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Probing 3D chaotic Thomas’ cyclically attractor
with multimedia encryption and electronic circuitry

NajeebAlam KHAN, Muhammad Ali QURESHI, Saeed AKBAR and Asmat ARA

This study investigates Thomas’ cyclically symmetric attractor dynamics with mathemat-
ical and electronic simulations using a proportional fractional derivative to comprehend the
dynamics of a given chaotic system. The three-dimensional chaotic flow was examined in detail
with Riemann-Liouville derivative for different values of the fractional index to highlight the
sensitivity of chaotic systems with initial conditions. Thus, the dynamics of the fractional in-
dex system were investigated with Eigenvalues, Kaplan–Yorke dimension, Lyapunov exponent,
and NIST testing, and their corresponding trajectories were visualized with phase portraits, 2D
density plot, and Poincaré maps. After obtaining the results, we found that the integer index
dynamics are more complex than the fractional index dynamics. Furthermore, the chaotic system
circuit is simulated with operational amplifiers for different fractional indices to generate analog
signals of the symmetric attractor, making it an important aspect of engineering. The qualitative
application of our nonlinear chaotic system is then applied to encrypt different data types such
as voice, image, and video, to ensure that the developed nonlinear chaotic system can widely
applied in the field of cyber security.
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1. Introduction

The deterministic, irregular, and unpredictable behavior of dynamical systems
has gained a lot of attention in recent years. With fast-evolving applications in the
fields of multimedia, digital networks, cyber security, and information sciences,
irregular-deterministic behavior has gained considerable attention. Deterministic-
nonlinear dynamical systems, widely known as chaos, have now been considered
as an interdisciplinary subject with applications in the fields of physics [1, 2],
biology [3], economics [4], medicine [5], communication [6], cryptography [7],
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electronics [8,9] etc. The evolution of chaos after Lorenz [10], a two-scroll chaotic
attractor led to the development of one scroll attractor [11], three scroll attrac-
tor [12], six scroll attractor [13], and multi-scroll attractor [14]. The attractors
were studied and researched in detail, such as limit cycle attractors presented
by Vanderpole [15] in his study of force triod vibration, a model of electronic
circuits that was used in radio. Subsequently, attractors like Rossler were ex-
plored under the time-scale perspective by Dimitris et.al. [16]. Chua’s attractor
hidden bifurcations novel methodology was introduced to study the multispiral
Chua attractor completely [17]. Additional ideas and methodologies are under
investigation in nonlinear dynamical systems to probe the natural phenomena
present in this world. Other renowned attractors include Chen attractor [18], Lu
Chen attractor [19], PWL duffing chaotic attractor [20], Rabinovich-Fabrikant
attractor [21], etc.
Fractional derivatives, with enormous influence on the history of non-integer

order systems in the field of science and technology, have greatly affected the
development of chaotic systems [22, 23]. As a generalization of classical deriva-
tives, fractional derivatives are used to describe and solve ordinary and partial
differential equations along with integral equations. With well-known definitions
of fractional derivatives, such as Liouville, Riezs, Riemann, Atangana–Baleanu,
Caputo, Letnikov, Hadamard, Marchaud, Weyl, and Coimbra, fractional deriva-
tives have enormous interdisciplinary applications. The current contributions of
fractional derivatives in the field of fractional index chaotic systems are numer-
ous, such as the effects of the modified Chua’s system studied by Tom et al. with
fractional derivatives [24]. Recently, chaos dynamics control has gained popular-
ity, with a new trend of investigating chaotic systems using different mathematical
and physical models, such as Chunguang and Guanrong, who studied the Chen
system with fractional order [25]. Digital/analog electronics and fractional index
systems play a significant role in the investigation of chaotic regimes and in the
design of low-power consumption systems with quick processing units. Digital
systems and their component perspectives, such as adaptive controllers with im-
plementation to FPGA, are presented for fractional index in a cubic nonlinear
resistor system [26]. Moaddy et al. investigated the Rabinovich-Fabrikant model
under the Caputo fractional derivative with its simulation on a multistep gener-
alized differential transform (MsGDT) [27]. In Hopfield-type neural networks,
fractional-order dynamics were investigated [28].
Chaotic systems with deterministic random-number generation are important

