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Abstract: One of the most important aims of the sizing and allocation of distributed gener-
ators (DGs) in power systems is to achieve the highest feasible efficiency and performance
by using the least number of DGs. Considering the use of two DGs in comparison to a single
DG significantly increases the degree of freedom in designing the power system. In this
paper, the optimal placement and sizing of two DGs in the standard IEEE 33-bus network
have been investigated with three objective functions which are the reduction of network
losses, the improvement of voltage profiles, and cost reduction. In this way, by using the
backward-forward load distribution, the load distribution is performed on the 33-bus net-
work with the power summation method to obtain the total system losses and the average
bus voltage. Then, using the iterative search algorithm and considering problem constraints,
placement and sizing are done for two DGs to obtain all the possible answers and next,
among these answers three answers are extracted as the best answers through three methods
of fuzzy logic, the weighted sum, and the shortest distance from the origin. Also, using
the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) and setting the
algorithm parameters, thirty-six Pareto fronts are obtained and from each Pareto front, with
the help of three methods of fuzzy logic, weighted sum, and the shortest distance from the
origin, three answers are extracted as the best answers. Finally, the answer which shows
the least difference among the responses of the iterative search algorithm is selected as the
best answer. The simulation results verify the performance and efficiency of the proposed
method.
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1. Introduction

In developed and developing countries, access to new energy sources is critical for economic
and political development. Recent research shows that there is a direct relationship between
a country’s level of development and its energy consumption. Advanced optimization techniques
on the placement and sizing of distributed generation units based on renewable resources can have
stabilizing and compensatory effects on environmental, economic, technological, and regulatory
factors [1]. In [2], the paper plans to expand a novel compound approach referred to as backtrapping
assisted elephant herding optimization (BAEHO), to address the RPD issues in the power system
under distortion situations. In [3], the problem of optimal placement is formulated for maximizing
the DG owners’ revenue and minimizing their allocated costs (production and transmission cost)
to achieve the most optimal size and site of DGs from their owners’ perspective. In another article,
the exponential particle swarm optimization (EPSO) algorithm and voltage stability index (VSI)
have been used in an optimization process to improve the voltage profile, save energy costs and
reduce losses [4]. In [5], binary particle swarm optimization and shuffled frog leap (BPSO-SLFA)
algorithms are used to minimize losses, improve voltage profiles, and enhance cost savings for
different distribution systems. Research shows that the linear model combined with GA is efficient
in reducing real power losses by finding the optimal location and size of DG units [6]. In [7], using
the differential evolution meta-heuristic algorithm, the placement and sizing of distributed gener-
ation units has been done to reduce active power losses and it has been compared with the cuckoo
search algorithm (CSA), simple genetic algorithm (SGA) and ant-lion optimization algorithm
(ALOA). In [8], through the ant-lion optimization algorithm (ALO) and fuzzy technique, optimal
DG placement and sizing is carried out to reduce the cost of purchased energy from the upstream
network (due to the generation of DGs), improve reliability and buses’ voltage deviation.

