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1. Introduction  

Laser diffraction is a widely used technique for 

determining particle size distribution distinguished by its 

large measurement range, fast and easy measurement, and 

good repeatability. It is based on a direct measurement of 

the angular power distribution of scattered light resulting 

from the passage of a laser beam through a set of test 

particles. By making appropriate simplifying assumptions 

for the phenomenon of light scattering in a particle system, 

we can formulate a simple physical measurement model. It 

combines the directly measured angular power distribution 

of the scattered light with a calculated particle size 

distribution function in the form of the Fredholm integral 

equation of the first kind. The calculation of the particle 

size distribution function based on this measurement model 

is an example of an inverse problem and various 

computational techniques have been developed for its 

solving. The Tikhonov method [1, 2] and the modified 

Twomey method [3, 4] were used to calculate two narrow 

particle size distributions (coefficient of variation <5%) 

and their sum.  

Since the solutions obtained were considerably over-

smoothed, two new ways of obtaining more correct results 

for narrow particle distributions were proposed in this 

work. They are based on the appropriate use of the above 

methods. The first proposed way is a two-step approach 

using the Tikhonov method. Here, a solution (using 

Tikhonov method) for the output equation describing the 

inverse problem was first calculated. Then, the output 

equation with the obtained solution was scaled and (also 

using Tikhonov method) this new scaled output equation 

was solved. It turns out that such a two-step approach 

results in a solution with significantly less over-smoothing. 

The second proposed way uses a modified Twomey 

method. The Twomey method [5–7] was modified by 

Igushi and Yoshida [3, 4]. By introducing appropriate 

weighting functions into the calculation method used by 

Twomey, they obtained a fast and stable algorithm for 

solving the inverse problem described by the Fredholm 

equation of the first kind. For this method, for singular 

distributions, the fundamental problem is the number of 

iterations to be taken for calculations to obtain the correct 
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distribution (the parameters of the distribution, especially 

its width, depend on the number of iterations). Since the 

authors of the modified Twomey method did not provide a 

criterion for choosing the number of iterations, this paper 

proposes a criterion to find the optimal number of iterations 

for singular distributions. In this paper, a way to reduce the 

broadening of the result occurring for this method for the 

sum of two narrow distributions was proposed. This can be 

achieved by appropriately calculating the individual 

singular distributions, sequentially, on the basis of the 

initially obtained distribution for their sum.  
The particle size distributions calculated by the above 

ways were approximated by Gaussian and bimodal 

Gaussian functions, respectively, using the Levenberg-

Marquardt method [8, 9]. The results obtained by these 

means were compared with those obtained with the 

nanoDS instrument (CILAS).  

Since in this work, the particles are placed in water 

inside a quartz cuvette with a square base, a numerical 

correction of the scattering angle for the Snell’s law of 

refraction and the foreshortening effect [10] was applied. 

Also, corresponding relations between the scattering angle 

and the rotation angle of the photomultiplier (PMT) were 

found to allow an easy calculation of the kernel function of 

the Fredholm integral. Applied laser diffraction method 

measures the volume-equivalent radius of a particle defined 

as the radius of a sphere with a volume equal to that of the 

particle.  

2. Mathematical model  

2.1. Assumptions 

The following assumptions have been made in a 

mathematical model of problem: 

• incident light on particles is a monochromatic plane 

wave, linearly polarized with a wavelength λ (in 

vacuum), 

• tested particles are spherical, homogeneous, isotropic 

with a known refractive index nr, 

• set of particles under study is placed in a homogeneous, 

isotropic medium with a known refractive index no, 

• there is no significant multiple scattering, 

• scattering image from a set of particles is the sum of 

images given by individual particles. 

For these assumptions, a model of light scattering from 

a single particle (Fig. 1) based on Mie [11, 12] theory can 

be adopted. Thus, a mathematical model for measuring the 

power of light scattered from a set of particles in the form 

of an integral Fredholm equation of the first kind can be 

formulated 

𝑃𝑠(𝜃) = ∫ [
3

4𝜋𝑟3
 𝐾(𝜃,𝑟)]

∞

0

𝑛𝑣(𝑟)𝑑𝑟, (1) 

where: 𝑃𝑠(𝜃) – the power of light scattered at an angle 𝜃 to 

the direction of incident light from a set of 𝑛𝑣(𝑟) measured 

by a detector with a solid angle Ω, 𝜃 – the angle between 

the direction of propagation �̅�0 of the light wave (�̅�𝑖 – the 

direction of the electric vector) and the direction of 

scattering �̅�𝑠 (Fig. 1), 𝑛𝑣(𝑟) – the density of a particle size 

distribution (radii of spheres) weighted by volume 

described as 

𝑛𝑣(𝑟) =
4𝜋𝑟3

3
𝑛𝑛(𝑟), 

where: 𝑛𝑛(𝑟) – the density of a particle size distribution 

(radii of spheres) weighted numerically, 

𝑘1
2             

]

Ω

𝑑Ω , (2) 

where 𝜑 – the angle between the scattering plane and the 

direction of the vector �̅� of the incident wave, 𝐼𝑝 – the 

intensity of light incident on the particle,  𝑘1 =
2𝜋

𝜆
𝑛o, 𝜆 – 

the wavelength of light in vacuum, 𝑟 – the radius of the 

particle and 

𝑆1(𝜃, 𝑟)

= ∑
2𝑛 + 1

𝑛(𝑛 + 1)

∞

𝑛=1

[𝑎𝑛(𝑟)𝜋𝑛(cos 𝜃) + 𝑏𝑛(𝑟)𝜏𝑛 (cos 𝜃)], 

𝑆2(𝜃, 𝑟)

