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Extremal problems for second order hyperbolic systems
involving multiple time delays

Adam KOWALEWSKI

Extremal problems for multiple time delay hyperbolic systems are presented. The optimal
boundary control problems for hyperbolic systems in which multiple time delays appear both in
the state equations and in theNeumann boundary conditions are solved. The time horizon is fixed.
Making use of Dubovicki-Milutin scheme, necessary and sufficient conditions of optimality for
the Neumann problem with the quadratic performance functionals and constrained control are
derived.
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1. Introduction

It is known by now that the Pontryagin maximum principle, the Bellman
dynamic programming method and the Kalman optimal linear regulator theory
are three milestones of modern (finite dimensional) optimal control theory. The
study of optimal control theory for infinite dimensional systems can be tracked
back to the begininng of the 1960s.
A main goal of such a theory is to establish the infinite dimensional version

of the above-mentioned three fundamental theories. Consequently, many math-
ematicians and control theorities have made great contributions in this research
area. They have been involved in the study of optimal control theory for infinite
dimensional systems.
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Compared with the works of other mathematicians, they found that ours have
their own flavor, and some of the methods might interest other people working in
this area or in some related fields.
A unified presentation of optimal control theory for infinite dimensional sys-

tems is presented.
This includes the existence theory, the necessary conditions (Pontryagin type

maximum principle) the dynamic programming method (involving the viscosity
solution infinite dimensional Hamilton-Jacobi-Bellman equations) and the linear-
quadratic optimal control problems.
Extremal problems are now playing an ever-increasing role in applications

of mathematical control theory. It has been discovered that notwithstanding the
great diversity of these problems, they can be approached by a unified functional-
analytic approach, first suggested by Dubovicki and Milutin. The general theory
of extremal problems has been developed so intensely recently that its basic
concepts may now be considered complete.
Igor V. Girsanov, was one of the first mathematicians to study general ex-

tremum problems and to realize the feasibility and desirability of a unified theory
of extremal problems, based on a functional–analytic approach.
His book [5] was apparently the first systematic exposition of a unified ap-

proach to the theory of extremal problems. This approach was based on the ideas
of Dubovicki and Milutin concerning extremum problems in the presence of con-
straints. Dubovicki and Milutin found a necessary condition for an extremum in
the form of an equation set down in the language of functional analysis.
For instance, in the paper [6], the Dubovicki-Milutin method was applied

for solving optimal control problems for parabolic-hyperbolic systems. The ex-
istence and uniqueness of solutions of such parabolic-hyperbolic systems with
the Dirichlet boundary conditions are discussed. Making use of the Dubovicki-
Milutin method necessary and sufficient conditions of optimality for the Dirichlet
problem with the quadratic performance functional and constrained control are
derived.
In the papers [11–16], the Dubovicki-Milutin method was applied for solving

boundary optimal control problems for the case of time lag parabolic equations
[11] and for the case of parabolic equations involving time-varying lags [12–14],
multiple time-varying lags [15], and integral time lags [16] respectively. Sufficient
conditions for the existence of a unique solution of such parabolic equations
[11–16] are presented.
Consequently, in the papers [11–14, 16], the linear quadratic problems of

parabolic systems with time lags given in various forms (constant time lags [11],
time-varying lags [12–14], multiple time-varying lags [15], integral time lags [16]
etc.) were solved.
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In the paper [17] the linear quadratic problems of optimal boundary control for
hyperbolic systems in which constant time lags appear both in the state equations
and in the Neumann boundary conditions are solved.
Sufficient conditions for the existence of a unique solution of such hyperbolic

equations with the Neumann boundary conditions involving constant time delays
are presented. Making use of Milutin-Dubovicki method [13], necessary and suf-
ficient conditions of optimality with the quadratic cost functions and constrained
boundary control are derived for the Neumann problem.

2. Purpose and scope of the research

Distributed parameter systems with delays can be used to describe many
phenomena in the real world. As is well known, heat conduction, properties of
elastic-plastic material, fluid dynamics, convection-reaction processes, diffusion-
reaction processes, transmission of the signals at the certain distance by using
electric long lines, etc., all lie within this area. The object that we are studying
(temperature, displacement, concentration, velocity, etc.) is usually referred to as
the state.
We are interested in the case where the state satisfies proper differential equa-

tions that are derived from basic physical laws, such as Newton’s law, Fourier’s
law etc. The space in which the state exists is called the state space, and the
equation that the state satisfies is called the state equation. In particular, we are
interested in the cases where the state equations are one of the following types:
partial differential equations, integro-differential equations, or abstract evolution
equations.
For example, control and robustness problems of quasi-linear first-order hyper-

bolic partial differential equations (PDEs) systems including nonlinear controller
design problems have been investigated in [1,2]. These equations constitute math-
ematical models of many convection-reaction processes. The distinct feature of
hyperbolic PDEs is that all the eigenmodes of the spatial differential operator con-
tain the same amount of energy, and thus an infinite number of modes is required
to accurately describe their dynamic behavior. Therefore, this feature suggests
addresing the control problem on the basis of the infinite-dimensional model
itself. Following this framework, control methods were recently proposed for the
synthesis of nonlinear distributed feedback controllers for quasi-linear hyperbolic
PDEs utilizing geometric control [1] and Lyapunov-based control [2]. In turn, the
distributed output feedback control problem of two-time-scale hyperbolic partial
differential equations systems has been considered in [3]. Such systems consti-
tute mathematical models of representative convection-reaction processes with
time-scale multiplicity e.g. fixed-bed reactors, pressure swing absorption pro-
cesses, etc. The objective is to synthesize distributed output feedback controllers
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that guarantee closed-loop stability and enforce output tracking, provided that
the speed ratio of the fast versus the slow dynamical phenomena of the two-time
scale system is sufficiently large. Initially, singular perturbation methods are used
to derive two separate PDE models which describe the fast and slow dynamics
of the original system. These models are then used as a basis for the synthesis
of well-conditioned distributed state feedback controllers that guarantee stability
and enforce output tracking. Then, two distributed state observers which incor-
porate well-conditioned observer gains are designed to prove estimates of the fast
and slow states of the system. These state observers are coupled with the dis-
tributed state feedback controllers to yield distributed output feedback controllers
that enforce the desired objectives in the closed-loop system.
Extremal problems for multiple time lag hyperbolic systems are investigated.

The purpose of this paper is to show the use of Dubovicki-Milutin theorem [13]
in solving optimal control problems for hyperbolic systems.
As an example, an optimal boundary control problem for a system described

by a linear partial differential equation of hyperbolic type in which different
multiple time delays appear both in the state equation and in the Neumann
boundary condition is considered.
Such equations constitute, in a linear approximation, a universal mathematical

model for many processes in which transmission signals at a certain distance with
electric, hydraulic and other long lines take place.
In the processes mentioned above time–delayed feedback signals are intro-

duced at the boundary of a system’s spatial domain. Then the signal at the
boundary of a system’s spatial domain at any time depends on the signal emitted
earlier. This leads to the boundary conditions involving time delays.
Sufficient conditions for the existence of a unique solution of such hyperbolic

equation with the Neumann boundary condition are presented.
The performance functionals have the quadratic form. The time horizon is

fixed. Finally, we impose some constraints on the boundary control. Making use
of the Dubovicki-Milutin theorem [13], necessary and sufficient conditions of
optimality with the quadratic performance functionals and constrained control
are derived for the Neumann problem.

3. Research methodology

3.1. The Dubovicki-Milutin method

The Dubovicki-Milutin theorem [13] arises from the geometric form of the
Hahn-Banach theorem (a theorem about the separation of convex sets).
We shall show it on the example.
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Let us assume that
𝐸 – a linear topological space, locally convex,
𝐼 (𝑥) – a functional defined on 𝐸 ,
𝐴𝑖, 𝑖=1, 2, . . . , 𝑛 – sets in 𝐸 with inner points which represent inequality con-
straints,

𝐵 – a set in 𝐸 without inner points representing equality constraint.
Wemust find some conditions necessary for a local minimum of the functional

𝐼 (𝑥) on the set 𝑄 =

𝑛⋂
𝑖=1

𝐴𝑖 ∩ 𝐵, or find a point 𝑥0 ∈ 𝐸 , so that 𝐼 (𝑥0) = min
𝑄∩𝑈

𝐼 (𝑥),

where𝑈 means a certain environment of the point 𝑥0.
We define the set 𝐴0 = {𝑥 : 𝐼 (𝑥) < 𝐼 (𝑥0)}.
Then we formulate the necessary condition of optimality as follows: in the

environment of the local minimum point, the intersection of system of sets (the set
on which the functional attains smaller values than 𝐼 (𝑥0) and the sets representing

constraints) is empty or
𝑛⋂
𝑖=0

𝐴𝑖 ∩ 𝐵 = Ø.