in electronics and cryptography. The sensitivity of the system to the initial con-
ditions allows this random number generation to be another remarkable feature
of data encryption. Sophisticated algorithms and fractional-orders are added to
the system roots to produce a rock-solid security feature that is now a core part
of our daily life in data handling. Cryptography has advanced significantly, with
data scrambling application in voice, GIF, image, and PDF with XOR operation
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to secure the data in PYHTON programming performed by Khan et al. [29, 30].
Harinato et al. utilized advanced encryption systems (AES) and steganography
for security and data exchange [31]. Further, complicated systems and encryption
processes are designed to protect user data from third parties. As data science
evolves, new methods and approaches have been developed to ensure global
communication.
In this work, we investigate numerical analysis, electronic simulation, and

multimedia (voice, image, and video) encryption using Riemann-Liouville frac-
tional derivative of Thomas’ cyclically symmetric attractor. The dynamical be-
havior of Thomas’ cyclically symmetric attractors was analyzed and investigated
with respect to different fractional indexes. The electronic circuits were designed
using MultiSim software, and the circuit realization was simulated with voltage
operational amplifiers, multipliers, resistors, and capacitors. Image encryption is
carried out in PYHTON using a bit-wise exclusive OR operator with two keys:
(1) the chaotic system and (2) the plain image. Both keys are important for de-
coding the images and videos. The image is processed and analyzed with unified
average changing intensity, peak signal-to-noise ratio, root mean square error,
number of pixels change rate, and correlation coefficients between the pixel data
to ensure a security system with better protection against hackers.

2. Thomas cyclically chaotic model

Here, we consider the chaotic system which has been proposed by
Thomas [32]. His work consisted of a three dimensional system of differential
equations which is as follows:

𝑥1(𝑡) = −𝑔𝑥1(𝑡) + ℎ𝑥2(𝑡) − (𝑥2(𝑡))3 ,
𝑥2(𝑡) = −𝑔𝑥2(𝑡) + ℎ𝑥3(𝑡) − (𝑥3(𝑡))3 .
𝑥3(𝑡) = −𝑔𝑥3(𝑡) + ℎ𝑥1(𝑡) − (𝑥1(𝑡))3

(1)

where, 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) are dependent variables, 𝑔 and ℎ are constant
parameters with the values 𝑔 = 0.3 and ℎ = 1.1. The initial conditions used for
numerical and graphical solutions are (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (1, 0, 1).
Definition 1 The Riemann-Liouville operator, which is one of the most popular
fractional integral operators of an order 𝛼 of a real function 𝜒(𝑦) ∈ 𝐶𝜇, 𝜇  −1
is given by:

𝐷𝛼𝜒(𝑦) = 1
Γ(𝛼)

𝑦∫
0

(𝑦 − 𝑡)𝛼−1𝜒(𝑡)d𝑡, (2)

𝛼 > 0, 𝜒 > 0 and 𝐷0𝜒(𝑦) = 𝜒(𝑦).
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The operator 𝐷𝛼 has some properties, for 𝛼, 𝛼1  0 and 𝛼3  −1.

𝐷𝛼𝐷𝛼1𝜒(𝑦) = 𝐷𝛼+𝛼1𝜒(𝑦),
𝐷𝛼𝐷𝛼1𝜒(𝑦) = 𝐷𝛼1𝐷𝛼𝜒(𝑦),

𝐷𝛼𝑦𝛼3 =
Γ (𝛼3 + 1)

Γ (𝛼 + 𝛼3 + 1)
𝑦𝛼+𝛼3 .

The Laplace transform of R-L Integral/Derivative is

𝐿
{
𝐷
𝑝

0 𝑓 (𝑥), 𝑠
}
= 𝑠𝑝𝐹 (𝑠) −

𝑛−1∑︁
𝑘=0

𝑠𝑘
[
𝐷
𝑝−𝑘−1
0 𝑓 (0)

]
. (3)

Thus while solving fractional differential equations involving RL derivative, ini-
tial conditions of the form 𝐷

𝑝−𝑘−1
0 𝑓 (0) are required which have no physical

interpretation. This limitation of RL derivative, is overcome by Caputo derivative
introduced by Caputo.