= ∑
2𝑛 + 1

𝑛(𝑛 + 1)

∞

𝑛=1

[𝑎𝑛(𝑟)𝜏𝑛(cos 𝜃) + 𝑏𝑛(𝑟)𝜋𝑛 (cos 𝜃)], 

𝜋𝑛(cos 𝜃) =
𝑃𝑛

1 (cos 𝜃)

sin𝜃
, 

𝜏𝑛(cos 𝜃) =
𝑑𝑃𝑛

1 (cos 𝜃)

𝑑𝜃
, 

𝑎𝑛(𝑟) =
𝑚𝜓𝑛(𝑚𝑥)𝜓𝑛

′ (𝑥) − 𝜓𝑛 (𝑥)𝜓𝑛
′ (𝑚𝑥)

𝑚𝜓𝑛(𝑚𝑥)𝜉𝑛
′ (𝑥) − 𝜉𝑛 (𝑥)𝜓𝑛

′ (𝑚𝑥)
, 

𝑏𝑛(𝑟) =
𝜓𝑛(𝑚𝑥)𝜓𝑛

′ (𝑥) − 𝑚𝜓𝑛 (𝑥)𝜓𝑛
′ (𝑚𝑥)

𝜓𝑛(𝑚𝑥)𝜉𝑛
′ (𝑥) − 𝑚𝜉𝑛 (𝑥)𝜓𝑛

′ (𝑚𝑥)
, 

where: 𝑚 =
𝑛𝑟

𝑛o
, 𝑥 =

2𝜋𝑟

𝜆
𝑛o – parameter Mie, 𝑃𝑛

1 – the 

associated Legendre function of  the first kind degree 𝑛 of 

order 1, 𝜓𝑛 , 𝜉𝑛 – the Riccati-Bessel functions. 

The kernel function 𝐾(𝜃, 𝑟) determines the power of 

light scattered from a particle with the radius 𝑟 observed on 

a detector with the solid angle Ω set at the angle (𝜃, 𝜑) to 

the direction of the incident light wave +𝑧 (Fig. 1). It is 

independent of the angle 𝜑 because the scattering image 

described by Mie theory for a spherical particle has axial 

symmetry about the axis 𝑧. 

 

Fig. 1. Single particle scattering geometry. 

 

𝐾(𝜃,  𝑟)  =  
𝐼𝑝  

∬  [
|𝑆1(𝜃,  𝑟)|2sin2𝜑

+|𝑆2(𝜃,  𝑟)|2cos2𝜑
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𝑃𝑠(𝜃𝑖) = ∑ 𝐾1(𝜃𝑖 ,

𝑛

𝑗=1

𝑟𝑗)𝑛𝑣(𝑟𝑗), (3) 

where: 𝑃𝑠(𝜃𝑖) – the power of scattered light, measured by 

the detector for the angle 𝜃𝑖, 

𝐾1(𝜃𝑖 , 𝑟𝑗) =
3

4𝜋𝑟𝑗
3 𝐾(𝜃𝑖 , 𝑟𝑗)∆𝑟, (4) 

𝑛𝑣(𝑟𝑗) – the sought density of a volume distribution of 

particles with the radius 𝑟𝑗  belonging to class j and  

𝜃𝑖 = 𝜃𝑚𝑖𝑛 + (𝑖 − 0.5)∆𝜃,  ∆𝜃 =
𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

𝑛
, 

𝑖 = 1 … 𝑛;   

𝑟𝑗 = 𝑟𝑚𝑖𝑛 + (𝑗 − 0.5)∆𝑟,  ∆𝑟 =
𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛

𝑛
, 

  𝑗 = 1 … 𝑛;  𝑛 − number of measurements. 

The kernel function 𝐾(𝜃𝑖, 𝑟𝑗) is calculated from the 

scattering model Mie (2) for a particle with the radius 𝑟𝑗  and 

the scattering  angle  𝜃𝑖 by applying an appropriate 

algorithm to calculate this scattering [14]. To find the 

solution 𝑛𝑣(𝑟) for the problem described by the set of (3), 

the following inverse methods were used: 

• linear – Tikhonov regularization [1, 2] (the regulariza-

tion parameter was selected using the L-curve method 

[15–17]), 

• nonlinear – modified Twomey method [3, 4]. 

2.3. Measurement geometry 

The geometry of the measurement is shown in Fig. 2. 

The He-Ne laser light propagating along the axis 𝑧 (in the 

+𝑧 direction) illuminates several particles located on this 

axis. They are suspended in water inside a quartz cuvette in 

the shape of a square cuboid with a side square L = 10 mm. 

The centre of the horizontal cross section of the cuvette lies 

on the 𝑧-axis at a distance 𝑧𝑎 from the laser beam waist 

(𝑧 = 0), and coincides with the rotation centre of the PMT, 

located on an arm of length R = 490 mm. 

In order to calculate the kernel function 𝐾(𝜃𝑖 , 𝑟𝑗), both 

the measurement geometry and the physical phenomena 

affecting, the measurement result should be taken into 

account. Therefore, first, the effect of the refraction of 

scattered light on the back wall of the cuvette on the change 

in the PMT detection angle 𝜃𝑖 must be taken into account. 

The effect of scattered light refracted on the cuvette side 

wall should also be considered, as well as the effect of the 

transmission of scattered light through back and side wall 

of the cuvette. The change in the effective solid angle of the 

PMT with change in a rotation angle (due to refraction of 

the scattered light) to the magnitude of power measured by 

the PMT should also be taken into account. Furthermore, it 

should be noted that influence of these phenomena also 

depends on the position of the scattering particle inside the 

cuvette.  

