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 Optical waveguides (WGs) are widely used as interconnects in integrated optical circuits 

both for telecommunication and sensing applications. There are different kind of optical WG 

designs that offers different guiding parameters, opening a vast number of possibilities. A 

silica-titania (SiO2:TiO2) rib WG is discussed and examined by a numerical analysis in this 

article with a great emphasis on the analysis of bending losses and optimization. A modal 

analysis for different basic parameters of the WG is presented with a detailed wavelength-

based modal analysis. Various potential fabrication methods are discussed, however, a sol-

gel method and dip-coating deposition technique are proposed for the low-cost development 

of such WGs. Moreover, an approach towards minimizing the bending losses by adding an 

upper cladding layer on the rib WG is presented and described.  
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1. Introduction 

Optical waveguide (WG) devices are being researched 

for utilization in integrated optical circuits for optical 

communication systems and sensing applications [1–4]. 

The development of thin-film technologies proved critical 

to the growth of the microelectronics industry, and this 

trend continues today in the field of optoelectronics [5–8]. 

Transition-metal-oxide (TMO) films are an appealing 

material for use in optoelectronics [9–11] because their 

substantial optical energy band gaps result in good 

transmission characteristics in the visible-near infrared 

(VIS-NIR) spectral range [12–15]. High-refractive-index 

TMO films and low-refractive-index silica films (SiO2) are 

employed as elements of multilayer photonic structures for 

various photovoltaic applications [16–19]. Low-pressure 

chemical vapour deposition (LPCVD) [20, 21], plasma-

enhanced chemical vapour deposition (PECVD) [22, 23], 

metalorganic chemical vapour deposition (MOCVD) 

[24, 25], and sol-gel technology [9, 17, 18, 26] can all be 

used to obtain uniform WG films [27–30]. These films with 

a controlled refractive index and minimal optical losses can 

be developed by the processes of LPCVD, PECVD, and 

MOCVD; however, the production of these films takes a 

significant amount of time, and the technological 

equipment that is required is quite expensive. In contrast, 

the sol-gel method is not only very effective but also does 

not need the use of a very expensive technological 

equipment. High-quality WG films can be developed using 

the sol-gel method and a dip-coating technique [31–34] that 

has a controlled refractive index and an attenuation that is 

comparable to that achieved from films produced using the 

LPCVD method [35–38]. The potential optical applications 

of sol-gel-obtained silica (SiO2), titania (TiO2), and silica-

titania (SiO2:TiO2) materials have attracted a lot of 

attention [39–41]. In our more recent studies [42–45], the 

numerical analysis of SiO2:TiO2-based WG films using the 

same sol-gel method and dip-coating technique and 

different, further discussed, fabrication processes (i.e., ICP-

RIE, wet-chemical etching, and NIL) for a development of 

WG structures has been carried out [46–48]. Rib WG 

structures are a common type of WGs used in silicon-based 

photonic integrated circuits (PICs) for telecommunications 

and data communications. Previous research on bending 

losses in rib WGs [49–52] has focused on understanding 

and mitigating the loss of signal strength that occurs when 

light passes through a WG that has been bent or curved 

[53–56]. Researchers have studied various methods for 

reducing bending losses [57–60], including the use of 

different materials for the WG [61] and the optimization of 

the WG shape [56–59]. Some studies have also explored 

the use of special coatings or cladding layers to improve the  
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WG performance in the presence of bending [62–64]. In 

this work, the modal analysis of a rib WG structure based 

on SiO2:TiO2 material is performed. Moreover, the bending 

losses by covering the rib WG with an upper cladding (UC) 

layer of refractive index lower than the WG film and 

substrate are also mitigated. 

2. Optical thin films deposition technique 

SiO2:TiO2 thin-films developed via the sol-gel method 

and dip-coating technique make the new low-cost PIC 

technological platform [65]. SiO2:TiO2 is interesting for 

integrated photonics because it has a tunable refractive 

index range of 1.6–2.2 and can work in a spectral range 

from VIS to NIR [46]. In addition to this, the material, 

when combined with the sol-gel dip-coating method, 

makes it possible to produce optical interconnects that have 

low transmission losses [66–68]. 

At first, the steps involved in the deposition of a single 

SiO2:TiO2 WG film are explained. The deposition process 

is illustrated in Fig. 1. 

To effectively use thin-film coating techniques in 

integrated optics, it is imperative to have precise control 

over the thickness of the film. This makes thickness control 

a crucial aspect of all thin-film development methods, 

including sol-gel [69, 70]. 