The condition
𝑛⋂
𝑖=0

𝐴𝑖 ∩ 𝐵 = Ø is also equivalent to the one in which there are

approximations of the sets 𝐴𝑖, 𝑖 = 1, 2, . . . , 𝑛 and 𝐵 instead of 𝐴𝑖 or 𝐵 ones. These
approximations are cones with the vertex in a point {0}.
We shall approximate the inequality constraints by the regular admissible

cones 𝑅𝐴𝐶 (𝐴𝑖, 𝑥0) (𝑖 = 1, 2, . . . , 𝑛), the equality constraint by the regular tangent
cone 𝑅𝑇𝐶 (𝐵, 𝑥0) and for the performance functionalwe shall construct the regular
improvement cone 𝑅𝐹𝐶 (𝐼, 𝑥0).
Then we have the necessary condition of the optimality 𝐼 (𝑥) on the set

𝑄 =

𝑛⋂
𝑖=1

𝐴𝑖 ∩ 𝐵 in the form of Euler-Langrange’s equation
𝑛+1∑︁
𝑖=1

𝑓𝑖 = 0, where

𝑓𝑖 (𝑖 = 1, 2, . . . , 𝑛+1) are linear, continuous functionals, all of them are not equal
to zero at the same time and they belong to the adjoint cones

𝑓𝑖 ∈ [𝑅𝐴𝐶 (𝐴𝑖, 𝑥0)]∗, 𝑖 = 1, 2, . . . , 𝑛,

𝑓𝑛+1 ∈ [𝑅𝑇𝐶 (𝐵, 𝑥0)]∗, 𝑓0 ∈ [𝑅𝐹𝐶 (𝐼, 𝑥0)]∗,

{ 𝑓𝑖 ∈ [𝑅𝐴𝐶 (𝐴𝑖, 𝑥0)]∗ ⇔ 𝑓𝑖 (𝑥)  0 ∀𝑥 ∈ 𝑅𝐴𝐶 (𝐴𝑖, 𝑥0)}.

For convex problems, i.e. problems in which the constraints are convex sets
and the performance functional is convex, the Euler-Lagrange equation is the nec-
essary and sufficient condition of optimality if only certain additional assumptions
are fulfilled (the so-called Slater’s condition).
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3.2. Transposition method

Let us consider the following linear hyperbolic equation

𝜕2𝑦

𝜕𝑡2
+ 𝐴(𝑡)𝑦 = 𝑢, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇), (1)

𝑦(𝑥, 0) = 𝑦0(𝑥), 𝑥 ∈ Ω, (2)
𝑦′(𝑥, 0) = 𝑦𝐼 (𝑥), 𝑥 ∈ Ω, (3)
𝜕𝑦

𝜕[𝐴
(𝑥, 𝑡) = 𝑞, (𝑥, 𝑡) ∈ Γ × (0, 𝑇), (4)

where: Ω ⊂ 𝑅𝑛 is a bounded, open set with boundary Γ, which is a 𝐶∞-manifold
of dimension (𝑛 − 1). Locally, Ω is totally on one side of Γ.

𝑄 = Ω × (0, 𝑇), �̄� = Ω̄ × [0, 𝑇], Σ = Γ × (0, 𝑇).

The operator 𝐴(𝑡) is given by

𝐴(𝑡)𝑦 = −
𝑛∑︁

𝑖, 𝑗=1

𝜕

𝜕𝑥𝑖

(
𝑎𝑖 𝑗 (𝑥, 𝑡)

𝜕𝑦(𝑥, 𝑡)
𝜕𝑥 𝑗

)
(5)

and the coefficients 𝑎𝑖 𝑗 (𝑥, 𝑡) are real 𝐶∞ functions on �̄� (closure of 𝑄) satisfying
the following condition

𝑛∑︁
𝑖, 𝑗=1

𝑎𝑖 𝑗 (𝑥, 𝑡)Φ𝑖Φ 𝑗  a
𝑛∑︁
𝑖=1

Φ2𝑖 a > 0, ∀(𝑥, 𝑡) ∈ �̄�, ∀Φ𝑖 ∈ 𝑅

𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 ∀𝑖, 𝑗

 . (6)

The equations (1)–(4) constitute a Neumann problem. The left hand side of (1)
is written in the following form.

𝜕𝑦

𝜕[𝐴
=

𝑛∑︁
𝑖, 𝑗=1

𝑎𝑖, 𝑗 (𝑥, 𝑡) cos(𝑛, 𝑥𝑖)
𝜕𝑦(𝑥, 𝑡)
𝜕𝑥 𝑗

= 𝑞(𝑥, 𝑡), (7)

where:
𝜕𝑦

𝜕[𝐴
is a deriviative at Γ, directed towards the exterior of Ω, cos(𝑛, 𝑥𝑖) is

𝑖-th direction cosine of 𝑛 and 𝑛 being the normal at Γ exterior to Ω.
Let us consider linear hyperbolic equations (1)–(4)
We shall prove the existence of a unique solution of themixed initial-boundary

value problem (1)–(4) defined by transposition, see [20, Vol. 2, pp. 105–108 and
130–133], i.e.

〈𝑦, 𝜔′′ + 𝐴𝜔〉 = 𝐿 (𝜔) ∀𝜔 ∈ 𝑋1(𝑄), (8)
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where
𝐿 (𝜔) = 〈𝑢, 𝜔〉 + 〈𝑞, 𝜔〉 + 〈𝑦𝐼 , 𝜔(0)〉 − 〈𝑦0, 𝜔′(0)〉 (9)

and we denote by 𝑋1(𝑄) the space described by the solutions 𝜔 of the following
adjoint problem

𝜔′′ + 𝐴𝜔 = Φ, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇),
𝜔(𝑥, 𝑇) = 0, 𝑥 ∈ Ω,

𝜔′(𝑥, 𝑇) = 0, 𝑥 ∈ Ω,

𝜕𝜔

𝜕[𝐴
= 0, 𝑥 ∈ Γ, 𝑡 ∈ (0, 𝑇),

(10)

where
Φ ∈ 𝐻1,20,0 (𝑄) = closure of 𝐷 (𝑄) in 𝐻1,2(𝑄). (11)

Some properties and central theorems for the spaces 𝐷 (𝑄) and 𝐻𝑟,𝑠 (𝑄) are
given in [9, 10] and [20].
Let us define by

𝑋1(𝑄) = space described by 𝜔 as Φ describes 𝐻1,20,0 (𝑄) (12)

and then (𝑋1(𝑄) being provided with the “translated” topology) we have (done
what was necessary to have):

𝜔 → 𝜔′′ + 𝐴𝜔 is an isomorphism of 𝑋1(𝑄) → 𝐻
1,2
0,0 (𝑄). (13)

Consequently, using the results of Chapter 4, Section 8.3 of ( [20]: Vol. 2, p. 41),
wemay define the dual space of𝐻1,20,0 (𝑄).We denote this dual space by𝐻

−1,−2(𝑄),
i.e. we set (

𝐻
1,2
0,0 (𝑄)

)′
= 𝐻−1,−2(𝑄). (14)

Now, we choose in (9) 𝑢, 𝑞, 𝑦𝑖 to be (suitable) distributions on 𝑄, Σ and Ω.
Thus, we shall follow a procedure analogous to Chapter 5, Section 10, of

( [20]: Vol. 2, pp. 130–132). Moreover, 𝑄 and Σ have the same properties as in
the problem (1)–(4).