For any particle k located at a distance 𝑧𝑘 from the beam 

waist (𝑧 = 0), and at a distance 𝑥𝑘 from the back wall of the 

 
Fig. 2. Measurement geometry. 

 

2.2.  Inverse problem

Determination  of  the  density  function  of  the  volume

distribution  𝑛𝑣(𝑟)  appearing  in  (1)  is  an  example  of  an

inverse problem, ill-posed in the sense that small changes

in  the  data  (due  to  measurement  errors)  can  cause

arbitrarily  large  changes  in  the  solution.  The  existence,

explicitness,  and  stability  of  the  solution  to  this  problem

can be ensured by using generalized solutions in the sense

of the least squares and  regularization.  The  measured signal

𝑃𝑠(𝜃)  is available only for a finite number of quantities  𝜃
contained in the interval of  (𝜃𝑚𝑖𝑛 ,  𝜃𝑚𝑎𝑥). Because of this,

the continuous model  has been replaced  with an approxi-

mate  discrete linear model. It is  in  the form of a system of

linear algebraic equations  obtained  by applying numerical

integration by the method of rectangles in the finite interval

of  (𝑟𝑚𝑖𝑛  ,  𝑟𝑚𝑎𝑥)  [13].  Evenly  and  quantitatively  equal

subintervals  were  assumed  for  the  arguments  𝜃  and  𝑟.

Then,  equation (1)  can  be  approximated as

https://doi.org/10.24425/opelre.2023.145497
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cuvette, we can derive an equation giving dependence of 

the scattering angle 𝜃1𝑖𝑘 on the detection (rotation) angle of 

the PMT 𝜃𝑖 in the presence of refraction on the back wall. 

From Fig. 2, a system of equations  [10] can be obtained 

𝑅 cos 𝜃𝑖 =
𝐿

2
+ 𝑟1𝑖𝑘 cos 𝜃01𝑖𝑘   

𝑅 sin 𝜃𝑖 = 𝑥𝑘 tan 𝜃1𝑖𝑘 + 𝑟1𝑖𝑘 sin 𝜃01𝑖𝑘 (5) 

sin 𝜃01𝑖𝑘 = 𝑛𝑜 sin 𝜃1𝑖𝑘 . 
 

Hence, the following relation 𝜃1𝑖𝑘 from 𝜃𝑖 is obtained: 

[(1 − 𝑛𝑜
2(1 − 𝑡))(𝑡𝑅2sin2𝜃𝑖 + 𝑥𝑘

2(1 − 𝑡))

− (𝑅 cos 𝜃𝑖 −
𝐿

2
)

2

𝑛𝑜
2(1 − 𝑡)𝑡]

2

= 4𝑅2𝑥𝑘
2sin2𝜃𝑖(1 − 𝑛𝑜

2(1 − 𝑡))
2

(1 − 𝑡)𝑡, 

(6) 

where  𝑡 = cos2𝜃1𝑖𝑘  , 𝑛o – the water refractive index, 𝑅 – 

the PMT rotation radius, 𝑥𝑘 – the distance of particle k from 

the cuvette back wall, 𝜃𝑖 – the PMT rotation angle, 𝜃1𝑖𝑘 – 

the angle of light scattering on a particle k incident after 

refraction on the back wall of the cuvette onto the centre of 

the PMT rotated by the angle 𝜃𝑖 . 
Similarly, a dependence of the angle 𝜃2𝑖𝑘 on 𝜃𝑖  for the 

scattering incident on the PMT after refraction on the 

cuvette side wall can be described. For both equations, the 

solution using the Cardano formulae for the fourth-degree 

equation can be found. 

However, in order to more easily calculate the power of 

light scattered at angle 𝜃1𝑖𝑘 measured by the PMT rotated 

at angle 𝜃𝑖 ,  the theoretical PMT rotation angle 𝜃0𝑖𝑘  for this 

scattering angle (𝜃1𝑖𝑘) was found assuming the absence of 

refraction from the quadratic equation 

𝑅2cos2𝜃0𝑖𝑘 − 2𝑅(𝑧𝑘 − 𝑧𝑎)(1 − cos2𝜃1𝑖𝑘) cos 𝜃0𝑖𝑘

+ (𝑧𝑘 − 𝑧𝑎)2 (1 − cos2𝜃1𝑖𝑘) − 𝑅2cos2𝜃1𝑖𝑘 = 0,  
(7) 

where 𝑧𝑎 – the position of the PMT centre of rotation on 

the axis 𝑧, 𝑧𝑘 – the position of particle 𝑘 on the axis 𝑧. 

2.4. Calculation of the kernel function K(θi , rj ) 

Since Mie formulae describe the scattered field in  

the spherical coordinate system of the scattering particle 

(𝜃1𝑖𝑘 , 𝜑1𝑖𝑘), these formulae need to be transformed to the 

spherical coordinate system of the PMT rotation centre and 

rotated by the theoretical angle 𝜃0𝑖𝑘. Then, the power of the 

scattered light 𝑃𝑠 𝑖𝑗𝑘 from the particle 𝑧𝑘 of the radius 𝑟𝑗  

measured by the PMT located at angle 𝜃0𝑖𝑘 to the direction 

of incident light +𝑧, at a distance R from the axis of rotation 

is (2) 

𝑃𝑠 𝑖𝑗𝑘 =
𝐼𝑝

𝑘1
2 ∫ ∫ [

|𝑆1(cos𝜃1𝑖𝑘, 𝑟𝑗)|
2

sin2𝜑1𝑖𝑘

      +|𝑆2(cos𝜃1𝑖𝑘, 𝑟𝑗)|
2

cos2𝜑1𝑖𝑘

]

arctg
𝑟𝑜
𝑅

0

2𝜋

0

 