It is necessary to have the substrate and sol precursor to 

carry out the fabrication process. BK7 glass is favoured 

over other types of glass substrates because it has a lower 

thermal expansion coefficient and reduced surface rough-

ness. Using the dip-coating process on BK7 glass 

substrates, silica-titanium WG layers were created with a 

SiO2-TiO2 equal to 1:1 molar ratio, which were subse-

quently heated to 500 °C. The primary chemical precursors 

for silica SiO2 and titania TiO2 are tetraethyl orthosilicate 

Si(OC2H5)4 (TEOS) and tetraethyl orthotitanate Ti(OC2H5)4 

(TET), respectively. Water, ethanol, and hydrochloric acid 

(HCl), which catalyses the processes of condensation and 

hydrolysis, are the additional substances used in the 

procedure [71]. 

It should be emphasized that the refractive index 

reliance on the procedure characteristics is dependent on 

the stoichiometric ratio between the precursor components, 

and the withdrawal speed of the substrate from the sol is 

the primary factor determining the thickness of the 

deposited layer.  

Previous research conducted and published by 

Karasiński et al. focused on deepening the topic of thin film 

fabrication [34]. By carrying out the fabrication steps 

carefully, the obtained thin film should be of satisfactory 

parameters and could be used as an integrated photonic 

light guiding material. 

3. Potential fabrication techniques 

There are several techniques regarding the fabrication 

of a rib WG which depend on the WG film material, 

substrate, and the desired final geometry. Figure 2 shows 

some approaches to the production technology of 

SiO2:TiO2-based optical WGs. 

The listed technologies differ in processing method and 

cost of production. Nevertheless, these 3 approaches are the 

most popular and convenient ones and should be considered 

when fabricating SiO2:TiO2-based WG structures.  

The most widespread and commercially available 

method for the development of PICs is inductively-coupled 

plasma-reactive ion etching (ICP-RIE). This method is 

mainly used in foundries and big technological facilities. 

The main advantage of ICP-RIE is the fact that it is well-

researched and known, and it is a technology that is easy to 

adapt for production automation. Moreover, it provides 

anisotropic etching which, in the case of wet chemical 

etching, for example, is only achievable as isotropic 

etching. It also provides a good level of control over the 

etch rate. However, the biggest disadvantage of this 

technology lies in the expenses. ICP-RIE is a very 

expensive technology, and it requires an advanced 

equipment that is only available for well-developed 

technological facilities such as cleanroom environments. A 

schematic diagram of the ICP-RIE process is shown in 

Fig. 3 [72–75]. 

 

Fig. 1. Schematic representation of a sol-gel method and dip-

coating technique. 

 

 

Fig. 2. Popular approaches toward WG fabrication. 

 

 

Fig. 3. Schematic representation of the RIE process. 1) Sample 

to be etched. 2) Photolithography to transfer the patterns 

on the photoresist (mask). 3) Loading the sample in the 

RIE chamber. 4) RIE process. 5) Removal of residual 

mask resulting in the final device. 
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Another possible approach regarding the fabrication of 

SiO2:TiO2-based optical WGs is wet chemical etching. Wet 

chemical etching is much more cost-efficient than ICP-RIE 

and is more available for a vast majority of researchers. The 

technological process of chemical etching is also not as 

complicated as other technologies.  

The process of wet chemical etching is carried out in 

the following steps: mask deposition on the WG thin film 

by photolithography, chemical etching in an acid solution 

(e.g., HF), and finally mask removal to reveal the final  

WG structure. This method is especially beneficial for 

fabricating a small number of samples for research 

applications and laboratory use. However, this process is 

much more difficult to control and the repeatability of 

obtained results is not as obvious to achieve as in ICP-RIE. 

Also, chemical etching provides only isotropic etching 

which in some cases may not be desired [76]. Neverthe-

less, this method of fabrication gives satisfactory results  

[77–80]. 

On the other hand, rib WGs can also be fabricated by 

nanoimprint lithography (NIL). NIL is a simple fabrication 

method and has similar assets as the chemical etching 

technique. It is also a useful method for researchers and 

laboratory applications. However, it is not well-developed 

and widely explored for sol-gel-based materials. It is a 

fabrication technology with big potential regarding further 

development and automation. NIL could find applications 

in the future in foundries and big manufacturers of 

integrated photonics. It could be an approach that would 

dramatically lower the cost of production of photonic chips. 