3.2.1. Choice of 𝑢

According to Theorem 7.1 of ( [20]: Vol. 2, p. 122), we have

𝑋1(𝑄) ⊂ 𝐻3,3(𝑄). (15)

Subsequently, we introduce as in Chapter 4, Section 9, of ( [20]: Vol. 2, p. 43)
the space

Ξ3,3(𝑄) =
{
𝜔
��𝑑 𝑗 (𝑡)𝜔( 𝑗) ∈ 𝐿2(0, 𝑇 ;Ξ3− 𝑗 (Ω)), 0 ¬ 𝑗 ¬ 3

}
, (16)
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where 𝑑 (𝑡) be a fixed infinitely differentiable function on [0, 𝑇] such that

𝑑 (𝑡) =
{
𝑡 if 𝑡 ¬ 𝑡0,
𝑇 − 𝑡 if 𝑇 − 𝑡0 ¬ 𝑡 ¬ 𝑇,

(17)

𝑡0 fixed with 0 < 𝑡0 < 𝑇 − 𝑡0, and consequently, using the results of ( [20]: Vol.1,
pp. 170-173) we may define the following space

Ξ` (Ω) =
{
𝜔| 𝜌 |𝛼 |𝐷𝛼𝜔 ∈ 𝐿2(Ω), |𝛼 | ¬ `

}
(18)

which is a Hilbert space with the norm

‖𝜔‖Ξ` (Ω) =
©«
∑︁
|𝛼 |¬`

‖𝜌 |𝛼 |𝐷𝛼𝜔‖2
𝐿2 (Ω)

ª®¬
1/2

, (19)

where integer `  1, and the function 𝜌 is infinitely differentiable on Ω̄, positive
on Ω, vanishing on Γ of the order of 𝑑 (𝑥, Γ) (= distance from 𝑥 to Γ), i.e. such
that

lim
𝑥→𝑥0

𝜌(𝑥)
𝑑 (𝑥, Γ) = 𝑑 ≠ 0 if 𝑥0 ∈ Γ, (20)

such functions do exist, since Γ is an infinitely differentiable variety. Moreover,

𝐷𝛼 =
𝜕𝛼1+...+𝛼𝑛

𝜕𝑥
𝛼1
1 + . . . + 𝜕𝑥𝛼𝑛𝑛

, 𝛼 = {𝛼1, . . . , 𝛼𝑛}, |𝛼 | = 𝛼1 + . . . + 𝛼𝑛 . (21)

Moreover, we have

Ξ0(Ω) = 𝐿2(Ω), 𝐻` (Ω) ⊂ Ξ` (Ω) ⊂ 𝐿2(Ω). (22)

Then, using the Proposition 9.2 of ( [20]: Vol. 2, p. 45), we have

𝐻3,3(𝑄) ⊂ Ξ3,3(𝑄). (23)

Remark 1 In the case when ` is a non-integer, we define the space Ξ` (Ω) by
interpolation. Consequently, let real ` > 0 not be an integer, ` = 𝑘 + Θ, with
integer 𝑘  0 and 0 < Θ < 1; we set

Ξ` (Ω) =
[
Ξ𝑘+1(Ω), Ξ𝑘 (Ω)

]
1−Θ . (24)

From this definition, (22) and the inclusion properties of 𝐻` (Ω), there results
that

𝐻` (Ω) ⊂ Ξ` (Ω) ⊂ Ξ`
′ (Ω) ⊂ 𝐿2(Ω), (25)

where `, `′ are real and > 0, `′ < `.
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From the density theorem and Proposition 6.2 of ( [20]: Vol. 1, p. 11 and p.
171), we also deduce that 𝐷 (Ω) is dense in Ξ` (Ω) for all real `  0.
Therefore, we see that Ξ` (Ω) is a normal space of distributions on Ω.
Its dual space may be identified to a space of distributions on Ω. We denote

this dual space by Ξ−` (Ω), i.e. we set

Ξ−` (Ω) = (Ξ` (Ω))′ , ` > 0. (26)

As for Proposition 9.1 of Chapter 4 of ( [20]: Vol. 2, p. 43), we verify that

𝐷 (𝑄) is dense in Ξ3,3(𝑄). (27)

Therefore
Ξ−3,−3(𝑄) =

(
Ξ3,3(𝑄)

)′
⊂ 𝐷′(𝑄). (28)

For this space, we have a structure result analogous to Proposition 9.3 given in
Chapter 4 of ( [20]: Vol.2, p. 45) and, thanks to (15), we have:

if 𝑢 ∈ Ξ−3,−3(𝑄), then 𝜔 → 〈𝑢, 𝜔〉 (29)

is continuous antilinear on 𝑋1(𝑄).

3.2.2. The space 𝐷−1
𝐴+𝐷2𝑡

(𝑄)

Taking, in (8), 𝜔 = Φ ∈ 𝐷 (𝑄), we have 𝐿 (Φ) = 〈 𝑓 ,Φ〉𝑄 and therefore, in the
sense of 𝐷′(𝑄):

𝑦′′ + 𝐴𝑦 = 𝑢. (30)

This leads to the following definition ( [20]: Vol. 2, p. 131):

𝐷−1
𝐴+𝐷2𝑡

(𝑄) df=
{
𝑦 | 𝑦 ∈ 𝐻−1,−2(𝑄), 𝑦′′ + 𝐴𝑦 ∈ Ξ−3,−3(𝑄)

}
(31)

provided with the norm of the graph, this is a Hilbert space.
Then the solution 𝑦 of (8) belongs to 𝐷−1

𝐴+𝐷2𝑡
(𝑄).

3.2.3. Choice of 𝑞

Consequently, we choose 𝑞.
From (15) and the Trace Theorem ( [9] and [20]: Vol. 2, p. 9), we deduce that

𝜔 → 𝜔|Σ is a continuous linear mapping of

𝑋1(𝑄) → 𝐻5/2,5/2(Σ). (32)

Consequently, we introduce as in Chapter 4, Section 11 of ( [20]: Vol. 2, pp.
57–59) the spaces 𝐻𝛼Ξ𝛼 (Σ), real 𝛼  0;
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first for integer:

𝐻𝛼Ξ𝛼 (Σ) =
{
𝜔|𝑑 𝑗 (𝑡)𝜔( 𝑗) ∈ 𝐿2(0, 𝑇, 𝐻𝛼− 𝑗/𝛼 (Γ)), 0 ¬ 𝑗 ¬ 𝛼

}
, (33)

where the function 𝑑 (𝑡) is defined in (17), and then for non-integer 𝛼 ∈ 𝑅+, we
define by interpolation

𝐻𝛼Ξ𝛼 (Σ) = [𝐻𝛼0Ξ𝛼0 (Σ), 𝐻0,0(Σ)]Θ
integer 𝛼0, (1 − Θ)𝛼0 = 𝛼

}
. (34)

The space defined in this way depends only on 𝛼. Then:

𝐻5/2,5/2(Σ) ⊂ 𝐻5/2Ξ5/2(Σ) (35)

As for Proposition 11.1, Chapter 4 of ( [20]: Vol. 2, p. 58), we verify that

𝐷 (Σ) is dense in 𝐻𝛼Ξ𝛼 (Σ) (36)

and therefore
𝐻−𝛼Ξ−𝛼 (Σ) = (𝐻𝛼Ξ𝛼 (Σ))′ ⊂ 𝐷′(Σ). (37)

According to (35), we have:

if 𝑞 ∈ 𝐻−5/2Ξ−5/2(Σ), then 𝜔 → 〈𝑞, 𝜔〉
is continuous on 𝑋1(𝑄)

}
. (38)

3.2.4. Choice of 𝑦0 and 𝑦𝐼

Subsequently, we make choice of 𝑦0 and 𝑦𝐼 respectively.
Then, from the Theorem 2.1 of ( [20]: Vol. 2, p. 9), it follows that

𝜔 → {𝜔(0), 𝜔′(0)} is a continuous mapping
of 𝐻3,3(𝑄) → 𝐻5/2(Ω) × 𝐻3/2(Ω).

(39)

Using the spaces Ξ` (Ω),Ξ−` (Ω) defined in (24) and (26), it follows that:
if {𝑦0, 𝑦𝐼} ∈ Ξ−3/2(Ω) × Ξ−5/2(Ω),
then the form 𝜔 → 〈𝑦𝐼 , 𝜔(0)〉 − 〈𝑦0, 𝜔′(0)〉
is continuous on 𝑋1(𝑄)

 . (40)

3.2.5. Central result

Consequently, the preceding results may be summarized by

Theorem 1 Let 𝑦0, 𝑦𝐼 , 𝑞 and 𝑢 be given, with 𝑦0 ∈ Ξ−3/2(Ω), 𝑦𝐼 ∈ Ξ−5/2(Ω),
𝑞 ∈ 𝐻−5/2Ξ−5/2(Σ) and 𝑢 ∈ Ξ−3,−3(𝑄). Then, there exists a unique solution
𝑦 ∈ 𝐷−1

𝐴+𝐷
𝑡2
(𝑄) for the problem (1)–(4) defined by transposition (8).

This theorem will be the starting point for our considerations.