 ∙ sin𝜃2𝑑𝜃2𝑑𝜑2, 

(8) 

where 

cos𝜃1𝑖𝑘

=
𝑅(cos𝜃2cos𝜃0𝑖𝑘 − cos𝜑2sin𝜃2sin𝜃0𝑖𝑘) + 𝑧𝑎 − 𝑧𝑘

√𝑅2 + 2𝑅(𝑧𝑎 − 𝑧𝑘)(cos𝜃2cos𝜃0𝑖𝑘−cos𝜑2sin𝜃2sin𝜃0𝑖𝑘)+(𝑧𝑎−𝑧𝑘)2
 

𝜑1𝑖𝑘 = arctg
sin𝜑2sin𝜃2

cos𝜃2sin𝜃0𝑖𝑘 + cos𝜑2sin𝜃2cos𝜃0𝑖𝑘
 

𝑟0 – the radius of the PMT lens aperture. 

Summing by the number of N particles located on the 

axis 𝑧 inside the cuvette, we obtain the following equation: 

𝐾(𝜃𝑖 , 𝑟𝑗) = ∑ 𝑃𝑠 𝑖𝑗𝑘

𝑁

𝑘=1

 . (9) 

3. Experiment 

In order to measure an angular distribution of the 

scattered light power, a laboratory angular scatterometer 

built at IOE [18] and shown schematically in Fig. 3 was 

used. A linearly polarised (parallel) laser beam L (He-Ne, 

Meredith Instruments) passes successively through a quartz 

flat-parallel  plate PP, a  diaphragm D, and through  the 

centre of a horizontal cross section of a quartz cuvette C 
(Hellma GmbH) with a square base, containing a 

suspension of spherical polystyrene (PS) particles in water. 

Power of the incident beam on cuvette is 𝑃o = 7 mW.  

Distance between opposite walls inside the cuvette is 

L = 10 mm, wall thickness equals 1 mm. To measure the 

scattered light power 𝑃𝑠, a PMT (H-5784 Hamamatsu) 

placed on a rotating arm at a distance R = 490 mm from 

the centre of rotation, coinciding with the centre of the 

cuvette cross-section was used. Both the cuvette and PMT 

were attached to a rotating table and a rotating arm, 

respectively, using precision adjustment table systems 

allowing the scatterometer to be adjusted. The rotation 

accuracy of the stepper motor-turned SM  (Nanotec)  table 

is 0.01°. The power of light incident on the cuvette was 

obtained by measuring the power of the reference beam 𝑃𝑟  

 

Fig. 3. Schematic of a laboratory angle scatterometer. 
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• radius of the Gaussian beam at the beam waist: 

𝑤0 = 0.4 mm, 

• distance of the PMT lens aperture from the rotation 

centre: 𝑅 = 490 mm, 

• radius of the PMT lens aperture: 𝑟0 = 1.5 mm, 

• radius of the Gaussian beam for 𝑧 = 𝑧𝑎: 

𝑤(𝑧𝑎) = 0.6659 mm. 

The model of a series of equidistant particles located on 

the 𝑧-axis inside the cuvette symmetrically to the centre of 

rotation was adapted. It was assumed that the laser beam 

illuminating this series of particles is a plane wave with the 

constant intensity 𝐼𝑝 equal to the intensity of the beam for 

the centre of rotation. For the above data 

 
Fig. 4. Measurement of scattering power and background as a 

function of the scattering angle for particles with a radius 

of 0.676 µm. 

 
Fig . 5. Measurement of scattering power and background as a 

function of the scattering angle for particles with a radius 

of 1.573 µm. 

 
Fig. 6. Measurement of scattering power and background as a 

function of the scattering angle for a mixture of particles. 
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on  a  laser  power  meter  PM  (LaserMateQ Coherent). The

program  that  controls  the  automatic  operation  of  the

laboratory scatterometer (in Matlab) uses an NI6014 data

acquisition  card  (National  Instruments).  For  the  study,

uncertified  two  initial  samples  (CV  <  5%)  containing  by

weight 10% spherical  PS  particles in aqueous suspension

with  mean  radius  and  standard  deviations  were  used

respectively:  0.685  µm  and  0.020  µm  (PS-R-L2614),  as

well  as  1.605  µm  and  0.035  µm  (PS-R-B1270-2)  by

Microparticles  GmbH. From these initial samples, after an

appropriate  dilution  (to  avoid  the  significant  effect  of

multiple scattering [19]), test samples were prepared with

volume  concentrations  of  about  1·10−4%  and  about

9.6·10−4  %, respectively.

  A  mixture  sample  of  the  above  materials  was  also

prepared. After diluting the initial samples, particle volume

concentrations were obtained for the  mixture, respectively:

2.4·10−4% and 6.4·10−4  % also allowing to avoid the effect

of multiple scattering.

  The  method  of  preparing  the  samples  for  the

measurement  was  the  following:  the  company  container

with particles was first subjected to gentle stirring with a

magnetic stirrer, and then placed in an ultrasonic bath for

several minutes to distribute the container particles evenly

in the water. Then, a certain amount of the suspension thus

prepared  from  the  company  container  was  added  to  the

appropriate amount of the filtered water (to eliminate any

scatterers other than the  PS  spheres) to obtain the desired

concentration.  The  new  sample  thus  obtained  was  gently

re-stirred and then placed in an ultrasonic bath for several

minutes to distribute the particles evenly in the water and

remove  air  bubbles.  The  suspension  thus  prepared  was

gently placed in a clean quartz cuvette, the sides of which

were additionally cleaned with spirit (denatured with ether).

