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Bifurcation analysis, circuit design and sliding mode
control of a new multistable chaotic population model

with one prey and two predators

Sundarapandian VAIDYANATHAN, Khaled BENKOUIDER,
Aceng SAMBAS and P. DARWIN

In this work, we report a new chaotic population biology system with one prey and two
predators. Our new chaotic population model is derived by introducing two nonlinear interaction
terms between the prey and predator-2 to the Samardzija-Greller population biology system
(1988). We show that the new chaotic population biology system has a greater value of Maximal
Lyapunov Exponent (MLE) than the Maximal Lyapunov Exponent (MLE) of the Samardzija-
Greller population biology system (1988).We carry out a detailed bifurcation analysis of the new
chaotic population biology system with one prey and two predators. We also show that the new
chaotic population biology model exhibits multistability with coexisting chaotic attractors. Next,
we use the integral sliding mode control (ISMC) for the complete synchronization of the new
chaotic population biology system with itself, taken as the master and slave chaotic population
biology systems. Finally, for practical use of the new chaotic population biology system, we
design an electronic circuit design using Multisim (Version 14.0).
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1. Introduction

Chaotic systems have many applications due to their complexity [1]. Mem-
ristors [2–4], circuits [5, 6], neural networks [7, 8] and cybersecurity [9, 10] are
some well-known areas where chaotic systems are applied in practice.
A two-species population biology system describing the interaction between

a predator and a prey, popularly called as the predator-prey model was developed
independently byA.J. Lotka ( [11], 1925) andV.Volterra ( [12], 1926). Samardzija
and Greller ( [13], 1988) generalized the two-species Lotka-Volterra model to
derive a chaotic population biology system with two preys and one predator in
which two quadratic nonlinearities and two cubic nonlinearities were used for the
interactions of the predatorswith the prey.Using active nonlinear control,Agrawal
et al. ( [14], 2012) derived results for the asymptotic synchronization between
Ravinovich–Fabrikant chaotic system [15] and Samardzija-Greller chaotic system
[13]. Kocamaz et al. ( [16], 2020) designed a sliding mode controller to stabilize
the states of the Samardzija-Greller chaotic system [13].
In this work, we report a new chaotic population biology system with one

prey and two predators. Our new chaotic population model is derived by in-
troducing two nonlinear interaction terms between the prey and predator-2 to
the Samardzija-Greller population biology system [13]. We show that the new
chaotic population biology system has a greater value of positive Lyapunov com-
ponent than that of the Samardzija-Greller population biology system (1988). We
also show that the new chaotic population biology system has a greater value
of Kaplan-Yorke dimension than that of the Samardzija-Greller population bi-
ology system [13]. These calculations pinpoint that the new chaotic population
model exhibits more complexity than the Samardzija-Greller population biology
system [13].
Bifurcation analysis of chaotic systems yields useful information about the

dynamic properties of the systems as we vary the parameters of the systems [17,
18]. We carry out a detailed bifurcation analysis of the new chaotic population
biology system with one prey and two predators. We also establish that the new
chaotic population biology system exhibits multistability with coexisting chaotic
attractors. Multistability refers to the phenomenon of coexistence of periodic or
chaotic attractors for a nonlinear dynamical system for the same set of system
parameters but various values of the initial states of the dynamical system [19,20].
Next, we use integral sliding mode control (ISMC) for the complete synchro-

nization of the new chaotic population biology system with itself, taken as the
master and slave chaotic population biology systems. In the integral sliding mode
control, the system motion under ISMC has a dimension equal to that of the state
space. In ISMC, the system trajectory always starts from the sliding surface. Thus,
the reaching phase is eliminated in ISMC, and robustness in the whole state space
is achieved. ISMC is a popular control technique used in many engineering appli-
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cations [21–23]. Finally, we design an electronic circuit design using MultiSim
(Version 14.0). Circuit design of chaotic systems is very useful for implementing
the chaotic systems under study for practical applications [24, 25].

2. A new chaotic population model with one prey and two predators

A chaotic population biology system with two preys and one predator was
proposed by Samardzija and Greller ( [13], 1988) with two quadratic nonlinear-
ities and two cubic nonlinearities used for the interactions of the predators with
the prey.
Samardzija-Greller 3-species population model [13] is described by the fol-

lowing dynamics:

¤𝑧1 = 𝑧1 − 𝑧1𝑧2 + 𝑟𝑧21 − 𝑝𝑧
2
1𝑧3 , (1a)

¤𝑧2 = −𝑧2 + 𝑧1𝑧2 , (1b)

¤𝑧3 = −𝑞𝑧3 + 𝑝𝑧21𝑧3 . (1c)