EXTREMAL PROBLEMS FOR SECOND ORDER HYPERBOLIC SYSTEMS
INVOLVING MULTIPLE TIME DELAYS 111

4. Analysis of multiple time delay hyperbolic systems

4.1. Existence and uniqueness of solutions: 𝑣 ∈ 𝐿2 (Σ)

Consider now the distributed-parameter system described by the following
hyperbolic delay equation

𝜕2𝑦

𝜕𝑡2
+ 𝐴(𝑡)𝑦 +

𝑚∑︁
𝑖=1

𝑦(𝑥, 𝑡 − ℎ𝑖) = 𝑢, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇), (41)

𝑦(𝑥, 𝑡′) = Φ0(𝑥, 𝑡′), 𝑥 ∈ Ω, 𝑡′ ∈ [−b, 0), (42)
𝑦(𝑥, 0) = 𝑦0(𝑥), 𝑥 ∈ Ω, (43)
𝑦′(𝑥, 0) = 𝑦𝐼 (𝑥), 𝑥 ∈ Ω, (44)

𝜕𝑦

𝜕[𝐴
=

𝑙∑︁
𝑠=1

𝑦(𝑥, 𝑡 − 𝑘𝑠) + 𝐺𝑣, 𝑥 ∈ Γ, 𝑡 ∈ (0, 𝑇), (45)

𝑦(𝑥, 𝑡′) = Ψ0(𝑥, 𝑡′), 𝑥 ∈ Γ, 𝑡′ ∈ [−b, 0), (46)

where:Ω has the same properties as in the problem (1)–(4), ℎ𝑖 and 𝑘𝑠 are specified
positive number representingmultiple time delays, such that 0 ¬ ℎ1 < ℎ2 < . . . <
ℎ𝑚 for 𝑖 = 1, . . . , 𝑚 and 0 ¬ 𝑘1 < 𝑘2 < . . . < 𝑘 𝑙 for 𝑠 = 1, . . . , 𝑙 respectively, Φ0,
Ψ0 are initial functions defined on 𝑄0 and Σ0 respectively.
Moreover,

b
df
= max{ℎ𝑚, 𝑘 𝑙}.

The operator 𝐴(𝑡) has the form given by (5)–(6).
𝑦 ≡ 𝑦(𝑥, 𝑡; 𝑣), 𝑢 ≡ 𝑢(𝑥, 𝑡), 𝑣 ≡ 𝑣(𝑥, 𝑡), 𝑄 = Ω × (0, 𝑇),

�̄� = Ω̄ × [0, 𝑇], 𝑄0 = Ω × [−b, 0), Σ = Γ × (0, 𝑇), Σ0 = Γ × [−b, 0),
𝐺 is a linear continuous operator on 𝐿2(Σ) into(

𝐻5/2Ξ5/2(Σ)
)′

with 𝑣 ∈ 𝐿2(Σ) and 𝐺𝑣 ∈ 𝐻−5/2Ξ−5/2(Σ).

The operator 𝐴(𝑡) is given by the formula (5)–(6).
It is easy to notice that the equations (41)–(46) constitute the Neumann prob-

lem. The left-hand side of the Neumann boundary condition (45) is written in the
following form

𝜕𝑦

𝜕[𝐴
= 𝑞(𝑥, 𝑡) 𝑥 ∈ Γ, 𝑡 ∈ (0, 𝑇), (47)

where

𝑞(𝑥, 𝑡) =
𝑙∑︁
𝑠=1

𝑦(𝑥, 𝑡 − 𝑘𝑠) + 𝐺𝑣(𝑥, 𝑡) 𝑥 ∈ Γ, 𝑡 ∈ (0, 𝑇). (48)
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We shall prove the existence of a unique solution of the mixed initial-boundary
value problem (41)–(46) defined by transposition, i.e.

〈𝑦, 𝜔′′ + 𝐴𝜔〉 = 𝐿 (𝜔) ∀𝜔 ∈ 𝑋1(𝑄), (49)

where
𝐿 (𝜔) = 〈𝑙, 𝜔〉 + 〈𝑞, 𝜔〉 + 〈𝑦𝐼 , 𝜔(0)〉 − 〈𝑦0, 𝜔′(0)〉 (50)

and

𝑙 =

[
𝑢 −

𝑚∑︁
𝑖=1

𝑦(𝑥, 𝑡 − ℎ𝑖)
] �����
𝑄

(51)

and 𝑋1(𝑄) is the space described by the solutions 𝜔 of the adjoint problem (10).
We shall restrict our considerations to the case where 𝑣 ∈ 𝐿2(Σ). For simplic-

ity, we shall introduce the following notations

𝐼 𝑗
df
= (( 𝑗 − 1)_, 𝑗_) , 𝑄 𝑗 = Ω × 𝐼 𝑗 , Σ 𝑗 = Γ × 𝐼 𝑗 for 𝑗 = 1, . . . , 𝐾,

where
_
df
= min{ℎ1, 𝑘1}.

The existence of a unique solution for the mixed initial-boundary value problem
(41)–(46) on the cylinder 𝑄 can be proved using a constructive method, i.e.
first, solving problem (49) in the subcylinder 𝑄1 and in turn in 𝑄2 etc. until the
procedure covers the whole cylinder 𝑄. In this way the solution in the previous
step determines the next one.
Using the Theorem 1 we can prove the following lemma.

Lemma 1 [18]: Let
𝑢 ∈ Ξ−3,−3(𝑄), (52)
𝑙 𝑗 ∈ Ξ−3,−3(𝑄 𝑗 ), (53)

where

𝑙 𝑗 =

[
𝑢 −

𝑚∑︁
𝑖=1

𝑦 𝑗−1(𝑥, 𝑡 − ℎ𝑖)
] �����
𝑄 𝑗

,

𝑞 𝑗 ∈ 𝐻−5/2Ξ−5/2(Σ 𝑗 ), (54)
where

𝑞 𝑗 =

[
𝑙∑︁
𝑠=1

𝑦 𝑗−1(𝑥, 𝑡 − 𝑘𝑠) + 𝐺𝑣(𝑥, 𝑡]
] �����
Σ 𝑗

and
𝐺 ∈ 𝛼(L2(Σ), 𝐻−5/2 Ξ−5/2(Σ)) with 𝑣 ∈ 𝐿2(Σ),
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𝑦 𝑗−1(·, ( 𝑗 − 1)_) ∈ Ξ−3/2(Ω), (55)

𝑦′𝑗−1(·, ( 𝑗 − 1)_) ∈ Ξ−5/2(Ω). (56)

Then, there exists a unique solution 𝑦 𝑗 ∈ 𝐷−1
𝐴+𝐷2𝑡

(𝑄 𝑗 ) for the mixed initial-
boundary value problem (41), (45), (55), (56) defined by transposition, i.e.

〈𝑦 𝑗 , 𝜔′′
𝑗 + 𝐴𝜔 𝑗 〉 = 𝐿 (𝜔 𝑗 ), ∀𝜔 𝑗 ∈ 𝑋1(𝑄 𝑗 ), (57)

where

𝐿 (𝜔 𝑗 ) = 〈𝑙 𝑗 , 𝜔 𝑗 〉 + 〈𝑞 𝑗 , 𝜔 𝑗 〉
+ 〈𝑦′𝑗−1 [( 𝑗 − 1)_], 𝜔 𝑗 [( 𝑗 − 1)_]〉 − 〈𝑦 𝑗−1 [( 𝑗 − 1)_], 𝜔′

𝑗 [( 𝑗 − 1)_]〉.

Proof.
For 𝑗 = 1, conditions (53)–(56) can be satisfied if we assume that

Φ0 ∈ 𝐻−1,−2(𝑄0), Ψ0 ∈ 𝐻−5/2Ξ−5/2(Σ0)

and
𝐺𝑣 ∈ 𝐻−5/2Ξ−5/2(Σ), 𝑦0 ∈ Ξ−3/2(Ω) and 𝑦𝐼 ∈ Ξ−5/2(Ω).