Considering the minimization of active power losses and maximization of voltage stability,
the multi-objective optimization based on a hybrid technique (NSGA-II and fuzzy logic) is
used to obtain optimal multi DG location and sizes [9]. In [10], dynamic models for inverter-
based distributed generator (IBDG) units, network branches, and loads are used to accurately
investigate the effects of small-signal stability constraints on optimal placement and sizing of
IBDGs in a radial distribution system (RDS). For optimal allocation of the distributed generator
(DG), in [11], a hybrid strategy employing a combination of particle swarm optimization (PSO)
and Newton-Raphson flow (NRPF) methods has been developed and validated to minimize the
real power loss, reactive power loss, reactive power generation and voltage deviation. Using
a combination of genetic optimization (GA) and particle swarm optimization (PSO) algorithms
for optimal placement and sizing of DGs leads to combined optimization values and accurate
performance [12]. In [13], a multi-objective particle swarm optimization (MOPSO) algorithm is
performed to optimally determine the size and location of DGs in coordination with the location
and tap setting of the voltage regulator (VR), aiming at voltage profile improvement and the
minimum number of tap operations of the voltage regulator. In [14], the loss sensitivity factor
(LSF) and invasive weed optimization (IWO) are used to determine the optimal placement and
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sizing of DGs, respectively. In another research, the fuzzy logic technique is used for placement
of DGs to improve the voltage profile and minimize losses in the network [15]. In [16], the
multi-objective genetic optimization algorithm (NSGA-II) method is used for optimal placement
and sizing of a DG to reduce losses and improve the voltage profile. In [17], in order to achieve
the goals of reduction of losses and improvement of the voltage profile in a microgrid, the optimal
allocation and sizing of DGs have been considered through using a proposed genetic algorithm
(GA). In [18], a new method for optimal placement and sizing is proposed to minimize the total line
losses of the radial distribution network. In [19], a novel method based on the coyote algorithm
(COA) is proposed for the problem of simultaneous network reconfiguration and distributed
generation (DG) placement to reduce real power loss. In [20], the authors suggest a method for
determining the optimal sizing and location of the battery energy storage system (BESS) in an
independent network while taking into account the unpredictability related to system generation
and demand. In [21], an overview of the various methods for DG placement, with the goals of
improving the voltage profile, power quality, productivity, as well as the reduction of operating
and O&M costs, has been provided. For the DG placement and sizing with different power factors
(PF), improved single- and multi-objective Harris Hawks optimization algorithms, called IHHO
and MOIHHO can be used to minimize active power losses, reduce voltage deviation (VD) and
increase the voltage stability index (VSI) [22].

In [23], an interactive fuzzy satisfying method based on the hybrid modified shuffled frog
leaping algorithm is proposed to solve the problem of the multi-objective optimal placement and
sizing of DGs in the distribution network. The objective functions in this problem are: minimizing
total electrical energy losses, total electrical energy cost and total pollutant emissions produced.
Researchers in [24,25] present an overview of the most recent models and methods applied to the
ODGP problem, analysis and methodology to calculate the optimal location and effective optimal
size. The goal of optimal DG placement is to provide the best DG placements and sizes to optimize
electrical distribution network operation and planning, considering DG capacity constraints.

This method considers the voltage dependency of static loads, and line charging capacitance.
Compared to the improved version of the classical forward-backward ladder method, i.e., ratio-
flow, the results show that the proposed power flow algorithm has strong convergence ability.
The results of the previous research show that the placement and sizing of DGs is a single or
multi-objective optimization problem, which if solved properly by any intelligent optimization
algorithm, can contribute to improving network parameters. The method proposed in this article, in
comparison to the mentioned existing works, substantially extends the solution space by the system
designer’s commitment to using two DGs in the multi-objective optimization problem-solving.
Moreover, the simultaneous employment of three decision-making methods as the proposed
method of this research creates higher performance and precision of the final optimal solution
choice compared to the existing investigations.

Highlights
– Minimize the real power distribution and position parameters of the entire system.
– View very high accuracy in the placement and sizing of the proposed system compared to

other paper.
– Evaluate and confirm multi-objective evolutionary algorithms based on decision making.
– View very high accuracy in improving total system losses and costs.
– View improvements and compare results with recent studies.
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2. Methodology