In the 3-speciesmodel (1), 𝑧1 is the single prey and 𝑧2, 𝑧3 are the two predators.
The nonlinear interactions between the prey and the predator-1 are given by the
terms −𝑧1𝑧2 in (1a) and 𝑧1𝑧2 in (1b). The nonlinear interactions between the prey
and the predator-2 are given by the terms −𝑝𝑧21𝑧3 in (1a) and 𝑝𝑧

2
1𝑧3 in (1c). In the

population model (1), 𝑝, 𝑞 and 𝑟 are positive constants, which are called as the
Malthusian parameters.
Samardzija and Greller [13] established in their work that the 3-species Lotka-

Volterra population model (1) is chaotic when the Malthusian parameters in the
model (1) take the following values:

𝑝 = 2.98, 𝑞 = 3, 𝑟 = 7. (2)

The chaotic behaviour of the Samardzija-Greller system (1) for theMalthusian
parameter values (2) is confirmed by calculating the local Lyapunov exponents
for the initial state 𝑍 (0) = (1.4, 1.0, 1.4). A numerical estimation in MATLAB
gives the local Lyapunov exponents of the Samardzija-Greller system (1) for
(𝑝, 𝑞, 𝑟) = (2.98, 3, 7) and 𝑍 (0) = (1.4, 1.0, 1.4) for𝑇 = 1𝐸3 seconds as follows:

𝜏1 = 0.00161, 𝜏2 = 0, 𝜏3 = −0.01390. (3)

The complexity of the Samardzija-Greller system (1) is further estimated by
calculating the Kaplan-Yorke dimension of the chaotic population system (1) as
follows:

𝐷𝐾𝑌 = 2 + 𝜏1 + 𝜏2|𝜏3 |
= 2.1158. (4)
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In this research work, we develop a new 3-species population biology system
with one prey and two predators by introducing two nonlinear interaction terms
between the prey and predator-2 to the Samardzija-Greller system (1).
Our new population biology model is described by the following 3-D dynam-

ics:

¤𝑧1 = 𝑧1 − 𝑧1𝑧2 + 𝑟𝑧21 − 𝑠𝑧1𝑧3 − 𝑝𝑧
2
1𝑧3 , (5a)

¤𝑧2 = −𝑧2 + 𝑧1𝑧2 , (5b)

¤𝑧3 = −𝑞𝑧3 + 𝑠𝑧1𝑧3 + 𝑝𝑧21𝑧3 . (5c)

In the new 3-species model (5), 𝑧1 is the single prey and 𝑧2, 𝑧3 are the two
predators. The nonlinear interactions between the prey and the predator-1 are
given by the terms −𝑧1𝑧2 in (5a) and 𝑧1𝑧2 in (5b). The nonlinear interactions
between the prey and the predator-2 are given by the terms −𝑠𝑧1𝑧3, −𝑝𝑧21𝑧3 in
(5a) and 𝑠𝑧1𝑧3, 𝑝𝑧21𝑧3 in (5c). In the population model (1), 𝑝, 𝑞, 𝑟 and 𝑠 are
positive constants, which are called as the Malthusian parameters.
In this researchwork, wewill that the new 3-species Lotka-Volterra population

model is chaotic when the Malthusian parameters in the model (5) take the
following values:

𝑝 = 1.8, 𝑞 = 3, 𝑟 = 8, 𝑠 = 0.2. (6)

The chaotic behaviour of the new 3-species population biology model (5)
for the Malthusian parameter values (6) is confirmed by calculating the local
Lyapunov exponents for the initial state 𝑍 (0) = (1.4, 1.0, 1.4). A numerical
estimation in MATLAB for seconds gives the local Lyapunov exponents of the
new population biology model (5) for (𝑝, 𝑞, 𝑟, 𝑠) = (1.8, 3, 8, 0.2) and 𝑍 (0) =

(1.4, 1.0, 1.4) as follows:

𝜏1 = 0.03424, 𝜏2 = 0, 𝜏3 = −0.03826. (7)

Themaximal Lyapunov exponent (MLE) of the new population biologymodel
(5) is 𝜏max = 0.03424, which is larger than the maximal Lyapunov exponent
(MLE) of the Samardzija-Greller system (1) given by 𝜏max = 0.00161.
The complexity of the new 3-species population biology model (5) is fur-

ther estimated by calculating the Kaplan-Yorke dimension of the new chaotic
population system (5) as follows:

𝐷𝐾𝑌 = 2 + 𝜏1 + 𝜏2|𝜏3 |
= 2.8949. (8)

The value of the Kaplan-Yorke dimension of the new chaotic population
system (5) is much greater than the value of the Kaplan-Yorke dimension of the
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Samardzija-Greller system (1).Hence,we deduce that the newchaotic populations
system (5) exhibits more complexity than the Samardzija-Greller system (1).
The phase portraits of the new chaotic population model (5) for the paramater

values (6) and 𝑍 (0) = (1.4, 1.0, 1.4) are plotted in Figures 1 to 3.