These assumptions are sufficient to ensure the existence of a unique solution
𝑦1 ∈ 𝐷−1

𝐴+𝐷2𝑡
(𝑄1) ⊂ 𝐻−1,−2(𝑄1). In order to extend the result to 𝑄 𝑗 , 1 < 𝑗 ¬ 𝐾

it is sufficient to verify that

𝑙2 ∈ Ξ−3,−3(𝑄2), (58)

𝑞2 ∈ 𝐻−5/2Ξ−5/2(Σ2), (59)

𝑦1(·, _) ∈ Ξ−3/2(Ω), (60)

𝑦′1(·, _) ∈ Ξ−5/2(Ω). (61)

According to (15) and (23) of Subsubsection 3.2.1 we have 𝑋1(𝑄2) ⊂ 𝐻3,3(𝑄2)
and obviously 𝐻3,3(𝑄2) ⊂ Ξ3,3(𝑄2). Using the results of Subsubsection 3.2.1,
we have:

if 𝑦1 ∈ 𝐻−1,−2(𝑄1) and 𝑙2 ∈ Ξ−3,−3(𝑄2), then 𝜔2 → 〈𝑙2, 𝜔2〉 is continuous
antilinear on 𝑋1(𝑄2) and the condition (58) is fulfilled.
To verify (59) we use the results of Subsubsection 3.2.3. Then, from the

inclusion 𝑋1(𝑄2) ⊂ 𝐻3,3(𝑄2), and the Theorem 2.1 ( [20]: Vol.2, p.9) we deduce
that 𝜔2 → 𝜔2 |Σ2 is a linear continuous mapping of 𝑋

1(𝑄2) → 𝐻5/2,5/2(Σ2) ⊂
𝐻5/2Ξ5/2(Σ2).
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According to the fact mentioned above we have if 𝑦1 |Σ1 ∈ 𝐻−5/2Ξ−5/2(Σ1)
and 𝑞2 ∈ 𝐻−5/2Ξ−5/2(Σ2), then 𝜔2 → 〈𝑞2, 𝜔2〉 is continuous on 𝑋1(𝑄2).
Consequently, using the results of the Subsubsection 3.2.4, we shall verify

the conditions (60) and (61). From the Theorems 3.1 and 9.6 ( [20]: Vol.1,pp. 19
and 43) 𝜔2 ∈ 𝑋1(𝑄2) ⊂ 𝐻3,3(𝑄2) implies that the mappings 𝑡 → 𝜔2(·, 𝑡) and
𝑡 → 𝜔′

2(·, 𝑡) are continuous from [_, 2_] → 𝐻5/2(Ω) and [_, 2_] → 𝐻3/2(Ω)
respectively. Hence 𝜔2(·, _) ∈ 𝐻5/2(Ω) and 𝜔′

2(·, _) ∈ 𝐻3/2(Ω). Then, from
(39) of Subsubsection 3.2.4, it follows that 𝜔2 → (𝜔2(_), 𝜔′

2(_)) is a continuous
mapping of 𝐻3,3(𝑄2) → 𝐻5/2(Ω) × 𝐻3/2(Ω).
Using the spaces Ξ𝛼 (Ω),Ξ−𝛼 (Ω) defined in (24) and (26) we deduce that if

(𝑦1(_), 𝑦′1(_)) ∈ Ξ−3/2(Ω) × Ξ−5/2(Ω), then the form 𝜔2 → 〈𝑦′1(_), 𝜔2(_)〉 −
〈𝑦1(_), 𝜔′

2(_)〉 is continuous on 𝑋
1(𝑄2). The conditions (60) and (61) are ful-

filled. Then, there exists a unique solution 𝑦2 ∈ 𝐷−1
𝐴+𝐷2𝑡

(𝑄2).
The foregoing result is now summarized.

Theorem 2 [18] Let 𝑦0, 𝑦𝐼 ,Φ0,Ψ0, 𝑣 and 𝑢 be given with

𝑦0 ∈ Ξ−3/2(Ω), 𝑦𝐼 ∈ Ξ−5/2(Ω), Φ0 ∈ 𝐻−1,−2(𝑄0),

Ψ0 ∈ 𝐻−5/2Ξ−5,2(Σ0), 𝑣 ∈ 𝐿2(Σ) and 𝑢 ∈ Ξ−3,−3(𝑄).
Then, there exists a unique solution 𝑦 ∈ 𝐷−1

𝐴+𝐷2𝑡
(𝑄) for the problem (41)–(46)

defined by transposition (49). Moreover, 𝑦(·, 𝑗_) ∈ Ξ−3/2(Ω) and 𝑦′(·, 𝑗_) ∈
Ξ−5/2(Ω) for 𝑗 = 1, . . . , 𝐾 .

4.2. Problem formulation. Optimization theorems

We shall now formulate the optimal boundary control problem in the context
of the case where 𝑣 ∈ 𝐿2(Σ). Let us denote by 𝑈 = 𝐿2(Σ) the space of controls.
The time horizon𝑇 is fixed in our problem. The performance functional is given by

𝐼 (𝑣) = _1 ‖ 𝑦(𝑣) − 𝑧𝑑 ‖2
𝐻−1,−2 (𝑄) +_2〈𝑁𝑣, 𝑣〉𝐿2 (Σ) (62)

where: _𝑖  0 and _1 + _2 > 0; 𝑧𝑑 is a given element in 𝐻−1,−2(𝑄), and 𝑁 is a
positive linear operator on 𝐿2(Σ) into 𝐿2(Σ). Finally, we assume the following
constraint on controls

𝑣 ∈ 𝑈𝑎𝑑 (63)

where:𝑈𝑎𝑑 is a closed, convex set with non-empty interior, a subset of𝑈.
Let 𝑦(𝑥, 𝑡, 𝑣) denote the solution of (41)–(46), (62), (63) at (𝑥, 𝑡) correspond-

ing to a given control 𝑣 ∈ 𝑈𝑎𝑑 . We note from the Theorem 2 that for any 𝑣 ∈ 𝑈𝑎𝑑
the cost function (62) is well defined since 𝑦 ∈ 𝐷−1

𝐴+𝐷2𝑡
(𝑄) ⊂ 𝐻−1,−2(𝑄).
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The optimal control problem (41)–(46), (62), (63) will be solved as the op-
timization one in which the function 𝑣 is the unknown function. Making use
of Dubovicki-Milutin theorem [13] we shall derive the necessary and sufficient
conditions of optimality for the optimization problem (41)–(46), (62), (63).
The solution of the stated optimal control problem is equivalent to seeking a

pair (𝑦0, 𝑣0) ∈ 𝐸 = 𝐷−1
𝐴+𝐷2𝑡

(𝑄) × 𝐿2(Σ) which satisfies the equation (41)–(46)
andminimizing the performance functional (62) with the constraints on boundary
control (63).
We formulate the necessary and sufficient conditions of the optimality in the

form of Theorem 2.

Theorem 3 The solution of the optimization problem (41)–(46), (62), (63) exists
and it is unique with the assumptions mensioned above; the necessary and suf-
ficient conditions of the optimality are characterized by the following system of
partial differential equations and inequalities.

State equation:

𝜕2𝑦0

𝜕𝑡2
+ 𝐴(𝑡)𝑦0 +

𝑚∑︁
𝑖=1

𝑦0(𝑥, 𝑡 − ℎ𝑖) = 𝑓 , 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇), (64)

𝑦0(𝑥, 𝑡′) = Φ0(𝑥, 𝑡′), 𝑥 ∈ Ω, 𝑡′ ∈ [−b, 0), (65)

𝑦0(𝑥, 0) = 𝑦1(𝑥), 𝑥 ∈ Ω, (66)

𝜕𝑦0

𝜕𝑡
= 𝑦2(𝑥), 𝑥 ∈ Ω, (67)

𝜕𝑦0

𝜕[𝐴
=

𝑙∑︁
𝑠=1

𝑦0(𝑥, 𝑡 − 𝑘𝑠) + 𝐺𝑣0, 𝑥 ∈ Γ, 𝑡 ∈ (0, 𝑇), (68)

𝑦0(𝑥, 𝑡′) = Ψ0(𝑥, 𝑡′), 𝑥 ∈ Γ, 𝑡′ ∈ [−b, 0). (69)

Adjoint equation:

𝜕2𝑝

𝜕𝑡2
+ 𝐴(𝑡)𝑝 +

𝑚∑︁
𝑖=1

𝑝(𝑥, 𝑡 + ℎ𝑖) = _1Λ1(𝑦0 − 𝑧𝑑), 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 − b), (70)

𝜕2𝑝

𝜕𝑡2
+ 𝐴(𝑡)𝑝 = _1Λ1(𝑦0 − 𝑧𝑑), 𝑥 ∈ Ω, 𝑡 ∈ (𝑇 − b, 𝑇), (71)

𝜕𝑝

𝜕[𝐴
=

𝑙∑︁
𝑠=1

𝑝(𝑥, 𝑡 + 𝑘𝑠), 𝑥 ∈ Γ, 𝑡 ∈ (0, 𝑇 − b), (72)
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𝜕𝑝

𝜕[𝐴
= 0, 𝑥 ∈ Γ, 𝑡 ∈ (𝑇 − b, 𝑇), (73)