Definition 2 The Caputo fractional derivative 𝐷𝑞 of the function 𝑔(𝑥) of order 𝑞
such that 𝑛 − 1 < 𝑞 ¬ 𝑛, 𝑛 ∈ N, for 𝑡 > 0 and 𝑔 ∈ 𝐶𝑛−1 in the expression of E𝑞 is:

𝐷𝑞𝑔(𝑥) = E𝑛−𝑞𝐷𝑛𝑔(𝑥) = 1
Γ(𝑛 − 𝑞)

𝑥∫
0

(𝑥 − 𝑡)𝑛−𝑞−1𝑔(𝑛) (𝑡)d𝑡 (4)

and has the following properties for 𝑛 − 1 < 𝑞 ¬ 𝑛, 𝑛 ∈ N, 𝜇  −1 and 𝑔 ∈ 𝐶𝑛𝜇:

𝐷𝑞E𝑞𝑔(𝑥) = 𝑔(𝑥),

E𝑞𝐷𝑞𝑔(𝑥) = 𝑔(𝑥) −
𝑛−1∑︁
𝑘=0

𝑔(𝑘)
(
0+
) 𝑥𝑘
𝑘!

for 𝑥 > 0.

The relationship between RL and Caputo is defined by

𝑅𝐿𝐷
𝑞
𝑎 𝑓 (𝑥) = 𝐶𝐷

𝑞
𝑎 𝑓 (𝑥) +

𝑛−1∑︁
𝑘=0

𝑓 (𝑘) (𝑎) (𝑥 − 𝑎)𝑘−𝑞
Γ(𝑘 − 𝑞 + 1) . (5)

Thus, the two definitions RL 𝑅𝐿𝐷
𝑞
𝑎 and Caputo 𝐶𝐷

𝑞
𝑎 will be equivalent iff,

𝑓 (𝑘) (𝑎) = 0, 0 ¬ 𝑘 ¬ 𝑛 − 1.
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Definition 3 The Oustaloup recursive approximation (ORA) allows approximat-
ing an elementary FO transfer function 𝑠𝛼 by the finite, integer-order transfer
function, close to Pade approximation is:

𝑠𝛼 = 𝑘 𝑓

𝑁∏
𝑛=1

©«
1 + 𝑠

𝜇𝑛

1 + 𝑠

𝜈𝑛

ª®®¬ =
𝐿𝛼 (𝑠)
𝑀𝛼 (𝑠)

. (6)

In the above equation, 𝑁 is the order of the approximation, 𝑘 𝑓 is the steady state
gain, 𝜇𝑛 and 𝜈𝑛 are calculated as follows:

𝜇1 = 𝜔𝑙
√
𝜂,

𝜈𝑛 = 𝜇𝑛𝛾, 𝑛 = 1, . . . , 𝑁
𝜇𝑛+1 = 𝜈𝑛𝜂, 𝑛 = 1, . . . , 𝑁 − 1,

(7)

where,

𝛾 =

(
𝜔ℎ

𝜔𝑙

) 𝛼
𝑁

,

𝜂 =

(
𝜔ℎ

𝜔𝑙

) 1−𝛼
𝑁

.

(8)

In equation (7), 𝜔𝑙 and 𝜔ℎ describe the range of angular frequency, for which pa-
rameters should be calculated. A steady state gain 𝑘 𝑓 is set to assure convergence
of the approximation to the real plant’s step response.