Figure 1: MATLAB phase plot of the new 3-species Lotka-Volterra chaotic population
model (5) in (𝑧1, 𝑧2) plane

Figure 2: MATLAB phase plot of the new 3-species Lotka-Volterra chaotic population
model (5) in (𝑧2, 𝑧3) plane
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Figure 3: MATLAB phase plot of the new 3-species Lotka-Volterra chaotic population
model (5) in (𝑧1, 𝑧3) plane

3. Bifurcation Study of the New Chaotic Population Model

This section will study the influence of the four parameters on the chaotic
properties of the new population biology system (5). We will give a detailed
analysis of the new system’s behavior including definition of parameters regions
wherein system (5) develops weak chaos (𝜏1 < 0.01), robust chaos (𝜏1 > 0.01),
periodic behavior (𝜏1 = 0) or stability zone (𝜏1 < 0).

3.1. Variation of the parameter 𝑝

Here, we fix 𝑞 = 3, 𝑟 = 8, 𝑠 = 0.2 and vary 𝑝 in the interval [1.7, 3].
Figure 4 represents the LEs spectrum and bifurcation diagram of system (5)

when 𝑝 increases from 1.7 to 3. It demonstrates how sensitive the new population
biology system (5) is to variations in the parameter 𝑝 value.
By examining the LEs and the bifurcation diagram shown in Figure 4, we find

that the novel population biology model (5) may experience a set of scenarios,
such as robust chaos, weak chaos, periodic behavior, or convergence to a stable
state, depending on the value of parameter 𝑝.
The new population biology model (5) as illustrated in Figure 4(b) contains

one positive LE bigger than 0.01 for 𝑝 ∈ [1.7, 2]. System (5) has robust chaotic
behavior over this range of parameter 𝑝, as illustrated in Figure 4(a). We choose a
number from this range and set 𝑝 as follows: 𝑝 = 1.7. This will serve to generate
an illustration of the chaotic attractors produced by system (5) when 𝑝 ∈ [1.7, 2].
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(a)

(b)

Figure 4: Dynamic analysis of the new 3-species population biology system (5) when
𝑝 ∈ [1.7, 3], 𝑞 = 3, 𝑟 = 8 and 𝑠 = 0.2: (a) Bifurcation diagram and (b) LE spectrum

Then, as shown in Figure 5(a), the (𝑧1, 𝑧2) chaotic attractor of system (5) is
displayed in blue for 𝑝 = 1.7. The associated Lyapunov exponents (LEs) and
Kaplan-Yorke dimension (𝐷𝐾𝑌 ) are:

1) 𝜏1 = 0.042, 𝜏2 = 0 and 𝜏3 = −0.045.
2) 𝐷𝐾𝑌 = 2.93.

As seen in Figure 4(b), the new population biology model (5) has one positive
LE smaller than 0.01 for 𝑝 ∈ [2, 2.7]. Hence, the system (5) exhibits weak chaotic
behavior across this parameter 𝑝 range. We select a value from this range, and
we set 𝑝 to be: 𝑝 = 2.44. The (𝑧1, 𝑧2) chaotic attractor of the system (5) is then
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presented in red for 𝑝 = 2.44 as seen in Figure 5(a). The associated LEs and
DKY are as follows:

1) 𝜏1 = 0.006, 𝜏2 = 0 and 𝜏3 = −0.009.
2) 𝐷𝐾𝑌 = 2.67.

The new population biology model (5) contains one zero and two negative
LEs for 𝑝 ∈ [2.7, 2.8], as can be observed in Figure 5(b). As a result, the system
(5) displays periodic behavior across this range of 𝑝. In Figure 5(b), the (𝑧1, 𝑧2)

(a)

(b)

Figure 5: MATLAB phase portraits of the new population biology system (5) in (𝑧1, 𝑧2)
plane for different values of 𝑝: (a) in blue: chaotic attractor (𝑝 = 1.7), in red: chaotic
attractor (𝑝 = 2.44), and (b) in blue: periodic attractor (𝑝 = 2.75), in red: Convergence
to stable state (𝑝 = 3)
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periodic attractor of the system (5) is shown in blue for 𝑝 = 2.75. The associated
LEs and 𝐷𝐾𝑌 are as follows:

1) 𝜏1 = 0, 𝜏2 = −0.015 and 𝜏3 = −0.019.
2) 𝐷𝐾𝑌 = 0.