𝑝(𝑥, 𝑇) = 0, 𝑥 ∈ Ω, (74)
𝜕𝑝(𝑥, 𝑇)
𝜕𝑡

= 0, 𝑥 ∈ Ω, (75)

where Λ1 is a canonical isomorphism of 𝐻−1,−2(𝑄) onto 𝐻1,20,0 (𝑄).
Maximum condition:〈

𝐺∗𝑝(𝑣0) + _2𝑁𝑣0, 𝑣 − 𝑣0
〉
𝐿2 (Σ)  0 ∀𝑣 ∈ 𝑈𝑎𝑑 (76)

We can also notice that

𝜕𝑝

𝜕[𝐴
=

𝑛∑︁
𝑖, 𝑗=1

𝑎 𝑗𝑖 (𝑥, 𝑡) cos(𝑛, 𝑥𝑖)
𝜕𝑝

𝜕𝑥 𝑗
. (77)

Proof.
According to the Dubovicki-Milutin theorem [13], we approximate the set

representing the inequality constraints by the regular admissible cone, the equality
constraints by the regular tangent cone and the performance functional by the
regular improvement cone.

a) Analysis of the equality constraint

The set 𝑄1 representing the equality constraint has has the form

𝑄1 =



𝜕2𝑦

𝜕𝑡2
+ 𝐴(𝑡)𝑦 +

𝑚∑︁
𝑖=1

𝑦(𝑥, 𝑡 − ℎ𝑖) = 𝑢, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇),

𝑦(𝑥, 𝑡′) = Φ0(𝑥, 𝑡′), 𝑥 ∈ Ω, 𝑡′ ∈ [−b, 0),
𝑦(𝑥, 0) = 𝑦1(𝑥), 𝑥 ∈ Ω,

𝜕𝑦(𝑥, 0)
𝜕𝑡

= 𝑦2(𝑥), 𝑥 ∈ Ω,

𝜕𝑦

𝜕[𝐴
=

𝑙∑︁
𝑠=1

𝑦(𝑥, 𝑡 − 𝑘𝑠) + 𝐺𝑣, 𝑥 ∈ Γ, 𝑡 ∈ (0, 𝑇),

𝑦(𝑥, 𝑡′) = Ψ0(𝑥, 𝑡′), 𝑥 ∈ Γ, 𝑡′ ∈ [−b, 0).

. (78)
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We construct the regular tangent cone of the set 𝑄1 using the Lusternik theorem
(Theorem 9.1 [5]). For this purpose, we define the operator 𝑃 in the form

𝑃(𝑦, 𝑣) =
(
𝜕2𝑦

𝜕𝑡2
+ 𝐴𝑦 +

𝑚∑︁
𝑖=1

𝑦(𝑥, 𝑡 − ℎ𝑖) − 𝑢,

𝑦(𝑥, 𝑡′) −Φ0(𝑥, 𝑡′), 𝑦(𝑥, 0) − 𝑦1(𝑥),
𝜕𝑦(𝑥, 0)
𝜕𝑡

− 𝑦2(𝑥),

𝜕𝑦

𝜕[𝐴
−

𝑙∑︁
𝑠=1

𝑦(𝑥, 𝑡 − 𝑘𝑠) − 𝐺𝑣, 𝑦(𝑥, 𝑡′) −Ψ0(𝑥, 𝑡′)
)
. (79)

The operator 𝑃 is the mapping from the space 𝐷−1
𝐴+𝐷2𝑡

(𝑄) × 𝐿2(Σ) into
the space Ξ−3,−3(𝑄) × 𝐷−1

𝐴+𝐷2𝑡
(𝑄0) × Ξ−3/2(Ω) × Ξ−5/2(Ω) × 𝐻−5/2Ξ−5/2(Σ) ×

𝐻−5/2Ξ−5/2(Σ0).
The Fréchet differential of the operator 𝑃 can be written in the following form:

𝑃′(𝑦0, 𝑣0) (𝑦, 𝑣) =
(
𝜕2𝑦

𝜕𝑡2
+ 𝐴𝑦 +

𝑚∑︁
𝑖=1

𝑦(𝑥, 𝑡 − ℎ𝑖), 𝑦
��
𝑄0
(𝑥, 𝑡′), 𝑦(𝑥, 0),

𝜕𝑦(𝑥, 0)
𝜕𝑡

,
𝜕𝑦

𝜕[𝐴
−

𝑙∑︁
𝑠=1

𝑦(𝑥, 𝑡 − 𝑘𝑠) − 𝐺𝑣, 𝑦
��
Σ0
(𝑥, 𝑡′)

)
. (80)

Really,
𝜕2

𝜕𝑡2
(Theorem 2.8 [21]), 𝐴(𝑡) (Theorem 2.1 [19]) and 𝜕

𝜕[𝐴
(Theorem 2.1

[20]; vol. 2, p. 9) are linear and bounded mappings. Using Theorem 2, we can
prove that 𝑃′ is the operator “one to one” from the space 𝐷−1

𝐴+𝐷2𝑡
(𝑄) × 𝐿2(Σ) onto

the space Ξ−3,−3(𝑄) × 𝐷−1
𝐴+𝐷2𝑡

(𝑄0) × Ξ−3/2(Ω) × Ξ−5/2(Ω) × 𝐻−5/2Ξ−5/2(Σ) ×
𝐻−5/2Ξ−5/2(Σ0).
Considering that the assumptions of the Lusternik’s theorem are fulfilled, we

can write down the regular tangent cone for the set 𝑄1 in a point (𝑦0, 𝑣0) in the
form

𝑅𝑇𝐶 (𝑄1, (𝑦0, 𝑣0)) =
(
(𝑦, 𝑣) ∈ 𝐸, 𝑃′(𝑦0, 𝑣0) (𝑦, 𝑣) = 0

)
. (81)

It is easy to notice that it is a subspace. Therefore, using Theorem 10.1 [5] we
know the form of the functional belonging to the adjoint cone

𝑓1 (𝑦, 𝑣) = 0 ∀ (𝑦, 𝑣) ∈ 𝑅𝑇𝐶 (𝑄1, (𝑦0, 𝑣0)). (82)
b) Analysis of the constraint on controls
The set 𝑄2 = 𝑌 ×𝑈𝑎𝑑 representing the inequality constraints is a closed and

convex one with non-empty interior in the space 𝐸 .
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Using Theorem 10.5 [5] we find the functional belonging to the adjoint regular
admissible cone, i.e.

𝑓2 (𝑦, 𝑣) ∈ [𝑅𝐴𝐶 (𝑄2, (𝑦0, 𝑣0))]∗.

We can note if 𝐸1, 𝐸2 are two linear topological spaces, then the adjoint space to
𝐸 = 𝐸1 × 𝐸2 has the form

𝐸∗ = { 𝑓 = ( 𝑓1, 𝑓2); 𝑓1 ∈ 𝐸∗
1, 𝑓2 ∈ 𝐸

∗
2}

and
𝑓 (𝑥) = 𝑓1(𝑥1) + 𝑓2(𝑥2)

So we note the functional 𝑓2(𝑦, 𝑣) as follows

𝑓2 (𝑦, 𝑣) = 𝑓 ′1 (𝑦) + 𝑓 ′2 (𝑣), (83)

where:
𝑓 ′1 (𝑦) = 0 ∀𝑦 ∈ 𝑌 (Theorem 10.1 [5]),
𝑓 ′2 (𝑣) is a support functional to the set𝑈𝑎𝑑 in a point 𝑣0 (Theorem 10.5 [5]).

c) Analysis of the performance functional
Using Theorem 7.5 [5] we find the regular improvement cone of the perfor-

mance functional (62)

𝑅𝐹𝐶 (𝐼, (𝑦0, 𝑣0)) =
{
(𝑦, 𝑣) ∈ 𝐸, 𝐼′(𝑦0, 𝑣0) (𝑦, 𝑣) < 0

}
, (84)

where: 𝐼′(𝑦0, 𝑣0) (𝑦, 𝑣) is the Fréchet differential of the performance functional
(62) and it can be written as

𝐼′(𝑦0, 𝑣0) (𝑦, 𝑣) = 2_0_1
〈
Λ1(𝑦0 − 𝑧𝑑), 𝑦

〉
𝐻−1,−2 (𝑄) + 2_0_2

〈
𝑁𝑣0, 𝑣

〉
𝐿2 (Σ) . (85)

On the basis of Theorem 10.2 [5] we find the functional belonging to the adjoint
regular improvement cone, which has the form

𝑓3(𝑦, 𝑣) = −_0_1
〈
Λ1(𝑦0 − 𝑧𝑑), 𝑦

〉
𝐻−1,−2 (𝑄) − _0_2

〈
𝑁𝑣0, 𝑣

〉
𝐿2 (Σ) , (86)

where: _0 > 0.
d) Analysis of Euler-Lagrange’s equation
The Euler-Lagrange’s equation for our optimization problem has the form

3∑︁
𝑖=1

𝑓𝑖 = 0 (87)
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Let 𝑝(𝑥, 𝑡) be the solution of (70)–(75) for (𝑣0, 𝑦0). Then, 𝑝(𝑣) is defined by
transposition, i.e.