3. Fractional order chaotic system and numerical simulations

In this section the fractional order chaotic system is presented along with its
numerical simulation, the model is given as

𝐷𝑞𝑥1(𝑡) = −𝑔𝑥1(𝑡) + ℎ𝑥2(𝑡) − (𝑥2(𝑡))3 ,
𝐷𝑞𝑥2(𝑡) = −𝑔𝑥2(𝑡) + ℎ𝑥3(𝑡) − (𝑥3(𝑡))3 ,
𝐷𝑞𝑥3(𝑡) = −𝑔𝑥3(𝑡) + ℎ𝑥1(𝑡) − (𝑥1(𝑡))3 ,

(9)

where 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) are dependent variables, 𝐷𝑞 is a fractional-order
derivative with index 𝑞 and, 𝑔, ℎ are constant parameters with the values 𝑔 = 0.3
and ℎ = 1.1. The initial conditions used for numerical and graphical solutions
are (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (1, 0, 1).
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To investigate the proposed systems, equation (1) and (9) was solved numer-
ically. Initially, the time series plot is generated for the fractional index chaotic
differential equation system for 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡). Figure 1 shows the frac-
tional order 𝑞 = 1, in which we can see that the signal oscillates non-periodically
on positive amplitudes of the graph, and after some time interval Δ𝑡, it begins
to oscillate downward with negative amplitudes, and so forth. Figures 2 and 3
shows the fractional order 𝑞 = 0.99, and 𝑞 = 0.95 where we can see that the
nonlinearity remains the same throughout the elapsed time. The 𝑥1(𝑡), 𝑥2(𝑡) and
𝑥3(𝑡) are then plotted in 2D phase portraits in the combinations of (𝑥1(𝑡), 𝑥2(𝑡)),
(𝑥1(𝑡), 𝑥3(𝑡)) and (𝑥2(𝑡), 𝑥3(𝑡)) in Figs. 4, 5 and 6 respectively for different val-
ues of 𝑞. Subsequently, the 3D plots are generated in Fig. 7a–c to visualize the
chaotic attractors and their dimensions magnitude 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) together.
The Poincare plots are plotted in Fig. 8a–f for fractional index 𝑞 = 1 and 𝑞 = 0.99
to represent the chaotic trajectory flow calculated in each cycle of motion. The 2D

Figure 1: Time series plots of 𝑥1(𝑡)𝑥2(𝑡)𝑥3(𝑡) at fractional order 𝑞 = 1

Figure 2: Time series plots of 𝑥1(𝑡)𝑥2(𝑡)𝑥3(𝑡) at fractional order 𝑞 = 0.99
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Figure 3: Time series plots of 𝑥3(𝑡) at fractional order 𝑞 = 0.95

(a) 𝑞 = 1 (b) 𝑞 = 0.99

(c) 𝑞 = 0.95

Figure 4: 2D plots of (𝑥1(𝑡), 𝑥2(𝑡)) at different values of fractional-order 𝑞
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(a) 𝑞 = 1 (b) 𝑞 = 0.99

(c) 𝑞 = 0.95

Figure 5: 2D plots of (𝑥1(𝑡), 𝑥3(𝑡)) at different values of fractional-order 𝑞

(a) 𝑞 = 1 (b) 𝑞 = 0.99
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(c) 𝑞 = 0.95

Figure 6: 2D plots of (𝑥2(𝑡), 𝑥3(𝑡)) at different values of fractional-order 𝑞

(a) 𝑞 = 1 (b) 𝑞 = 0.99

(c) 𝑞 = 0.95

Figure 7: 3D plots of (𝑥1(𝑡), 𝑥2(𝑡)) at different values of fractional-order 𝑞

contour plots for 𝑞 = 1 and 𝑞 = 0.99 are illustrated in Fig. 9a–f for (𝑥1(𝑡), 𝑥2(𝑡)),
(𝑥1(𝑡), 𝑥3(𝑡)), (𝑥2(𝑡), 𝑥3(𝑡))-planes respectively, and the advantage of this plot is
that the probability of attractor is mostly generated at the point where the contours
are dense and is in good agreement with our plotted phase portraits.
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(a) 𝑞 = 1 (b) 𝑞 = 0.99

(c) 𝑞 = 1 (d) 𝑞 = 0.99

(e) 𝑞 = 1 (f) 𝑞 = 0.99

Figure 8: Poincare map of (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) at different values of fractional-order 𝑞
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(a) 𝑞 = 1

(b) 𝑞 = 0.99

(c) 𝑞 = 1

(d) 𝑞 = 0.99
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(e) 𝑞 = 1

(f) 𝑞 = 0.99

Figure 9: Contour plot of (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) at different values of fractional-order 𝑞