Improving the voltage profile, reducing the total system losses, and reducing the cost of DGs
have been considered in previous research in order to determine the optimal DG placement and
sizing in the standard IEEE 33-bus network. In this paper, in the first stage, with the help of Matlab
software, the backward-forward load distribution with the power summation method is done for
the standard IEEE 33-bus radial distribution network to obtain the average value of network
voltages, the total amount of network losses, and the amount of active bus power output of the
slack bus. In the second stage, using the iterative search (IS) algorithm, all possible responses
related to the placement and sizing of the two DGs are obtained, leading to the reduction of the
total system losses, improving the voltage profile, reducing the cost, and satisfying the problem
constraints. Of all the answers, three answers are extracted through three methods of fuzzy logic,
weighted sum, and the shortest distance from the origin as the best answers. According to the three
objective functions of the problem, each of these answers has its advantages and is considered
to be an indicator. Then, in the third stage, the multi-objective non-dominated sorting genetic
algorithm (NSGA-II) is used to reduce the computation time compared to the IS algorithm for
the optimal placement and sizing of two DGs. In the NSGA-II algorithm, its effective parameters
are set and executed for thirty six states. Each time the program is run, depending on the amount
of change in the algorithm parameters, several answers are obtained. Among these answers,
through the methods of fuzzy logic, weighted sum, and the shortest distance from the origin,
three answers are extracted and compared with the answers of the iterative search algorithm. Each
of the NSGA-II algorithm responses, which is less different from the IS algorithm responses, is
selected as the answer.

3. Optimal placement and sizing problem formulation

3.1. Backward-forward load distribution functions by power summation method

According to Fig. 1, which is related to the standard IEEE 33-bus radial distribution network
and the necessary information in [8] that is related to this network, the backward-forward load
distribution is done by a power summation method on this network and by programming in

Fig. 1. Single-line diagram of standard 33-bus radial distribution network
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MATLAB software. Then the amount of bus voltage, line losses, and the amount of active power
generation of the slack bus are obtained. Backward-forward load distribution consists of two
parts, backward sweep and forward sweep, which are explained in the following.

3.1.1. Backward sweep: calculation of branches complex power

First, the branches are numbered according to Fig. 2, and then the network is divided into
several parts. Next, starting from the last bus and moving towards the slack bus, the powers of
branches are obtained. The powers of branches 1, 2, and 5 are obtained from the sum of branches’
powers in Fig. 3.

𝑆𝑛 = 𝑆𝑖 +
∑︁
𝑚∈𝑀

𝑆𝑚 + Loss𝑛 , (1)

where: 𝑆𝑛 is the complex power of the branch 𝑛 (KVA), 𝑆𝑖 is the complex power of the load
connected to the bus (node) 𝑖 (KVA), 𝑀 is the total of complex powers of branches which at the
node 𝑖 are connected to the branch 𝑛 (KVA), 𝑆𝑚 is the complex power of the branch 𝑚 (KVA),
Loss𝑛 represent the losses of the branch n considered zero in the first iteration (KVA).

Fig. 2. Suggested flowchart for backward-forward sweep method
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Fig. 3. Branch numbering and network segmentation to calculate branch power

3.1.2. Forward sweep and calculation of branches’ currents
In the forward sweep, branches’ currents, buses’ voltages, branches’ losses, and voltages’

mismatch are calculated. For the forward sweep, we divide the network according to the figure.
Then, starting from the first branch connected to the slack bus and moved to the end branches,
at first, the branches’ currents, then the voltages in the receiver bus of the branches, and next the
branches’ losses and the voltage mismatch are calculated. Then currents and losses of branches
18, 22, and 25 in Fig. 4, as well as voltages of buses 19, 23, and 26 that are not in the areas, are
calculated directly.

𝐽𝑛 =

(
𝑆𝑛

𝑉 𝑗

)∗
. (2)

Fig. 4. Network segmentation to calculate branches’ currents, buses’ voltages, and lines’ losses

3.1.3. Calculation of mismatch (convergence)

Δ𝑉 𝑖 (𝑘) = max
(���𝑉 𝑖 (𝑘) ��� − ���𝑉 𝑖 (𝑘−1)

���) , (3)
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where: Δ𝑉 𝑖 (𝑘) is the voltage difference in each bus, 𝑘 is the number of repetitions, 𝑉 𝑖 (𝑘) is the
voltage of the bus 𝑖 in the 𝑘-th repeat (present step), 𝑉 𝑖 (𝑘−1) is the voltage of the bus 𝑖 in the
𝑘−1-th repeat (previous step).