〈𝑝, 𝑦′′ + 𝐴𝑦〉 = 𝑀 (𝑦), ∀𝑦 ∈ 𝐷−1
𝐴+𝐷2𝑡

(𝑄), (88)

where

𝑀 (𝑦) = 〈𝑝′′ + 𝐴𝑝, 𝑦〉 + 〈𝑝, 𝑙〉 − 〈𝑝, 𝑞〉 − 〈𝑝(0), 𝑦2〉 + 〈𝑝′(0), 𝑦1〉

and 𝑦 satisfies (41)–(46).
We observe that, for given 𝑧𝑑 and 𝑣, equations (70)–(75) can be solved back-

ward in time starting from 𝑡 = 𝑇 , i.e. first solving problem (70)–(75) in the
subcylinder 𝑄1, and in turn in 𝑄𝑘−1 etc., until the procedure covers the whole
cylinder 𝑄. For this purpose, we may apply Theorem 2.

Lemma 2 Let the hypothesis of Theorem 2 be satisfied. Then, for given 𝑧𝑑 ∈
𝐻−1,−2(𝑄), and any 𝑣 ∈ 𝐿2(Σ), there exists a unique solution

𝑝(𝑣) ∈ 𝐻3,3(𝑄) ⊂ Ξ3,3(𝑄)

to the problem (70)–(75) defined by transposition (88).

Next we denote by 𝑦 the solution of 𝑃′(𝑦, 𝑣) = 0 for any fixed 𝑣. Then taking
into account (82)–(83) and (86) we can express (87) in the form

𝑓 ′2 (𝑣) = _0_1
〈
Λ1(𝑦0 − 𝑧𝑑), 𝑦

〉
𝐻−1,−2 (𝑄) + _0_2

〈
𝑁𝑣0, 𝑣

〉
𝐿2 (Σ)

∀ (𝑦, 𝑣) ∈ 𝑅𝑇𝐶 (𝑄1(𝑦, 𝑣)) . (89)

We transform the first component of the right-hand side of (89) using the
formulae (70)–(75). For this purpose setting 𝑣 = 𝑣0 in (70)–(75) and then taking
the scalar product of both sides of (70), (71) by an element 𝑦(𝑣) respectively, and
then adding both sides of (70), (71), we get

_0_1
〈
Λ1(𝑦0 − 𝑧𝑑), 𝑦

〉
𝐻−1,−2 (𝑄) =

〈
𝜕2𝑝

𝜕𝑡2
+ 𝐴(𝑡)𝑝, 𝑦

〉
𝐻−1,−2 (𝑄)

+
〈
𝑚∑︁
𝑖=1

𝑝(𝑥, 𝑡 + ℎ𝑖), 𝑦
〉
𝐻−1.−2 [Ω×(0,𝑇−b)]

=

〈
𝑝,
𝜕2𝑦

𝜕𝑡2

〉
𝐻−3,−3 (𝑄)

+ 〈𝐴(𝑡)𝑝, 𝑦〉𝐻−1,−2 (𝑄) +
𝑚∑︁
𝑖=1

〈𝑝(𝑥, 𝑡 + ℎ𝑖), 𝑦〉𝐻−1.−2 [Ω×(0,𝑇−b)] (90)
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By using the equation (41), the first term on the right-hand side of (90) can be
rewritten as〈

𝑝,
𝜕2𝑦

𝜕𝑡2

〉
𝐻−3,−3 (𝑄)

= − 〈𝑝, 𝐴(𝑡)𝑦〉𝐻−3,−3 (𝑄)

−
〈
𝑝,

𝑚∑︁
𝑖=1

𝑦(𝑥, 𝑡 − ℎ𝑖)
〉
𝐻−1,−2 (𝑄)

= − 〈𝑝, 𝐴(𝑡)𝑦〉𝐻−3,−3 (𝑄)

−
𝑚∑︁
𝑖=1

〈𝑝(𝑥, 𝑡′ + ℎ𝑖), 𝑦(𝑥, 𝑡)〉𝐻−1.−2 [Ω×(−ℎ𝑖 ,𝑇−ℎ𝑖)] . (91)

The second integral on the right-hand side of (90) in view of Green’s formula can
be expressed as

〈𝐴(𝑡)𝑝, 𝑦〉𝐻−1,−2 (𝑄) = 〈𝑝, 𝐴(𝑡)𝑦〉𝐻−3,−3 (𝑄)

+
〈
𝑝,

𝜕𝑦

𝜕[𝐴

〉
𝐻−5/2Ξ−5/2 (Σ)

−
〈
𝜕𝑝

𝜕[𝐴
, 𝑦

〉
𝐻−5/2Ξ−5/2 (Σ)

. (92)

By using the boundary condition (45), the second term on the right-hand side of
(92) can be written as〈
𝑝,

𝜕𝑦

𝜕[𝐴

〉
𝐻−5/2Ξ−5/2 (Σ)

=

〈
𝑝,

𝑙∑︁
𝑠=1

𝑦(𝑥, 𝑡 − 𝑘𝑠)
〉
𝐻−5/2Ξ−5/2 (Σ)

+ 〈𝑝, 𝐺𝑣〉𝐻−5/2Ξ−5/2 (Σ)

=

𝑙∑︁
𝑠=1

〈𝑝, 𝑦(𝑥, 𝑡 − 𝑘𝑠)〉𝐻−5/2Ξ−5/2 (Σ) + 〈𝑝, 𝐺𝑣〉𝐻−5/2Ξ−5/2 (Σ)

=

𝑙∑︁
𝑠=1

〈𝑝(𝑥, 𝑡′ + 𝑘𝑠), 𝑦(𝑥, 𝑡′)〉𝐻−5/2Ξ−5/2 [Γ×(−𝑘𝑠 ,𝑇−𝑘𝑠)]

+ 〈𝑝, 𝐺𝑣〉𝐻−5/2Ξ−5/2 (Σ) .
(93)

The last term in (92) can be written as〈
𝜕𝑝

𝜕[𝐴
, 𝑦

〉
𝐻−5/2Ξ−5/2 (Σ)

=

〈
𝜕𝑝

𝜕[𝐴
, 𝑦

〉
𝐻−5/2Ξ−5/2 [Γ×(0,𝑇−b)]

+
〈
𝜕𝑝

𝜕[𝐴
, 𝑦

〉
𝐻−5/2Ξ−5/2 [Γ×(𝑇−b,𝑇)]

. (94)
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Substituting (93) and (94) into (92) and then (91) and (92) into (90) we obtain

_0_1

〈
Λ1(𝑦0 − 𝑧𝑑), 𝑦

〉
𝐻−1,−2 (𝑄)

= −
〈
𝑝, 𝐴(𝑡)𝑦

〉
𝐻−3,−3 (𝑄)

−
𝑚∑︁
𝑖=1

〈
𝑝(𝑥, 𝑡 + ℎ𝑖), 𝑦

〉
𝐻−1.−2 [Ω×(−ℎ𝑖 ,0)]

−
𝑚∑︁
𝑖=1

〈
𝑝(𝑥, 𝑡 + ℎ𝑖), 𝑦

〉
𝐻−1.−2 [Ω×(0,𝑇−ℎ𝑖)]

+
〈
𝑝, 𝐴(𝑡)𝑦

〉
𝐻−3,−3 (𝑄)

+
𝑙∑︁
𝑠=1

〈
𝑝(𝑥, 𝑡 + 𝑘𝑠), 𝑦

〉
𝐻−5/2Ξ−5/2 [Γ×(−𝑘𝑠 ,0)]

+
𝑙∑︁
𝑠=1

〈
𝑝(𝑥, 𝑡 + 𝑘𝑠), 𝑦

〉
𝐻−5/2Ξ−5/2 [Γ×(0,𝑇−𝑘𝑠)]

+
〈
𝑝, 𝐺𝑣

〉
𝐻−5/2Ξ−5/2 (Σ) −

〈
𝜕𝑝

𝜕[𝐴
, 𝑦

〉
𝐻−5/2Ξ−5/2 [Γ×(0,𝑇−b)]