  Scattered light power measurements were conducted in

a darkened room for  the  range of angles  𝜃𝑖: from  7°  to 41°

every  1°  from direction of  the  incidence of the laser beam

(+𝑧).  Before  the  actual  angular  scattering  measurements

from the prepared samples, a background measurement  –
an angular measurement of the light scattering power from

a cuvette filled with water was performed. The background

measurement data were subtracted from the measurement

data  of the samples. The results of the measurements are

shown in  Figs.  4–6.

  Since the samples tested were not certified, comparative

measurements  were  made  using  a  nanoDS  instrument

(CILAS).  The  following  results  (mean  radius,  standard

deviation) were obtained:

• for the sample PS-R-L2614: (0.676  µm,  0.031  µm)

• for the sample PS-R-B1270-2: (1.573  µm, 0.041  µm).

4.  Calculations

The following data were used for the calculations:

• wavelength of  the  laser light (in vacuum):  𝜆  =  0.6328  µm,

• refractive index of the medium (H2O) [20]:  𝑛o  =  1.3317,

• refractive  index  of  the  particle  material  [21]:

𝑛𝑟  =  1.5824+0.0005I,

• power  of  the  laser  beam  incident  on  the  particles:

𝑃𝑝  =  6.84  mW,

• distance of the rotation centre from the Gaussian beam 
waist:  𝑧𝑎  =  1057  mm,

https://doi.org/10.24425/opelre.2023.145497


 A. Pawlata, B. Bartosewicz /Opto-Electronics Review 31 (2023) e145497 6 

𝐼𝑝 =
2𝑃𝑝

𝜋𝑤(𝑧𝑎)2
= 9820

W

cm2
 . 

For the calculation of the function 𝐾(𝜃𝑖, 𝑟𝑗), the values 

of the angle 𝜃𝑖 were assumed to be the same as the adopted 

values of the PMT rotation angle when measuring the 

power of scattered light (identical for three suspensions of 

microparticles tested), that is: 𝜃1 = 7°  every ∆𝜃 = 1° to 

𝜃35 = 41o. The values of the radius 𝑟𝑗 were adopted 

depending on the size of the tested microparticles: 

• for particles with a radius of 0.685 µm: 𝑟1 =
0.220 μm  every  ∆𝑟 = 0.040 μm to 𝑟35 = 1.580 μm, 

• for particles with a radius of 1.605 µm: 𝑟1 =
0.730 μm  every  ∆𝑟 = 0.060 μm to 𝑟35 = 2.770 μm, 

• for mixture of the above particles: 𝑟1 =
0.385 μm  every  ∆𝑟 = 0.070 μm to 𝑟35 = 2.765 μm. 

Preliminary calculations were carried out for a single 

scattering particle located on the rotation axis, and for 10 

and 20 particles evenly distributed on the 𝑧-axis inside the 

cuvette. For each particle, the power of the scattered light 

given by the PMT was separately counted as a function of 

the angle 𝜃𝑖 and the radius 𝑟𝑗, and then the powers from 

individual scatterers were summed. It turned out that for a 

given measurement geometry (Fig. 2), for a detection 

angle 𝜃𝑖 ∈ (7o, 41o), the effect of the scattered light 

refracted on the side wall of the cuvette and the effect of 

the transmission of the scattered light on the amount of 

power given by the PMT is negligible. In addition, it was 

found out that by solving the inverse problem (with the 

modified Twomey method) for the 10-particle and 20-

particle model and then applying the Levenberg-Marquardt 

approximation to the Gaussian function for the calculated 

solutions, the same parameters of the distributions were 

obtained. And also that there are small differences in these 

parameters for the 1-particle model in the rotation axis. 

Therefore, a model of 10 particles equidistant from each 

other inside the cuvette was adopted. 

4.1. Solution by the first way using the Tikhonov method 

Equation (3) can be written in matrix form 

𝑷𝒔 = 𝑲𝟏𝒏𝒗, (10) 

then the solution obtained by the Tikhonov method is given 

by the formula [1, 2] 

𝒏𝒗 = (𝑲𝟏𝑇𝑲𝟏 + 𝛼1𝑰)−1𝑲𝟏𝑇𝑷𝒔, (11) 

where: 𝑰  –  the identity  matrix,  𝛼1  –  the regularization para- 
meter obtained from L-curve criterion [15–17].  

L-curve is a set of points (log‖𝑲𝟏𝒏𝒗
𝛼1 − 𝑷𝒔‖

2
, 

  log‖𝒏𝒗
𝛼1‖

2
) depending on 𝛼1, ‖𝒏𝒗

𝛼1‖
2
 – the solution norm 

for the parameter 𝛼1, ‖𝑲𝟏𝒏𝒗
𝛼1 − 𝑷𝒔‖

2
 – the residual norm 

for 𝛼1. The L-curve criterion is as follows: the optimal 

regularization parameter 𝛼1𝑜𝑝𝑡 corresponds to the point of 

the L-curve with the maximum curvature.  

To improve the solution obtained by the Tikhonov 

method for narrow distributions (for these distributions, 

there is a significant over-smoothing of the obtained 

results), equation (10) was modified by scaling it with the 

diagonal matrix  for the solution  obtained from (11) 

for this formula. Then, 

𝑷𝒔 = (𝑲𝟏 𝑵𝒗)(𝑵𝒗
−1 𝒏𝒗) = 𝑲𝟐𝒏𝒗1, (12) 

where 

𝑲𝟐 = 𝑲𝟏𝑵𝒗,  𝒏𝒗1 = 𝑵𝒗
−1𝒏𝒗,  𝑵𝒗 = 𝑑𝑖𝑎𝑔(𝒏𝒗). 