If each of Δ𝑉 𝑖 (𝑘) exceeds the convergence criterion, the above steps are repeated until the
convergence is achieved. In this paper, the convergence criterion has been considered 0.0001.
That is to say, if the voltage mismatch is less than 0.0001, convergence is achieved and the load
distribution ends. The results obtained after loading are as follows:

The total load of the whole system (total of loads connected to the bases) equals
3.715 + 2.3 Mvar.
The total active power loss of the entire system is 210.9983 � 211 kW.
The slack bus value equals 3.926 MW.
The average bus voltage is 11.9677 kV, which equals 0.94532 P.
The average bus voltage differs from the main voltage by 0.6923. The purpose of the DG

network is to reduce the voltage difference and losses of the entire system at the lowest cost.

3.2. Iterative search (IS) algorithm
This algorithm is a classical algorithm and is based on numerical calculations. In this algo-

rithm, at first, we calculate the maximum values of the active power of each DG unit. Then, we
calculate the minimum values of the active power of each DG unit which here is equal to 0.01 of
the maximum active power of the slack bus. Then for each DG unit, from the minimum amount
of active power of each DG unit with the step of the minimum active power of each DG unit to
the maximum active power of each DG unit, we obtain all the active power outputs of each DG
unit. In fact, each DG unit has 100 active power outputs.

In each of the three methods of obtaining the optimal answer, the optimal answer is a point in
three-dimensional space that has three objective functions. The optimal response of each method
is different from the other two methods. The choice of a method for obtaining the optimal answer
depends on the researcher’s priority of the objective function. Also, Table 1 shows the parameters
required for obtaining the cost function.

Table 1. Parameters required for obtaining the cost function

DG size (MW) Cost (USD)

7 860.1 44.9271

9 200.1 10.9948

4 700.2 60.12666

9 880.2 60.15353

9 900.2 90.15361

0000.3 20.15396

In fact, using the IS algorithm, Fig. 5, we obtain the original Pareto front. The answers extracted
from this front are our main answers compared to the answers of the NSGA-II algorithm because
the NSGA-II algorithm gives us approximately the main answers of Pareto front.
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Fig. 5. Designed flowchart for Iterative search algorithm

3.2.1. Maximum and minimum amount of DGs’ active power


𝑃max DG1 =

𝑃stack
3

𝑃max DG2 =
𝑃stack

3

, (4)


𝑃min DG1 =

1
100

× 𝑃max DG1

𝑃max DG2 =
1

100
× 𝑃max DG1

. (5)

3.2.2. Adverb problem

𝑃DG1𝑖 + 𝑃DG2 𝑗 ≤
𝑃slack

3
𝑖 : 1 : 1 00 𝑗 : 1 : 1 00. (6)
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3.3. Multi-objective non-dominated sorting genetic algorithm (NSGA-II)
3.3.1. Functions of the NSGA-II algorithm

The main advantage of this algorithm is its computing speed. The calculations speed of
this algorithm is in the order O (MN2), (M is the number of target functions and N is the
population size).While the calculations speed of the algorithm NSGA-I is a subset of O (MN3),
the calculations speed of the algorithm (NSGA-II) in Fig. 6 is much faster than the algorithm
(NSGA-I).

Fig. 6. Designed flowchart with NSGA-II algorithm

3.3.2. Dominating
It is said that 𝑥 dominates 𝑦 and is represented by 𝑥 ≤ 𝑦, if and only if:
For all objectives, 𝑥 is better than 𝑦.

∀𝑖: 𝑋 𝑖 ≤ 𝑦𝑖 . (7)

The solution 𝑥 dominates the solution 𝑦, if the solution 𝑥 is no worse than 𝑦 in all objectives
and the solution 𝑥 is strictly better than 𝑦 in at least one objective.