Finally, when 𝑝 ∈ [2.8, 3], the system (5) has three negative LEs indicating
that it converge to its stable state. In Figure 5(b), the convergence of the (𝑧1, 𝑧2)
portrait to stable state of system (5) is shown in red for 𝑝 = 3. The associated LEs
and DKY are as follows:

1) 𝜏1 = −0.035, 𝜏2 = −0.212 and 𝜏3 = −0.217.
2) 𝐷𝐾𝑌 = 0.

3.2. Variation of the parameter 𝑞

Here, we fix 𝑝 = 1.8, 𝑟 = 8, 𝑠 = 0.2 and vary 𝑞 in the interval [1.5, 4.5].
Figure 6 represents the LEs spectrum and bifurcation diagram of system

(5) when 𝑞 increases from 1.5 to 4.5. It demonstrates how sensitive the new
population biology system (5) is to variations in the parameter 𝑞 value.
By examining the LEs and the bifurcation diagram shown in Figure 6, we find

that the novel population biology model (5) may experience a set of scenarios,
such as convergence to a stable state, weak chaos and robust chaos, depending on
the value of parameter 𝑞.
When 𝑞 ∈ [1.5, 2.1], the new population biology model (5) has three negative

LEs indicating that it converges to a stable state. In Figure 7 (a), the the conver-
gence of the (𝑧1, 𝑧3) portrait to stable state of system (5) is shown for 𝑞 = 1.5. The
associated Lyapunov exponents (LEs) and Kaplan-Yorke dimension (𝐷𝐾𝑌 ) are:

1) 𝜏1 = −0.045, 𝜏2 = −0.052 and 𝜏3 = −0.153.
2) 𝐷𝐾𝑌 = 0.

As seen in Figure 6(b), the new population biology model (5) has one positive
LE smaller than 0.01 for 𝑞 ∈ [2.1, 2.5]. Hence, the system (5) exhibits weak
chaotic behavior across this parameter 𝑞 range. We select a value from this range,
and we set 𝑞 to be: 𝑞 = 2.44. The (𝑧1, 𝑧3) chaotic attractor of the system (5) is
then presented in red for 𝑞 = 2.44 as seen in Figure 7 (b). The associated LEs
and DKY are as follows:

1) 𝜏1 = 0.009, 𝜏2 = 0 and 𝜏3 = −0.025.
2) 𝐷𝐾𝑌 = 2.36.
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(a)

(b)

Figure 6: Dynamic analysis of the new 3-species population biology system (5) when
𝑝 = 1.8, 𝑞 ∈ [1.5, 4.5], 𝑟 = 8 and 𝑠 = 0.2: (a) Bifurcation diagram and (b) LE spectrum

As seen in Figure 6(b), the new population biology model (5) has one positive
LE bigger than 0.01 for 𝑞 ∈ [2.5, 4.5]. Hence, the system (5) exhibits robust
chaotic behavior across this parameter 𝑞 range. We select a value from this range,
and we set 𝑞 to be: 𝑞 = 4.5. The (𝑧1, 𝑧3) chaotic attractor of the system (5) is
then presented in blue for 𝑞 = 4.5 as seen in Figure 7(b). The associated LEs and
DKY are as follows:

1) 𝜏1 = 0.065, 𝜏2 = 0 and 𝜏3 = −0.066.
2) 𝐷𝐾𝑌 = 2.98.
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(a)

(b)

Figure 7: MATLAB phase portraits of the new population biology system (5) in (𝑧1, 𝑧3)
plane for different values of 𝑞: (a) Convergence to stable state (𝑞 = 1.5) and (b) in blue:
chaotic attractor (𝑞 = 4.5), in red: chaotic attractor (𝑞 = 2.44)

3.3. Variation of the parameter 𝑟

Here, we fix 𝑝 = 1.8, 𝑞 = 3, 𝑠 = 0.2 and vary 𝑟 in the interval [1, 8].
Figure 8 represents the LEs spectrum and bifurcation diagram of system (5)

when 𝑟 increases from 1 to 8. It demonstrates how sensitive the new population
biology system (5) is to variations in the parameter 𝑟 value.
By examining the LEs and the bifurcation diagram shown in Figure 8, we find

that the novel population biology model (5) may experience a set of scenarios,
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such as convergence to a stable state, weak chaos and robust chaos, depending on
the value of parameter 𝑟 .