The technological process of NIL stands in forming the 

WG structures before the hardening of the thin film. A 

droplet of SiO2:TiO2 sol-gel is deposited on the substrate 

and by pressing a previously prepared “master stamp”, the 

WG structures are transferred to the material. It is less 

complicated and easy to implement [47]. 

4. SiO2:TiO2 WG modal study 

Figure 4 shows the graphical illustration of a rib WG 

structure based on a SiO2:TiO2 material deposited on a 

glass substrate, where the height of WG film is denoted as 

Hfilm which is fixed at 400 nm obtained via dip-coating 

twice with approx. 200 nm at a single dip-coating cycle. 

While the modal conditions are obtained by varying the 

width (W) and height of the rib geometry (Hrib) from 

800 nm to 2500 nm and 50 nm to 350 nm, respectively. 

Practically, there are three modal regions of the optical WG 

which have to be explored: 1) Single-mode region: where 

only fundamental mode is confined. 2) Multi-mode region: 

where more than one mode appears due to the bigger 

dimensions of the WG. 3) Cut-off region: where no mode 

is confined due to smaller WG dimensions.  

The numerical study is performed by using the two-

dimensional finite element method (2D-FEM) via commer-

cially available COMSOL Multiphysics software. The 

FEM is a numerical technique used to solve partial 

differential equations (PDEs) and boundary value problems 

in engineering, physics, and other fields. It involves 

dividing a complex problem into smaller, simpler elements 

that can be individually analysed and then combined to 

approximate the solution to the original problem. In FEM, 

a large complex domain is approximated by a mesh of 

smaller, interconnected subdomains called finite elements. 

The governing equations are then applied to each element, 

resulting in a set of algebraic equations that can be solved 

for the unknowns at each node of the mesh. The method is 

widely used in structural mechanics, fluid dynamics, heat 

transfer, electromagnetic analysis, and other areas of 

engineering and physics. It allows for the efficient solution 

of complex problems that would be difficult or impossible 

to solve using analytical methods. 

The real part of the effective refractive index [Re(neff)] 

of the WG is determined for different WG dimensions 

which provide the information related to the number of 

modes confined in the specific WG geometry. The modal 

analysis is carried out at an operational wavelength of 

1550 nm. In Fig. 5, different regions of a mode confinement 

can be identified. The Hfilm is constant at 400 nm 

throughout the paper. At W = 800 to 2500 nm, a flexible 

fundamental single-mode confinement at different values 

of Hrib can be observed, but there is no mode confinement 

if the values of Hrib are increased from 190 nm at 

W = 800 nm, 230 nm at W = 1000 nm, and 280 nm at 

W = 1200 nm. Furthermore, W = 1500 nm, 1800 nm, 

2000 nm, and 2500 nm are the most flexible widths where 

WG stays single mode for a wide range of Hrib. 

In Fig. 6, the regions of mode confinement for the NIR 

wavelength range of 1000 nm to 1600 nm are determined 

for a specific WG geometry. The Hrib and Hfilm are kept 

constant at 200 nm and 400 nm, respectively. For 2500 nm 

≤ W ≥ 1000 nm, the fundamental mode region is obtained 

for the NIR wavelength range of 1360 nm to 1600 nm, 

while the WG supports a multimode for the wavelengths 

< 1360 nm. However, for W = 800 nm, the single-mode 

region lies in the wavelength range of 1200 nm to 1520 nm. 

For wavelengths shorter than 1200 nm, the WG is multi-

mode while it does not support any mode for wavelengths 

> 1520 nm.  

 

Fig. 4. Schematic representation of SiO2: TiO2-based rib WG. 

 

 
Fig. 5. Rib WG modal analysis for an operational wavelength of 

1550 nm. 
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The electric-field distribution in the rib WG structure at 

an operational wavelength of 1550 nm for W = 2500 nm at 

different Hrib is shown in Fig. 7(a)–(c). The single-mode 

conditions are quite flexible which is why the WG can only 

support fundamental mode at Hrib = 50 nm, 200 nm, and 

350 nm as shown in Fig. 7(a), Fig. 7(b), and Fig. 7(c), 

respectively.  