∃𝑖0: 𝑋 𝑖0 ≺ 𝑦𝑖0 . (8)

3.3.3. Crowding distance

𝑑
𝑗

𝑖
:

��� 𝑓 previous
𝑗

− 𝑓
subseqent
𝑗

���
𝑓 max
𝑗

− 𝑓 min
𝑗

, (9)

𝑑𝑖 = 𝑑1
𝑖 + ... + 𝑑𝑚𝑖 =

𝑚∑︁
𝑗=1

𝑑
𝑗

𝑖
𝑖 : 1, . . . , 𝑛. (10)

The greater crowding distance, the more variation in the algorithm’s answers.
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3.3.4. Uniform crossover and mutation

First parent position: 𝑋1 : 𝑋11, 𝑋12, . . . , 𝑋1𝑛 , (11)

Second parent position: 𝑋2 : 𝑋21, 𝑋22, . . . , 𝑋2𝑛 , (12)

𝛼 : (𝛼1, 𝛼2, . . . , 𝛼𝑛) 𝛼𝑖 ∈ (0, 1), (13)

First child: 𝑌1 : (𝑦11, 𝑦12, . . . , 𝑦1𝑛),→ 𝑦1𝑖 : 𝛼𝑖𝑋1𝑖 + (1 − 𝛼𝑖)𝑋2𝑖 𝑖 : 1, . . . , 𝑛, (14)

Second child: 𝑌2 : (𝑦21, 𝑦22, . . . , 𝑦2𝑛),→ 𝑦2𝑖 : 𝛼𝑖𝑋2𝑖 + (1 − 𝛼𝑖)𝑋1𝑖 𝑖 : 1, . . . , 𝑛, (15)

if: 𝛼𝑖 = 1 ⇒
{
𝑦1𝑖 = 𝑋1𝑖

𝑦2𝑖 = 𝑋2𝑖
, (16)

if: 𝛼𝑖 = 0 ⇒
{
𝑦1𝑖 = 𝑋2𝑖

𝑦2𝑖 = 𝑋1𝑖
, (17)


𝑋 = (𝑋11, 𝑋12, . . . , 𝑋1𝑛)

𝑋new = binari (𝑥)
𝑛_𝑚𝑛 = [𝜋𝑚 × 𝑛_var]

, (18)

where: 𝑋 is the position of the population member selected randomly, 𝑋new is the binarized
selected member, 𝑛_𝑚𝑛 is the number of components affected by mutation. 𝜋𝑚 is the mutation
impact rate 0 ≤ 𝜋𝑚 ≤ 1, 𝑛_var is the number of components of 𝑋new.

3.3.5. Objective functions: cost function and total losses

cos𝑖 (USD): (37.25 × (𝑃DG1𝑖 + 𝑃DG2 𝑗)2) + (5243 × (𝑃DG1𝑖 + 𝑃DG2 𝑗)) + 3.635,
𝑖 : 1 : 1, 𝑗 : 1 : 1, (19)

Total(Loss)𝑖 =
32∑︁
𝑚

Loss𝑛, 𝑖 : 1 : 𝑘, (20)

where: Total(Loss) is total active losses of the whole system (kW), Loss𝑛 represents the active
losses of the line 𝑛 (kW).

3.3.6. Average voltages function and the per-unitization of the objective functions of the problem

Mean_Voltage_𝑖 =

33∑
𝑛=1

Voltage_Bus𝑛

33
𝑖 : 1 : 1, (21)

Voltage_Bus_𝑛(pu) = |Voltage_Bus𝑛 (kV) |
12.66 (kV) , 𝑖 : 1 : 33, (22)
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Voltage_𝑖(pu) = 1 −
©«

33∑
𝑛=1

Voltage_Bus𝑛 (pu)

33

ª®®®®¬
𝑖 : 1 : 𝑘, (23)

cosmax =

(
−37.25 ×

(
𝑃slack

3

)2
)
+

(
5243 ×

(
𝑃slack

3

))
+ 3.635, (24)

cos𝑖 (pu) = (−37.25 × (𝑃DG1i + PDG2j)2) + (5243 × (PDG1i + PDG2j)) + 3.635
cosmax