−
〈
𝜕𝑝

𝜕[𝐴
, 𝑦

〉
𝐻−5/2Ξ−5/2 [Γ×(𝑇−b,𝑇)]

+
𝑚∑︁
𝑖=1

〈
𝑝(𝑥, 𝑡 + ℎ𝑖), 𝑦

〉
𝐻−1.−2 [Ω×(0,𝑇−b)] =

〈
𝑝, 𝐺𝑣

〉
𝐻−5/2Ξ−5/2 (Σ)

=
〈
𝐺∗𝑝, 𝑣

〉
𝐿2 (Σ) . (95)

Substituting (95) into (89) gives

𝑓 ′2 (𝑣) = _0
〈
𝐺∗𝑝 + _2𝑁𝑣0, 𝑣

〉
𝐿2 (Σ) . (96)

Using the definition of the support functional [5] and dividing both sides of the
obtained inequality by _0, we finally get〈

𝐺∗𝑝 + _2𝑁𝑣0, 𝑣 − 𝑣0
〉
𝐿2 (Σ)  0 ∀𝑣 ∈ 𝑈𝑎𝑑 . (97)

The last inequality is equivalent to the maximum condition (76).
The uniqueness of the optimal control follows from the strict convexity of the

performance functional (62).
This last remark finishes the proof of Theorem 3.
One may also consider analogous optimal control problem with the perfor-

mance functional

�̂� (𝑦, 𝑣) = _1
𝑦(𝑣)��

Σ
− 𝑧Σ𝑑

2
𝐻−5/2Ξ−5/2 (Σ) + _2

〈
(𝑁𝑣), 𝑣

〉
𝐿2 (Σ) , (98)
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where: 𝑧Σ𝑑 is a given element in 𝐻−5/2Ξ−5/2(Σ); we assume that the space
𝐻−5/2Ξ−5/2(Σ) is such that 𝑦(𝑣)

��
Σ
∈ 𝐻−5/2Ξ−5/2(Σ). Then the solution of the

formulated optimal control problem is equivalent to seeking a pair

(𝑦0, 𝑣0) ∈ 𝐸 = 𝐷−1
𝐴+𝐷𝑡

(𝑄) × 𝐿2(Σ)

that satisfies the equation (41)–(46) and minimizing the cost function (98) with
the constraints on controls (63).
We can prove the following theorem:

Theorem 4 The solution of the optimization problems (41)–(46), (98), (63) ex-
ists and it is unique with the assumptions mentioned above; the necessary and
sufficient conditions of the optimality are characterized by the following system
of partial differential equations and inequalities:
State equations (41)–(46),
Adjoint equations

𝜕2𝑝

𝜕𝑡2
+ 𝐴(𝑡)𝑝 +

𝑚∑︁
𝑖=1

𝑦(𝑥, 𝑡 + ℎ𝑖) = 0, 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 − b), (99)

𝜕2𝑝

𝜕𝑡2
+ 𝐴(𝑡)𝑝 = 0, 𝑥 ∈ Ω, 𝑡 ∈ (𝑇 − b, 𝑇), (100)

𝜕𝑝

𝜕[𝐴
=

𝑙∑︁
𝑠=1

𝑝(𝑥, 𝑡 + 𝑘𝑠) + _0Λ2
(
𝑦0

��
Σ
− 𝑧Σ𝑑

)
, 𝑥 ∈ Γ, 𝑡 ∈ (0, 𝑇 − b), (101)

𝜕𝑝

𝜕[𝐴
= _0Λ2

(
𝑦0

��
Σ
− 𝑧Σ𝑑

)
, 𝑥 ∈ Γ, 𝑡 ∈ (𝑇 − b, 𝑇), (102)

𝑝(𝑥, 𝑇) = 0, 𝑧 ∈ Ω, (103)

𝜕𝑝(𝑥, 𝑇)
𝜕𝑡

= 0, 𝑥 ∈ Ω, (104)

where: Λ2 is a canonical isomorphism of 𝐻−5/2Ξ−5/2(Σ) into 𝐻5/2Ξ5/2(Σ).
Maximum condition〈

𝐺∗𝑝(𝑣0) + _2𝑁𝑣0, 𝑣 − 𝑣0
〉
 0 ∀𝑣 ∈ 𝑈𝑎𝑑 . (105)

Moreover, it can be proved the following result.



EXTREMAL PROBLEMS FOR SECOND ORDER HYPERBOLIC SYSTEMS
INVOLVING MULTIPLE TIME DELAYS 123

Lemma 3 Let the hypothesis of Theorem 2 be satisfied. Then, for given
𝑧Σ𝑑 ∈ 𝐻−5/2Ξ−5/2(Σ) and any 𝑣 ∈ 𝐿2(Σ), there exists a unique solution
𝑝(𝑣) ∈ 𝐻3,3(𝑄) ⊂ Ξ3,3(𝑄) to the problem (99)–(104) defined by transposi-
tion (88).

The idea of the proof of the Theorem 4 is the same as in the case of the
Theorem 3.
We must notice that the conditions of optimality derived above (Theorems 3

and 4) allow us to obtain an analytical formula for the optimal control in particular
cases only (e.g. there are no constraints on boundary control). It results from the
following: the determining of the function 𝑝(𝑥, 𝑡) in the maximum condition from
the adjoint equation is possible if and only if we know that 𝑦0(𝑥, 𝑡) will suit the
control 𝑣0(𝑥, 𝑡). These mutual connections make the practical use of the derived
optimization formulas difficult. Thus we resign from the exact determining of the
optimal control and we use approximation methods.
In the case of performance functionals (62) and (98) with _1 > 0 and _2 = 0,

the optimal control problem reduces to the minimizing of the functional on a
closed and convex subset in a Hilbert space. Then, the optimization problem is
equivalent to a quadratic programming one [7,10,18] which can be solved by the
use of the well-known algorithms, e.g. Gilbert’s [4, 7, 10, 18] ones.
The practical application of Gilbert’s algorithm to optimal control problem for

a parabolic system with the boundary condition involving a time lag is presented
in [7]. Using of the Gilbert’s algorithm a one dimensional numerical example of
the plasma control process is solved.

5. Conclusions and perspectives

The derived conditions of the optimality (Theorems 3 and 4) are original
from the point of view of application of the Dubovicki-Milutin theorem [13] in
solving optimal boundary control problems for second order hyperbolic systems
in which different multiple time lags appear both in the state equations and in the
Neumann boundary conditions.
The existence and uniqueness of solutions for such hyperbolic systems was

presented – Lemma 1 and Theorem 2. The optimal control was characterized
by using the adjoint equations – Lemmas 2 and 3. Necessary and sufficient
conditions of optimality with the quadratic performance functionals (62) and (98)
and constrained control (63) are derived for the Neumann problem – Theorems 3
and 4.
The proved optimization results (Theorems 3 and 4) constitute a novelty of the

paper with respect to the references [8, 18] concerning application of the Lions
scheme [19] for solving linear quadratic hyperbolic problems of optimal control.
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Moreover, the optimization problems presented here constitute a generaliza-
tion of optimal control problems considered in [17] for hyperbolic systems with
constant time lags appearing in the state equations and in the boundary conditions
simultaneously.
The obtained optimization theorems (Theorems 3 and 4) demand the assump-

tion dealing with the non-empty interior of the set 𝑄2 representing the inequality
constraints.
Therefore, we approximate the set 𝑄2 by the regular admissible cone (if

int𝑄2 = Ø, then this cone does not exist).
It is worth mentioning that the obtained results can be reinforced by omitting

the assumption concerning the non-empty interior of the set 𝑄2 and utilizing
the fact that the equality constraints in the form of the hyperbolic equations
are “decoupling”. The optimal control problem reduces to seeking 𝑣0 ∈ 𝑄′

2
and minimizing the performance index 𝐼 (𝑣). Then we approximate the set 𝑄′

2
representing the inequality constraints by the regular tangent cone and for the
performance index 𝐼 (𝑣) we construct the regular improvement cone.
Making use of the Dubovicki-Milutin method the similar conditions of the

optimality may be derived for a hyperbolic system with the Neumann boundary
condition involving a time-varying lag.
The proposed methodology based on the Dubovicki-Milutin scheme can be

presented as a specific case study concerning hyperbolic problems described by
partial differential equations of the hyperbolic type including time lags appeared
in the integral form both in the state equations and in the Neumann boundary
conditions.
Another direction of research will be numerical examples concerning the de-

termination of optimal control with constraints for multiple time delay hyperbolic
systems.
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