5. Minimizing the bending losses 

When a WG is bent, the 𝑛eff becomes complex, and its 

imaginary part is used to calculate the bend loss as follows 

[81] 

2𝛼 [
𝑑𝐵

𝑡𝑢𝑟𝑛
] =

20

ln(10)
×

2𝜋

𝜆
 × Im{𝑛eff} × 𝜋 × 2 × R, 

where Im{𝑛eff} is the imaginary part of the effective 

refractive index, R is the bending radius in μm, and λ is the 

operational wavelength, i.e., 1550 nm. To reduce the 

bending losses of the rib WG, an UC layer of refractive 

index (𝑛 = 1.3) of height (HUC) 400 nm is introduced. The 

suggested material for the UC layer is porous silica. It is a 

material that can be derived through the sol-gel method 

with the addition of a surface-active agent Triton X-100™ 

[82]. The introduction of UC at the top of the rib structure 

helps reduce the radius of curvature of the WG bend. As a 

reference point, the bending losses of the rib WG without 

UC are calculated for the radius (R) of 100 μm to 500 μm 

as shown in Fig. 8. The WGs designed near the cut-off 

region can suffer from higher bending losses. That is why, 

the width (W) of the WG has a vital impact on the bending 

losses, therefore, the analysis is performed for 

W = 1500 nm, 1800 nm, 2000 nm, and 2500 nm. By adding 

the UC of 𝑛 = 1.3, the difference in the bending losses for 

R can be compared as shown in Fig. 9. It is important to 

note here that by reducing the radius of curvature, we also 

reduce the footprint of the optical WG which is vital in the 

development of nano-optical devices. Some bending losses 

for R = 260 μm and varying W are shown in Table 1. 

 

Fig. 6. Modal conditions dependent on the broad wavelength range. 

 

 

Fig. 7. Electric-field distribution in SiO2:TiO2-based rib WG for 

the operational wavelength of 1550 nm.  

 

Fig. 8. Bending losses depending on the radius of curvature for 

a WG without the UC layer. 

 
Fig. 9. Bending losses depending on the radius of curvature for 

a WG with the UC layer.  

Table 1. 

 Bending losses for a WG with and without UCs. 

Bending losses of a WG with UC 

R [μm] W [nm] Bending losses [
𝑑𝐵

𝑡𝑢𝑟𝑛
] 

260 2500 0.038 

260 2000 0.43 

260 1800 1.93 

260 1500 > 50 

Bending losses of a WG without UC 

R [μm] W [nm] Bending losses [
𝑑𝐵

𝑡𝑢𝑟𝑛] 

260 2500 0.302 

260 2000 leaky 

260 1800 leaky 

260 1500 leaky 
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Finally, the E-field power distribution for the mode 

within the SiO2:TiO2-based rib WG has been considered. 

When studying the shape of the mode propagating inside 

the WG, it can be said that the majority of the E-field power 

resides in the core of the WG, whereas the remaining power 

is distributed in the substrate and the cladding region. This 

mainly depends on the optical properties of the material and 

the geometry of the WG structure. It is the natural 

behaviour of light propagating inside a WG. The effect can 

be observed when looking at the E-field distribution in 

Fig. 10. However, by introducing the previously mentioned 

additional UC layer, the mode is pulled up towards the UC. 

It happens due to the reduction of the contrast of refractive 

indices between the WG film and UC layer. In Fig. 10, the 

numerical analysis of the E-field distribution ratio is 

presented, detailing the amount of light traveling inside 

WG and within the substrate. 

The difference between the results obtained for a WG 

structure with and without an UC layer tends to show a 

regular relationship regardless of the Hrib. In Fig. 10, the E-

field distribution for the dimensions of Hrib = 350 nm and 

W = 1500 nm is shown for the WG structure with and 

without UC. In the case of WG without the UC layer, the 

amount of light inside the WC core is around 20% while 

within the substrate it is around 67%. When the UC has 

been applied, the results changed to ~23% inside the WG 

and ~58% within the substrate. The increase in the mode 

power inside the WG core and the reduction of mode 

leakage in the substrate might be one of the reasons why 

the application of the UC leads to lower bending losses.  

6. Conclusions 

Herein, a modal analysis of SiO2:TiO2-based rib WG is 

proposed to determine the single-mode, multi-mode and 

cut-off region of the structure. The study is conducted via 

the FEM. The high-quality SiO2:TiO2 WG films can be 

developed with the help of the sol-gel method and dip-

coating technique. The final processing of the WG 

structures can be obtained via RIE. The small radius of 

curvature of bent WGs is important for the implementation 

of photonic devices with a small footprint. That is why the 

bending losses of the WGs should be low for a small 

bending radius. Here, we have suggested using an UC layer 

of porous silica which significantly reduces bending losses 

of the rib WG compared to the WG structures without an 

UC layer.  
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