For the new equation (12), the solution by the Tikhonov 

method is found 

𝒏𝒗1 = (𝑲𝟐𝑇𝑲𝟐 + 𝛼2𝑰)−1𝑲𝟐𝑇 𝑷𝒔. (13) 

Then, we find the parameter 𝛼2 from the new L curve 

for (12) and finally 

𝒏𝒗 = 𝑵𝒗𝒏𝒗1. (14) 

The  solution 𝒏𝒗 applies to both single particle 

distributions and their sum. To approximate the solution 

𝒏𝒗 to a Gaussian distribution, the Gaussian function 𝑓𝑔  was 

fitted using the Levenberg-Marquardt method [8, 9] to 

solutions for single particle distributions and, accordingly, 
the bimodal Gaussian function 𝑓𝑏𝑔 for their sum. We can 

write the functions 𝑓𝑔 and 𝑓𝑏𝑔 in the form 

𝑓𝑔 =
𝑎

𝜎√2𝜋
𝑒

−(𝑟−�̅�)2

2𝜎2 = (𝑎, �̅�, 𝜎), 

𝑓𝑏𝑔 =
𝑎1

𝜎1√2𝜋
𝑒

−(𝑟−𝑟1̅̅ ̅)2

2𝜎1
2

+
𝑎2

𝜎2√2𝜋
𝑒

−(𝑟−𝑟2̅̅ ̅)2

2𝜎2
2

= (𝑎1, 𝑟1̅, 𝜎1, 𝑎2, 𝑟2̅, 𝜎2) . 

4.2. Solution by the second way using the modified 

Twomey method 

Equation (3) can be written in a simplified form as 

𝑃𝑠(𝑖) = ∑ 𝐾1(𝑖, 𝑗) 𝑛𝑣

𝑛

𝑗=1

(𝑗) ,  𝑖 = 1 … 𝑛. (15) 

An initial constant value of the distribution sought: 

𝑛𝑣
0(𝑗) = [1,1,1,…1], and the number of iterations: 𝑙 can 

be assumed. The solution by the modified Twomey method 

is given as a successive iterative approximation of the 

function  𝑛𝑣
𝑙 (𝑗) calculated from the formula [3, 4] 

𝑛𝑣
𝑙 (𝑗) = 𝑛𝑣

𝑙−1(𝑗) ∏ {1 +
2[𝑎𝑙−1(𝑖) − 1]𝐾2(𝑖, 𝑗)

𝑀𝑎(𝑗)
}

𝑛

𝑖=1

 , 

 𝑖, 𝑗 = 1 … 𝑛 

(16) 

where 

𝑎𝑙−1(𝑖) =
𝑃𝑠(𝑖)

max[𝐾1(𝑖)] 𝑃𝑠𝑐
𝑙−1(𝑖)

, 

 𝑵𝒗 𝒏𝒗
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𝑃𝑠𝑐
𝑙−1(𝑖) = ∑ 𝐾2(𝑖, 𝑗)𝑛𝑣

𝑙−1

𝑛

𝑗=1

(𝑗), 

𝐾2(𝑖) =
𝐾1(𝑖)

max[𝐾1(𝑖)]
, 

𝑀𝑎(𝑗) = ∑ 𝐾2(𝑖, 𝑗)

𝑛

𝑖=1

. 

Initial solutions for the densities of the volume 

distributions 𝑛𝑣 were obtained for the number of iterations 

𝑙 = 90, both for the individual narrow distributions and for 

their sum. Fitting was then performed with the Gaussian 

function 𝑓𝑔 and the bimodal Gaussian function 𝑓𝑏𝑔 using 

the Levenberg-Marquardt method to the corresponding 

solutions. 

It turned out, compared with the results obtained with 

nanoDS, that these solutions determine the average radii for 

individual distributions quite well and a bit worse for their 

sum (like the Tikhonov method). However, to reduce the 

occurring broadening of the distributions (less than in the 

Tikhonov method), additional calculations were introduced 

into the calculation algorithms to better approximate the 

distribution width parameter. 

4.2.1 Singular narrow distributions 

For the singular narrow distributions, an optimisation 

was made of the 𝑛𝑣
𝑙   distributions calculated for each 

iteration l with respect to measured data. To this end, an 

additional parameter sigma(l) was calculated for an 

assumed sufficiently large number of iterations l, and it was 

then determined for which value 𝑙 = 𝑙𝑜𝑝𝑡  the parameter 

sigma (l) reaches the minimum. 

sigma(𝑙)

= √
1
𝑛

∑ [(
𝑠1(𝑖, 𝑙)

max(𝑠1)
−

𝑃𝑠(𝑖)

max(𝑃𝑠)
) /

𝑃𝑠(𝑖)

max(𝑃𝑠)
]

2

,
𝑛

𝑖=1

 
(17) 

where 

𝑠1(𝑖, 𝑙) = ∑ 𝐾1(𝑖, 𝑗)𝑛𝑣
𝑙

𝑛

𝑗=1

(𝑗). 

For the distribution 𝑛𝑣

𝑙𝑜𝑝𝑡
 thus obtained, after fitting 

with the Gaussian function (Levenberg-Marquardt method), 

the parameters (𝑎, �̅�, 𝜎) of the distribution were obtained. 