(a)

(b)

Figure 8: Dynamic analysis of the new 3-species population biology system (5) when
𝑝 = 1.8, 𝑞 = 3, 𝑟 ∈ [1, 8] and 𝑠 = 0.2: (a) Bifurcation diagram and (b) LE spectrum

When 𝑟 ∈ [1, 2], the new population biology model (5) has one zero LE and
two negative LEs indicating that it exhibits periodic behavior. In Figure 9(a), the
(𝑧2, 𝑧3) periodic attractor is plotted for 𝑟 = 1. The associated Lyapunov exponents
(LEs) and Kaplan-Yorke dimension (𝐷𝐾𝑌 ) are:

1) 𝜏1 = 0, 𝜏2 = −0.014 and 𝜏3 = −0.020.
2) 𝐷𝐾𝑌 = 0.
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As seen in Figure 8(b), the new population biology model (5) has one positive
LE smaller than 0.01 for 𝑟 ∈ [2, 7.5]. Hence, the system (5) exhibits weak chaotic
behavior across this parameter 𝑟 range. We select a value from this range, and we
set 𝑟 to be: 𝑟 = 4. The (𝑧1, 𝑧3) chaotic attractor of the system (5) is then presented
in red for 𝑟 = 4 as seen in Figure 9(b). The associated LEs and DKY are as
follows:

1) 𝜏1 = 0.003, 𝜏2 = 0 and 𝜏3 = −0.004.
2) 𝐷𝐾𝑌 = 2.75.

(a)

(b)

Figure 9: MATLAB phase portraits of the new population biology system (5) in (𝑧2, 𝑧3)
plane for different values of 𝑟: (a) Periodic attractor (𝑟 = 1) and (b) in blue: chaotic
attractor (𝑟 = 7.9), in red: chaotic attractor (𝑟 = 4)
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As seen in Figure 8(b), the new population biology model (5) has one positive
LE bigger than 0.01 for 𝑟 ∈ [7.5, 8]. Hence, the system (5) exhibits robust chaotic
behavior across this parameter 𝑟 range. We select a value from this range, and
we set 𝑟 to be: 𝑟 = 7.9. The (𝑧1, 𝑧3) chaotic attractor of the system (5) is then
presented in blue for 𝑟 = 7.9 as seen in Figure 9(b). The associated LEs and DKY
are as follows:

1) 𝜏1 = 0.030, 𝜏2 = 0 and 𝜏3 = −0.036.

2) 𝐷𝐾𝑌 = 2.83.

3.4. Variation of the parameter 𝑠

Here, we fix 𝑝 = 1.8, 𝑞 = 3, 𝑟 = 8 and vary 𝑠 in the interval [0, 0.2].
Figure 10 represents the LEs spectrum and bifurcation diagram of system (5)

when 𝑠 increases from 0 to 0.2. It demonstrates how sensitive the new population
biology system (5) is to variations in the parameter 𝑠 value.
By examining the LEs and the bifurcation diagram shown in Figure 10, we

find that the novel population biologymodel (5)may experience a set of scenarios,
such as quasi-periodic attractor, weak chaotic attractor or robust chaotic attractor,
depending on the value of parameter 𝑠.
When 𝑠 ∈ [0, 0.06], the new population biology model (5) has two zero LEs

and one negative LE indicating that it exhibits quasi-periodic behavior. In Figure
11(a), the (𝑧1, 𝑧2, 𝑧3) quasi-periodic attractor of the system (5) is shown in green
for 𝑠 = 0. The associated Lyapunov exponents (LEs) andKaplan-Yorke dimension
(𝐷𝐾𝑌 ) are:

1) 𝜏1 = 0, 𝜏2 = 0 and 𝜏3 = −0.004.

2) 𝐷𝐾𝑌 = 0.

As seen in Figure 10(b), the new population biologymodel (5) has one positive
LE smaller than 0.01 for 𝑠 ∈ [0.060, 0.186]. Hence, the system (5) exhibits weak
chaotic behavior across this parameter 𝑠 range. We select a value from this range,
and we set 𝑠 to be: 𝑠 = 0.1. The (𝑧1, 𝑧2, 𝑧3) chaotic attractor of the system (5) is
then presented in red for 𝑠 = 0.1 as seen in Figure 11(b). The associated LEs and
DKY are as follows:

1) 𝜏1 = 0.001, 𝜏2 = 0 and 𝜏3 = −0.006.

2) 𝐷𝐾𝑌 = 2.17.

As seen in Figure 10(b), the new population biology model (5) has one
positive LE bigger than 0.01 for 𝑠 ∈ [0.186, 2]. Hence, the system (5) exhibits



BIFURCATION ANALYSIS, CIRCUIT DESIGN AND SLIDING MODE CONTROL
OF A NEWMULTISTABLE CHAOTIC POPULATION MODEL. . . 141

(a)

(b)

Figure 10: Dynamic analysis of the new 3-species population biology system (5) when
𝑝 = 1.8, 𝑞 = 3, 𝑟 = 8 and 𝑠 ∈ [0, 0.2]: (a) Bifurcation diagram and (b) LE spectrum

robust chaotic behavior across this parameter 𝑠 range. We select a value from this
range, and we set 𝑠 to be: 𝑠 = 0.2. The (𝑧1, 𝑧2, 𝑧3) chaotic attractor of the system
(5) is then presented in blue for 𝑠 = 0.2 as seen in Figure 11 (b). The associated
LEs and DKY are as follows:

1) 𝜏1 = 0.039, 𝜏2 = 0 and 𝜏3 = −0.043.
2) 𝐷𝐾𝑌 = 2.91.
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(a)

(b)

Figure 11: MATLAB phase portraits of the new population biology system (5) in
(𝑧1, 𝑧2, 𝑧3) space for different values of 𝑠: (a) Quasi-periodic attractor (𝑠 = 0) and (b) in
blue: chaotic attractor (𝑠 = 0.2), in red: chaotic attractor (𝑠 = 0.1)

3.5. Multistability with coexistence of chaotic attractors

For a chaotic dynamical system, multistability refers to the phenomenon of
the coexistence of chaotic attractors for the same set of values of system constants
but varying values of initial states of the system.



BIFURCATION ANALYSIS, CIRCUIT DESIGN AND SLIDING MODE CONTROL
OF A NEWMULTISTABLE CHAOTIC POPULATION MODEL. . . 143

Figure 12 refers to the multistability of the new chaotic population biology
system (5, showing the coexistence of two chaotic attractors for the same set of
parameter values (𝑝, 𝑞, 𝑟𝑠) = (1.8, 3, 8, 0.2) but different initial states, where the
blue orbit corresponds to the initial state 𝑍0 = (1.4, 1.0, 1.4) and the red orbit
corresponds to the initial state𝑊 (0) = (3.4, 1.0, 3.4).

(a)

(b)

Figure 12: MATLAB phase portraits showing multistability with coexistence of chaotic
attractors of the new chaotic population biology system (5), where the blue orbit corre-
sponds to the initial state 𝑍0 = (1.4, 1.0, 1.4) and the red orbit corresponds to the initial
state𝑊 (0) = (3.4, 1.0, 3.4)
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4. Master-slave synchronization of the new chaotic population systems

Integral sliding mode control (ISMC) is successfully deployed to achieve
global asymptotic synchronization of the master chaotic population system (M)
and slave chaotic population system (S).

(M)


¤𝑧1 = 𝑧1 − 𝑧1𝑧2 + 𝑟𝑧21 − 𝑠𝑧1𝑧3 − 𝑝𝑧

2
1𝑧3 ,

¤𝑧2 = −𝑧2 + 𝑧1𝑧2 ,
¤𝑧3 = −𝑞𝑧3 + 𝑠𝑧1𝑧3 + 𝑝𝑧21𝑧3 ,

(9)

(S)


¤𝑤1 = 𝑤1 − 𝑤1𝑤2 + 𝑟𝑤21 − 𝑠𝑤1𝑤3 − 𝑝𝑤

2
1𝑤3 +𝑉1 ,

¤𝑤2 = −𝑤2 + 𝑤1𝑤2 +𝑉2 ,
¤𝑤3 = −𝑞𝑤3 + 𝑠𝑤1𝑤3 + 𝑝𝑤21𝑤3 +𝑉3 .

(10)

Here, 𝑉1, 𝑉2, 𝑉3 are integral sliding mode controls (ISMC) which will be
designed so as to synchronize the states of the master chaotic population system
(M) and the slave chaotic population system (S).
The synchronization error between the chaotic population systems (M) and

(S) is defined as follows: 
𝐸1 = 𝑤1 − 𝑧1 ,
𝐸2 = 𝑤2 − 𝑧2 ,
𝐸3 = 𝑤3 − 𝑧3 .

(11)

The error dynamics is obtained as follows:
¤𝐸1 = 𝐸1 − 𝑤1𝑤2 + 𝑧1𝑧2 + 𝑟 (𝑤21 − 𝑧

2
1)

− 𝑠(𝑤1𝑤3 − 𝑧1𝑧3) − 𝑝(𝑤21𝑤3 − 𝑧
2
1𝑧3) +𝑉1 ,

¤𝐸2 = −𝐸2 + 𝑤1𝑤2 − 𝑧1𝑧2 +𝑉2 ,
¤𝐸3 = −𝑞𝐸3 + 𝑠(𝑤1𝑤3 − 𝑧1𝑧3) + 𝑝(𝑤21𝑤3 − 𝑧

2
1𝑧3) +𝑉3 .

(12)

With each error variable, we link an integral sliding surface as follows:

𝑆1 = 𝐸1 + 𝑚1
𝑡∫
0

𝐸1(𝜏)d𝜏 ,

𝑆2 = 𝐸2 + 𝑚2
𝑡∫
0

𝐸2(𝜏)d𝜏 ,

𝑆3 = 𝐸𝑠3 + 𝑚3
𝑡∫
0

𝐸3(𝜏)d𝜏 .