, (25)

Total(Loss)𝑖(pu) =

32∑
𝑚

Loss𝑛 (kW)

211 (kW) , 𝑖 : 1 : 𝑘. (26)

3.3.7. Optimal answer extraction techniques

– Fuzzy logic

`𝐾 =


1

𝑗𝑘 max − 𝑗𝑘

𝑗𝑘 max − 𝑗𝑘 min

0

, 𝑗𝑘 ≤ 𝑗𝑘,min 𝑗𝑘,min ≤ 𝑗𝑘 ≤ 𝑗𝑘 max 𝑗𝑘 ≥ 𝑗𝑘,max, (27)

𝑗𝑘 max and 𝑗𝑘,min are the maximum and minimum values of the 𝑘-th objective function. For
each solution 𝑖, the membership function is calculated as follows:

`𝑖 =

𝑛∑
𝑘−1

`𝑖
𝑘

𝑚∑
𝑖=1

𝑛∑
𝑘=1

`𝑖
𝑘

, (28)

where 𝑛 is the number of objective functions, and 𝑚 is the number of solutions. The solution with
the maximum value of `𝑖 is the best solution for compromise.

– Weighted sum and minimum distance from the origin

min : ℎ𝑖 = (𝑤1 𝑓1𝑖 + 𝑤2 𝑓2𝑖 + 𝑤3 𝑓3𝑖)/3, (29)

min : ‖𝑑𝑖 ‖ =
√︃
( 𝑓1𝑖)2 + ( 𝑓2𝑖)2 + ( 𝑓3𝑖)2 𝑖 : 1 : 1 : 𝑛, (30)

where 𝑖 is the number of responses and 𝑤1, 𝑤2 and 𝑤3 are objective functions coefficients, and
since all three objective functions have the same value for us, we consider all these coefficients
equal to

1
3

. Here, 𝑓1, 𝑓2 and 𝑓3 are the objective functions of the problem.



264 Hossein Ali Khoshayand et al. Arch. Elect. Eng.

4. Simulation and results

The modeling results are performed for 3 different steps. In the first step, the load distribution
results on the standard IEEE 33-bus radial distribution system are shown to determine the system
parameters without the presence of DGs. In the second step, after placing two DGs in the
mentioned system, the IS algorithm is used to determine all possible answers to the problem and
then with three different methods, the best optimal answers from all possible answers are obtained
as references for comparison with the best answers of the NSGA-II algorithm. In the third step, the
simulation results are performed for 36 states. The answers obtained by the NSGA-II algorithm
are shown in each case of setting the parameters of this algorithm.

4.1. Step 2: results of IS algorithm with two DGs
In this section, the total answers, the best answer, the voltage profile, and the losses profile of

the IS algorithm are shown in Fig. 7.

(a)

(b)

Fig. 7. (a) voltage profile for IS algorithm; (b) losses profile for IS algorithm
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In Fig. 7(a), it can be clearly seen that the fuzzy logic algorithm has shown the best result
for the voltage profile. It is also confirmed in Fig. 7(b) that the fuzzy logic has found the best
responses to reduce losses.

4.2. Modeling result
In the previous part, different steps were performed in modeling and the optimal answers were

obtained by algorithms and compared with other results. Those optimal and accurate results are
presented here through the final decision.

In Fig. 8 the mismatch index of the two algorithms for decision-making by the fuzzy logic
method is equal to 0.00087. The mismatch index of the two algorithms for decision-making by the
weighted sum is equal to 0.00039. The mismatch index of the two algorithms for decision-making
with the shortest distance from the original method is equal to 0.00268.

