO
deficit always had smaller values in comparison with BOD.
This was due to the measurements of this signal, i.e. the cur-
rent information about the object. Comparing the results ob-
tained for the Kalman filter and the look-up algorithm, it can be
concluded that they are comparable for both MAPE and RMSE
indicators for DO signals. A slight difference in favour of the
proposed algorithm can be seen with small system disturbances
and larger measurement disturbances. The Kalman filter, on
the other hand, was slightly better at generating DO signals at
higher values of measurement and system disturbances.

Fig. 9. RMSE (A) and MAPE (B) quality indicators for DO signal
(rare measurements – 20 steps), W, V – covariance of system and mea-

surement disturbances

5. CONCLUSIONS

This paper presents an adaptive look-up algorithm that gener-
ates online monitoring signals for an object. The object is a bio-
chemically polluted river whose water quality is represented by
water quality indicators BOD and DO deficit. The algorithm re-
constructs the signals based only on the DO measurements and
the mathematical model of the object. The essence of the algo-
rithm is the adaptive selection of the gain and the correction of
the filter gain coefficient in the filtration equation.

The quality of the monitored signals was determined by the
RMSE and MAPE indices. The RMSE indicator values are
higher for BOD compared to DO regardless of the algorithm
used. For the MAPE quality indicator there is a similar variation
for BOD and DO, but for BOD the look-up algorithm obtains
better quality than the Kalman filter. The presented concept of
online monitoring for monitoring an object described by ordi-
nary differential equations representing two water quality indi-
cators, i.e. BOD and DO works well.

The authors believe that the approach to river water quality
monitoring presented in this article differs from the proposi-
tions considered in other scientific studies. The most similar
approach is presented in the article [23] in which the monitor-
ing quality indicator has values comparable to those presented.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 2, p. e144603, 2023 7



P. Hawro, T. Kwater, J. Bartman, and B. Kwiatkowski

Similar values of the RMSE index for BOD were also obtained
in the article [27] where they are, however, the results of statis-
tical research.

Stable operation of the algorithm was obtained in all the
conducted studies with variable disturbances and rare measure-
ments. In addition, acceptable results were obtained using an al-
gorithm with low computational complexity, which is important
for real-time systems. The presented approach works properly
without the need to know the characteristics of the noise signals
and any of their distributions. Correct results are also obtained
with a non-linear description of the object [1]. Satisfactory re-
sults should also be expected in the further extension of the
mathematical model to other water quality indicators. The pro-
posed algorithm has low computational complexity, less than in
Kalman algorithms, and can also be used for other objects.

The envisaged continuation of research work will be related
to testing the presented algorithm in real conditions, e.g. sewage
treatment plants or river monitoring in the Podkarpackie region.
Further work will concern the adaptation of the algorithm for
the needs of diagnostic monitoring and a possible control sys-
tem. In order to determine the quality of monitoring, the use of
other quality indicators is also envisaged.
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