(13)
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By differentiation of the equations (13), we get
¤𝑆1 = ¤𝐸1 + 𝛾1 𝐸1 ,
¤𝑆2 = ¤𝐸2 + 𝛾2 𝐸2 ,
¤𝑆3 = ¤𝐸3 + 𝛾3 𝐸3 .

(14)

The integral sliding mode controls for the master-slave synchronisation are
defined as follows:

𝑉1 = −𝐸1 + 𝑤1𝑤2 − 𝑧1𝑧2 − 𝑟 (𝑤21 − 𝑤
2
2) + 𝑠(𝑤1𝑤3 − 𝑧1𝑧3)

+ 𝑝(𝑤21𝑤3 − 𝑧
2
1𝑧3) − 𝛾1𝐸1 − 𝛼1sgn(𝑆1) − 𝛽1𝑆1 ,

𝑉2 = −𝛾2𝐸2 − 𝛼2sgn(𝑆2) − 𝛽2𝑆2 ,
𝑉3 = 𝑞𝐸3 − 𝑠(𝑤1𝑤3 − 𝑧1𝑧3) − 𝑝(𝑤21𝑤3 − 𝑧

2
1𝑧3)

− 𝛾3𝐸3 − 𝛼3sgn(𝑆3) − 𝛽3𝑆3 .

(15)

By plugging in the sliding control law (15) into the error dynamics (12),
we get 

¤𝐸1 = −𝛾1 𝐸1 − 𝛼1 sgn(𝑆1) − 𝛽1𝑆1 ,
¤𝐸2 = −𝛾2 𝐸2 − 𝛼2 sgn(𝑆2) − 𝛽2𝑆2 ,
¤𝐸3 = −𝛾3 𝐸3 − 𝛼3 sgn(𝑆3) − 𝛽3𝑆3 .

(16)

Theorem 1 The master-slave 3-D chaotic population models (9) and (10) are
asymptotically and globally synchronised by the integral sliding mode control
law (15) where 𝛾𝑖, 𝛼𝑖, 𝛽𝑖, (𝑖 = 1, 2, 3) are assumed to be positive constants.

Proof.We define the Lyapunov function candidate as

𝑉 (𝑆1, 𝑆2, 𝑆3) =
1
2

(
𝑆21 + 𝑆

2
2 + 𝑆

2
3

)
(17)

which is obviously a positive definite function on R3.
We observe next that

¤𝑉 = 𝑆1 ¤𝑆1 + 𝑆2 ¤𝑆2 + 𝑆3 ¤𝑆3 . (18)

Using (14) and (16), we simplify (18) as

¤𝑉 =

3∑︁
𝑖=1

𝑆𝑖 (−𝛼𝑖 sgn(𝑆𝑖) − 𝛽𝑖𝑆𝑖). (19)
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A simplification shows that

¤𝑉 = −
3∑︁
𝑖=1

[
𝛼𝑖 |𝑆𝑖 | + 𝛽𝑖𝑆2𝑖

]
. (20)

Since 𝛼𝑖 > 0 and 𝛽𝑖 > 0 for 𝑖 = 1, 2, 3, we conclude that ¤𝑉 is a strictly negative
definite function defined on R3.
By Lyapunov stability theory, we have 𝑆𝑖 (𝑡) → 0 for 𝑖 = 1, 2, 3 as 𝑡 → ∞.
Consequently, we see that 𝐸𝑖 (𝑡) → 0 for (𝑖 = 1, 2, 3) as 𝑡 → ∞. 2

For MATLAB simulations, the parameters of the 3-D population models are
taken as in the chaotic case, viz. 𝑝 = 1.8, 𝑞 = 3, 𝑟 = 8, and 𝑠 = 0.2.
The sliding constants for numerical simulations are assumed as 𝛼𝑖 = 0.3,

𝛽𝑖 = 9 and 𝛾𝑖 = 12 for 𝑖 = 1, 2, 3.
For the master population system (M), the initial state is assumed as

𝑧1(0) = 4.2, 𝑧2(0) = 12.5, 𝑧3(0) = 7.1. (21)

For the slave population system (S), the initial state is assumed as

𝑤1(0) = 14.1, 𝑤2(0) = 8.7, 𝑤3(0) = 11.6. (22)

The time-history for the synchronization errors between the master system
(M) and the slave system (S) is depicted in Figure 13.

Figure 13: MATLAB plot of the time-trajectories of the synchronization errors between
the master and slave chaotic population systems
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From Figure 13, we can see that the master system (M) and the slave system
(S) are quickly synchronised in our numerical simulation.