4.2.2 Sum of two narrow distributions 

For the sum of two single narrow distributions, a 

different method was used. The values 𝑟1̅ and 𝑟2̅ obtained 

from the bimodal Gaussian fit for 𝑙 = 90 were assumed to 

be correct (the difference between them and the values 

obtained for the single distributions is about 1%). In order 

to determine more precisely the width of the first 

distribution 𝜎1, the appropriately normalised data  

𝑠2(𝑖) = ∑ 𝐾1(𝑖, 𝑗)
𝑎2

𝜎2√2𝜋

𝑛

𝑗=1

𝑒

−(𝑟𝑗−𝑟2̅̅ ̅)
2

2𝜎2
2

 

corresponding to the less broadened second distribution 

were first subtracted from the measured data Ps.  

For the new data thus obtained, a new single first 

distribution (for 𝑙 = 90) was calculated, and a Gaussian 

function was fitted to it. Hence, the corrected width of the 

first distribution (𝜎1) was obtained. In an analogous 

manner, the new corrected width of the second distribution 

was calculated by subtracting the appropriately normalised 

data corresponding to the new corrected first distribution 

from the measured data. Next, optimisation of the height of 

the new bimodal Gaussian first peak (with new peak 

widths) was performed against the measured data by taking 

the parameter 𝑎1 of the bimodal Gaussian as a variable and 

calculating for which value of 𝑎1 the expression below 

reaches the minimum 

√
1

𝑛
∑ [(

𝑑(𝑖, 𝑎1)

max(𝑑)
−

𝑃𝑠(𝑖)

max(𝑃𝑠)
) /

𝑃𝑠(𝑖)

max(𝑃𝑠)
]

2

,

𝑛

𝑖=1

 (18) 

where 

𝑑(𝑖, 𝑎1) = ∑ 𝐾1(𝑖, 𝑗)𝑓𝑏𝑔

𝑛

𝑗=1

(𝑗, 𝑎1). 

4.3. Calculations results 

As a result of the calculations, the frequency curve 

𝑞3(𝑟𝑗) and the cumulative curve 𝑄3(𝑟𝑗) were obtained for 

a volume-weighted distribution [22] 

𝑞3(𝑟𝑗) =
𝑛𝑣(𝑟𝑗)

∑ 𝑛𝑣(𝑟𝑗)𝑛
𝑗=1

, (19) 

𝑄3(𝑟𝑘) = ∑ 𝑞3(𝑟𝑗)∆𝑟

𝑘

𝑗=1

. 
 

Figures 7 and 8 present the first distribution obtained by 

the Tikhonov method and by the first way using Tikhonov 

method. Second distribution obtained by analogy is shown 

in Figs. 9 and 10.  

In the Tikhonov method, for both single particle 

distributions, the solutions obtained in the form of Gaussian 

distributions have the positions of both maxima �̅� close to 

the corresponding values obtained with nanoDS, while the 

widths of these distributions σ are three times and two times 

higher than the corresponding results obtained with 

nanoDS (Figs. 7, 9). After rescaling the obtained solutions 

of the initial equations and then solving the new equations 

using the Tikhonov method, new solutions were obtained 

in the form of Gaussian distributions with much smaller 

widths and small changes in the positions of the maxima 

(Figs. 8, 10) compared to the results obtained for the 

unscaled equations.  

Sum of two distributions obtained by the Tikhonov 

method and by the first way using the Tikhonov method is 

presented in Figs. 11 and 12. 
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First distribution obtained by the Tikhonov method 

   
(a) (b) (c) 

Fig. 7. (a) Gaussian fit to the q3 calculations result obtained by the Tikhonov method. Parameters obtained: (a, �̅�, σ) = (0.00003448, 

0.679 µm, 0.105 µm). (b) Comparison with Gauss obtained from measurements with nanoDS: (a, �̅�, σ) = (0.00007917, 0.676 µm, 

0.031 µm). (c) L-curve and regularisation parameter α. 

First distribution obtained by the first way using Tikhonov method 

   
(a) (b) (c) 

Fig. 8. (a) Gaussian fit to the q3 calculations result obtained by the first way using Tikhonov method. Parameters obtained: (a, �̅�, σ) = 

(0.00003432, 0.680 µm, 0.057 µm). (b) Comparison with Gauss obtained from measurements with nanoDS. (c) L-curve and 

regularisation parameter α. 

Second distribution obtained by the Tikhonov method 

   
(a) (b) (c) 

Fig. 9. (a) Gaussian fit to the q3 calculations result obtained by the Tikhonov method. Parameters obtained: (a, �̅�, σ) = (0.00004998, 

1.573 µm, 0.091 µm). (b) Comparison with Gauss obtained from measurements with nanoDS: (a, �̅�, σ) = (0.0001028, 1.573 µm, 

0.041 µm). (c) L-curve and regularisation parameter α. 

Second distribution obtained by the first way using Tikhonov method: 

   
(a) (b) (c) 

Fig. 10. (a) Gaussian fit to the q3 calculations result obtained by the first way using Tikhonov method. Parameters obtained: (a, �̅�, σ) = 

(0.00005580, 1.574 µm, 0.056 µm). (b) Comparison with Gauss obtained from measurements with nanoDS. (c) L-curve and 

regularisation parameter α. 
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For the sum of two single particle distributions, a 

significantly broadened bimodal Gaussian distribution 

(more broadened first peak) and small shifts in the positions 

of the maxima of both peaks (�̅�1, �̅�2) towards larger values 

were obtained using the Tikhonov method compared to the 

results obtained for the single distributions obtained with 

nanoDS (Fig. 11). For the scaled equation, the compu-

tational results show a significant reduction in the width of 

both Gaussian peaks and small changes in the positions of 

the maxima of both peaks (Fig. 12) compared to the results 

obtained for the unscaled equation. 