Fig. 8. Comparing the best answers of the IS algorithm with NSGA-II algorithm
considering three different decision making methods

4.3. The best-case scenario of NSGA-II algorithm for decision
making by the fuzzy logic method

4.3.1. Thirtieth case:
In this case, the comparison of the profile voltage, and the comparison of the profile losses

are shown in Fig. 9.
In Fig. 9(a), it can be clearly seen that the fuzzy logic method for IS and NSGA-II has shown

the equal results for the voltage profile. It is also confirmed in Fig. 9(b) that the fuzzy logic method
for IS and NSGA-II has found the same responses to reduced losses.

4.3.2. Eighteenth case
In this case, the comparison of the profile voltage, and the comparison of the profile losses

are shown in 10.
In Figs. 10(a) and (b), it can be clearly seen that the fuzzy logic method for IS and NSGA-II

are very close to each other, the shapes are on top of each other.
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(a)

(b)

Fig. 9. (a) comparison of profile voltage; (b) comparison of profile losses of IS and NSGA-II algorithms
for decision making by fuzzy logic method

(a) comparison of profile voltage
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(b)

Fig. 10. (a) comparison of profile voltage; (b) comparison of profile losses of IS and NSGA-II algorithms
for decision making by weighted sum method

4.3.3. Eleventh case

In this case, the comparison of the results, and the comparison of computation time of
NSGA-II and IS algorithms for decision making by shortest distance from the origin method are
demonstrated in Tables 2, 3. Also, the comparison of the profile voltage, and the comparison of
the profile losses are shown in Fig. 11.

Table 2. Comparison of the results of NSGA-II and IS algorithms for decision making by shortest distance
from the original method

Method First bus Second
bus

Value of
DG1 for

Value of
DG2 for Cost Total

losses
Mean

voltages

Network – – – – – 210.998 0.94532

Shortest distance to IS 17 32 300.9932 261.7332 2942 129.905 0.95955

Shortest distance to
NSGA-II 18 33 341.7650 223.7000 2956 130.2370 0.96013

Table 3. Comparison of computation time of IS and NSGA-II algorithms for decision making by shortest
distance from the original method

Algorithm Number of function
evaluations (NFE)

Algorithm
computation time

(second)

Shortest distance to
the origin

computation time

Shortest distance to IS 2 455 200 23 424.95940 0.28543

Shortest distance to
NSGA-II 4 451 28.44148 0.00017
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(a)

(b)

Fig. 11. (a) comparison of profile voltage; (b) comparison of profile losses of IS and NSGA-II algorithms
for decision making by shortest distance from the original method

In Fig. 11(a), it can be clearly seen that the shortest distance method for NSGA-II has shown
the best results for the voltage profile. But it is confirmed in Fig. 11(b) that the shortest distance
method for IS and NSGA-II has found the same responses to reduce losses.

5. Conclusion

In this paper, a new method of decision making for placement and sizing of two DGs in
the power grid has been investigated. For this aim, power losses and voltage profiles, as well
as cost have been separately considered as three objective functions. In this regard, IS and
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NSGA-II algorithms have been employed to determine the possible solutions which are located
in solution space. The comparison of IS and NSGA-II results verifies the correctness of the
used evolutionary algorithm. It is worth noticing that to find answers close to the solutions for
the IS algorithm and sometimes better than it, given to the existing knowledge of the problem,
the parameters of the NSGA-II algorithm should be set and executed for at least a few cases.
Hence, it still has less computational time than the IS algorithm. According to the simulation
results it can be concluded that considering a cost-effective method and appropriate placement
and sizing of DGs, the system parameters can be improved with NSGA-II algorithms. The results
show that although the classical IS algorithm has a great variety of answers, it takes a lot of
time to perform calculations. Compared to the IS algorithm, the NSGA-II intelligent algorithm
has much fewer answers and is much faster. The selection of the final elite solution has been
always a controversial issue among decision-makers. In this way, many classical and innovational
decision making methods have been introduced and studied by researchers. The proposed method
of research for decision making provides significant performance and efficiency by choosing the
best optimal solution to perform in the smart grid.
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