5. Circuit design of the new chaotic population biology system with one prey
and two predators

The circuit design of the new chaotic population biology system (5) with one
prey and two predators is given in Figure 14.
Electronic circuit implementation of the new population biology chaotic sys-

tem is designed for the parameters (𝑝, 𝑞, 𝑟, 𝑠) = (1.8, 3, 8, 0.2) with initial con-
ditions 𝑍 (0) = (1.4, 1.0, 1.4). The designed circuit includes 2 analog multipliers
(AD63JN), 7 operational ampliers (TL083CD), 17 resistors and 4 capacitors.
For the circuit design, the the new population biology chaotic system has to be
rescaled by using the following scaling of variables:

𝑍1 =
1
2
𝑧1 ,

𝑍2 =
1
2
𝑧2 ,

𝑍3 =
1
4
𝑧3 .

(23)

Replacing the new variables on the new population biology chaotic system
(5), we obtain the following system:

¤𝑍1 = 𝑍1 − 2𝑍1𝑍2 + 2𝑟𝑍21 − 4𝑠𝑍1𝑍3 − 8𝑝𝑍
2
1𝑍3 ,

¤𝑍2 = −𝑍2 + 2𝑍1𝑍2 ,
¤𝑍3 = −𝑞𝑍3 + 2𝑠𝑍1𝑍3 + 4𝑝𝑍21𝑍3 .

(24)

The circuit equation of the new chaotic population biology system after using
Kirchhoff’s electrical circuit laws can be derived as follows:

𝐶1 ¤𝑍1 =
1
𝑅1

𝑍1 −
1
𝑅2

𝑍1𝑍2 +
1
𝑅3

𝑍21 −
1
𝑅4

𝑍1𝑍3 −
1
𝑅5

𝑍21𝑍3 ,

𝐶2 ¤𝑍2 = − 1
𝑅6

𝑍2 +
1
𝑅7

𝑍1𝑍2 ,

𝐶3 ¤𝑍3 = − 1
𝑅8

𝑍3 +
1
𝑅9

𝑍1𝑍3 +
1
𝑅10

𝑍21𝑍3 .

(25)

Here, 𝑍1, 𝑍2, 𝑍3 are the voltages across the capacitors𝐶1, 𝐶2, 𝐶3, respectively.
We choose the values of the circuital elements as in Table 1.
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Figure 14: Circuit design of the new chaotic population biology system
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Table 1: The Values of the Circuit Components in the 3-D Chaotic Circuit (25)

Circuit component Value
𝑅1 100 kΩ
𝑅2, 𝑅7 200 kΩ
𝑅4 500 kΩ
𝑅5 27.77 kΩ
𝑅6 400 kΩ
𝑅8 133.33 kΩ
𝑅9 1 mΩ
𝑅10 55.55 kΩ
𝑅11, 𝑅12, 𝑅13, 𝑅14 100 kΩ
The power supplies ±15 Volts

With Multisim 14.0, we obtain the experimental observations of the new
chaotic population biology system (25) as shown in Figures 15, 16 and 17. It can
be seen that a good qualitative agreement between the MATLAB simulations of
the new chaotic population system (5) and the Multisim simulations of the new
chaotic population circuit system (25) is confirmed.

Figure 15: Circuit simulation using Multisim for the chaotic population circuit model
(25) in the (𝑍1, 𝑍2) plane
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Figure 16: Circuit simulation using Multisim for the chaotic population circuit model
(25) in the (𝑍2, 𝑍3) plane

Figure 17: Circuit simulation using Multisim for the chaotic population circuit model
(25) in the (𝑍1, 𝑍3) plane
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6. Conclusions

We reported a new chaotic population biology system with one prey and two
predators. Our new chaotic population model was basically derived by means
of introducing two nonlinear interaction terms between the prey and predator-
2 to the Samardzija-Greller population biology system (1988). We established
that the new chaotic population biology system has a greater value of Maximal
Lyapunov Exponent (MLE) than the Maximal Lyapunov Exponent (MLE) of the
Samardzija-Greller population biology system (1988). We carried out a detailed
bifurcation analysis of the new chaotic population biology system with one prey
and two predators. We also established that the new chaotic population biology
model exhibits multistability with coexisting chaotic attractors. Next, we applied
integral sliding mode control for the complete synchronization of the new chaotic
population biology system with itself, taken as the master and slave chaotic
population biology systems. MATLAB simulations were shown to illustrate the
phase orbits of the new chaotic population model, bifurcation analysis of the new
chaotic populationmodel and the control results via slidingmode control. Finally,
for the practical use of the new chaotic population biology system, we designed
an electronic circuit design using MultiSim (Version 14.0).
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