3.1. Lyapunov exponents and Kaplan-Yorke dimension

The Lyapunov exponents (LEs) of a system are essential tools for determining
whether the system is chaotic or non-chaotic. There are several approaches for
computing the Lyapunov exponents, such as the Jacobian method [33], time-
series based LEs calculation methods such as Wolf’s algorithm [34], and neural
network algorithm [35], which are commonly used for computing Lyapunov
exponents for fractional and integer-order systems. In this study, we used Wolf’s
algorithm to calculate LEs. The Lyapunov exponents are calculated for system (4)
with integer and fractional order 𝑞 = 1 and 𝑞 = 0.99 respectively. The values
at integer order 𝑞 = 1 are (0.0896, 0, −0.9809) and at 𝑞 = 0.99 the values are
(0.0520, −0.05266,−0.92940). Lyapunov exponents are presented in Fig. 10a–b.
Figure 10a shows the Lyapunov exponents for 𝑞 = 1 while Fig. 10b illustrates
the Lyapunov exponents for 𝑞 = 0.99. LEs at 𝑞 = 1 and 𝑞 = 0.99 show that the
system (4) is chaotic because each of them consists of one positive, one negative
and one which is almost zero.
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(a) 𝑞 = 1 (b) 𝑞 = 0.99

Figure 10: Lyapunov spectra at different values of fractional-order 𝑞

The Kaplan-Yorke dimension concerns the dimension of attractors by using
Lyapunov exponents, which represent the complexity of an attractor is defined by
the following:

𝐷𝐾𝑌 = 𝑘 + 1
|𝐿𝑘+1 |

𝑘∑︁
𝑖=1

𝐿𝑖 , (10)

where, 𝐿𝑖 is Lyapunov exponents, 𝑘 is the largest integer which satisfying the
condition

∑𝑘
𝑖=1  0 and

∑𝑘+1
𝑖=1 ¬ 0. The Kaplan-Yorke dimension of the system

(4) is 2.08775 at fractional-order 𝑞 = 1 and 1.93999 at fractional-order 𝑞 = 0.99.
The values of Kaplan-Yorke dimension shows that the complexity is decreasing
with decreasing the fractional-order 𝑞.

4. Analog circuit simulation

In this section, the analog circuits are designed to verify the system (1) and
(4). Firstly, we used the system (1) and converted it to circuital equations (9).

¤𝑥1(𝑡) = −𝑔𝑥1(𝑡)
𝑅1𝐶1

+ ℎ𝑥2(𝑡)
𝑅2𝐶1

− (𝑥2(𝑡))3
𝑅3𝐶1

,

¤𝑥2(𝑡) = −𝑔𝑥2(𝑡)
𝑅4𝐶2

+ ℎ𝑥3(𝑡)
𝑅5𝐶2

− (𝑥3(𝑡))3
𝑅6𝐶2

,

¤𝑥3(𝑡) = −𝑔𝑥3(𝑡)
𝑅7𝐶3

+ ℎ𝑥1(𝑡)
𝑅8𝐶3

− (𝑥1(𝑡))3
𝑅9𝐶3

,

(11)
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where, 𝑔 = 0.3, ℎ = 1.1, 𝑅𝑖 are resistors. The electronic circuit is made using
fifteen resistors, three summing operational amplifiers and three inverting oper-
ational amplifiers, six multipliers and three capacitors. For oscilloscopic results,
we select the resistors and capacitors values such as 𝑅1 = 𝑅4 = 𝑅7 = 333.3333 Ω,
𝑅2 = 𝑅5 = 𝑅8 = 90.909090 Ω, 𝑅3 = 𝑅6 = 𝑅9 = 125 Ω, 𝑅10 = 𝑅11 = 𝑅12 =

𝑅13 = 𝑅14 = 𝑅15 = 100 kΩ and 𝐶1 = 𝐶2 = 𝐶3 = 1 μF. The design circuit
diagram of the system (9) is shown in Fig. 11 and its oscilloscopic diagram is in
Fig. 13a–c.