Figures 13 and 14 present respectively the first and the 

second distributions obtained by the modified Twomey 

method with an optimal number of iterations. In this method, 

for both individual particle size distributions, the obtained 

solutions in the form of  Gaussian distributions have positions 

of both maxima (�̅�) and widths of the distributions (σ) close 

to the corresponding values obtained with nanoDS. 

For the sum of two single particle size distributions, for 

number of iterations 𝑙 = 90, a broadened bimodal Gaussian 

distribution (much broadened first peak, little broadened 

second peak) and a shift towards larger values at the 

positions of the maxima of both peaks (�̅�1, �̅�2 ) compared to 

the results of the single distributions obtained with nanoDS 

were obtained. Using the method of a subsequent 

subtraction of the data corresponding to the single peaks 

from the measured data and optimisation of the height of 

the first peak, the widths of both distributions were 

obtained close to the corresponding values obtained from 

the nanoDS (Fig. 15). 

Sum of two distributions obtained by the Tikhonov method 

   
(a) (b) (c) 

Fig. 11.  (a) Bimodal Gaussian fit to the q3 calculations result obtained by the Tikhonov method. The parameters obtained: 

(𝑎1, �̅�1, 𝜎1, 𝑎2, �̅�2, 𝜎2) = (0.00002198, 0.680 µm, 0.102 µm, 0.00002290, 1.580 µm, 0.076 µm). (b) Comparison with bimodal Gauss 

obtained from single distribution measurements with nanoDS. (c) L-curve and regularisation parameter α. 

Sum of two distributions obtained by the first way using the Tikhonov method 

   
(a) (b) (c) 

Fig. 12.  (a) Bimodal Gaussian fit to the q3 calculations result obtained by the first way using Tikhonov method. The parameters obtained: 

(𝑎1, �̅�1, 𝜎1, 𝑎2, �̅�2, 𝜎2) = (0.00002061, 0.682 µm, 0.058 µm, 0.00002805, 1.581 µm, 0.045 µm). (b) Comparison with bimodal Gauss 

obtained from single distribution measurements with nanoDS. (c) L-curve and regularisation parameter α. 

First distribution obtained by the modified Twomey method with an optimal number of iterations 

   
(a) (b) (c) 

Fig. 13. (a) Gaussian fit to the q3 calculations result obtained by the modified Twomey method. The parameters obtained:  

(a, �̅�, σ) = (0.00003317, 0.678 µm, 0.029 µm). (b) Comparison with Gauss obtained from measurements with nanoDS: (a, �̅�, 

σ) = (0.00007917, 0.676 µm, 0.031 µm). (c) Optimal number of iterations 𝑙𝑜𝑝𝑡 = 8402 for sigma minimum. 
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5. Conclusions 

For the narrow particle size distributions under study 

(CV < 5%), the Tikhonov method allows for a fairly good 

determination of the positions of the maxima for single 

distributions and somewhat worse one for their sum. The 

large broadening (even several times) of the widths of the 

tested distributions occurring in this method, as compared 

to their actual widths (both in single distributions and 

their sum) with nanoDS was significantly reduced  

(by about 40–50%) by calculating a new distribution  

for the initial equation scaled by the distribution  

obtained for this equation (the first way using the 

Tikhonov method). 

The modified Twomey method, thanks to the estimation 

of the optimal number of iterations, allows not only for a 

fairly good determination of the positions of the maxima 

(as in the Tikhonov method), but also of the widths of the 

narrow singular distributions under study. For the sum of 

two narrow distributions, for a number of iterations of 

𝑙 = 90, the positions of both maxima were obtained close 

to the values obtained by the Tikhonov method. The appli-

cation of the method of successive subtraction of the data 

corresponding to the calculated singular distributions from 

the measured data and optimisation of the height of the first 

distribution (the second way using the modified Twomey 

method) made it possible to determine the widths of both 

distributions quite well, better than for the Tikhonov method.  

Second distribution obtained by the modified Twomey method with an optimal number of iterations 

   
(a) (b) (c) 

Fig. 14. (a) Gaussian fit to the q3 calculations result obtained by the modified Twomey method. The parameters obtained:  

(a, �̅�, σ) = (0.00006059, 1.571 µm, 0.044 µm). (b) Comparison with Gauss obtained from measurements with nanoDS: (a, �̅�, σ) = 

(0.0001028, 1.573 µm, 0.041 µm). (c) Optimal number of iterations 𝑙𝑜𝑝𝑡 = 1112 for  sigma minimum. 

Sum of two distributions obtained by the second way using the modified Twomey method 

  
(a) (b) 

  
(c) (d) 

Fig. 15. (a) Bimodal Gaussian fit to the q3 calculations result obtained by the second way using the modified Twomey method (for number 

of iterations 𝑙 = 90). The parameters obtained: (𝑎1, �̅�1, 𝜎1, 𝑎2, �̅�2, 𝜎2) = (0.00002132, 0.683 µm, 0.099 µm, 0.00003081, 1.582 µm, 

0.045 µm). (b) Peak 1 (𝜎1 = 0.032 µm) obtained for 𝑙 = 90 after subtracting the data corresponding to peak 2. (c) Peak 2 

(𝜎2  = 0.043 µm) obtained for 𝑙 = 90 after subtracting the data corresponding to the new peak 1. (d) Bimodal Gaussian parameters 

with new widths (𝜎1, 𝜎2)  of the peaks and after optimisation of the parameter 𝑎1 of peak 1: (𝑎1, �̅�1, 𝜎1, 𝑎2, �̅�2, 𝜎2) = (0.00000881, 

0.683 µm, 0.032 µm, 0.00003081, 1.582 µm, 0.043 µm). Comparison with bimodal Gaussian obtained from single distribution 

measurements with nanoDS. 
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