Figure 11: Schematic modal view of system (3) for 𝑞 = 1 using MultiSim, (X signal
represent 𝑥1(𝑡), Y signal represents 𝑥2(𝑡), Z signal represents 𝑥3(𝑡))
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For the fractional integrator we consider an approximate transfer function at
𝑞 = 0.99, we can take the approximate formula defined as follows [36]:

1.137𝑠2 + 12640𝑠 + 130700
𝑠3 + 11920𝑠2 + 132300𝑠 + 1369

. (12)

This transfer function can be realized with analog components. The realized
fractional order integrator for 𝑞 = 0.99 is given in Fig. 12 as fractional order

Figure 12: Schematic modal view of system (3) for 𝑞 = 0.99 using MultiSim, (X signal
represent 𝑥1(𝑡), Y signal represents 𝑥2(𝑡), Z signal represents 𝑥3(𝑡))
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(a) (𝑥1 (𝑡), 𝑥2 (𝑡))-plane

(b) (𝑥1 (𝑡), 𝑥3 (𝑡))-plane
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(c) (𝑥2 (𝑡), 𝑥3 (𝑡))-plane

Figure 13: Oscilloscopic phase plots of system (3) at 𝑞 = 1

block (FO block) with normalized component values. The fractional chaotic
system becomes

¤𝑥0.991 (𝑡) = −𝑔𝑥1(𝑡)
𝑅1𝐶1

+ ℎ𝑥2(𝑡)
𝑅2𝐶1

− (𝑥2(𝑡))3
𝑅3𝐶1

,

¤𝑥0.992 (𝑡) = −𝑔𝑥2(𝑡)
𝑅4𝐶2

+ ℎ𝑥3(𝑡)
𝑅5𝐶2

− (𝑥3(𝑡))3
𝑅6𝐶2

,

¤𝑥0.993 (𝑡) = −𝑔𝑥3(𝑡)
𝑅7𝐶3

+ ℎ𝑥1(𝑡)
𝑅8𝐶3

− (𝑥1(𝑡))3
𝑅9𝐶3

,

(13)

where 𝑔 = 0.3, ℎ = 1.1, 𝑅𝑖 are resistors. The electronic circuit is made using
twenty-four resistors, three summing operational amplifiers and three inverting
operational amplifiers, six multipliers and six capacitors. For oscilloscopic re-
sults, we select the resistors and capacitors values such as 𝑅1 = 𝑅4 = 𝑅7 =

666666.6666 Ω, 𝑅2 = 𝑅5 = 𝑅8 = 181818.1818 Ω, 𝑅3 = 𝑅6 = 𝑅9 = 2 kΩ,
𝑅10 = 𝑅11 = 𝑅12 = 𝑅13 = 𝑅14 = 𝑅15 = 100 kΩ and 𝑅𝑎 = 2.5 Ω, 𝑅𝑏 = 2.58 kΩ,
𝑅𝑐 = 38.2 MΩ, 𝐶𝑎 = 77 pF, 𝐶𝑏 = 72 nF, 𝐶𝑐 = 0.99 nF. The design circuit
diagram of the system (9) for 𝑞 = 0.99 is shown in Fig. 12 and its oscilloscopic
diagram is in Fig. 14a–c.
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(a) (𝑥1 (𝑡), 𝑥2 (𝑡))-plane

(b) (𝑥1 (𝑡), 𝑥3 (𝑡))-plane
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(c) (𝑥2 (𝑡), 𝑥3 (𝑡))-plane

Figure 14: Oscilloscopic phase plots of system (3) at 𝑞 = 0.99

5. Application on cryptography

5.1. Application on random number generators and cryptography

Chaotic systems play the role of the backbone in number generator and cryp-
tography. System (4) was numerically simulated for a large amount of data after
inserting the initial conditions and parameter values. The resulting float values
were converted to 32-bit binary data, after which a single array was created for
each variable. These arrays were passed through a NIST statistical suite for the
conformation and randomness in system (4) in integer order. In Table 1, we see
that all P-values are greater than 0.001, which is evidence of randomness. The en-
cryption process is highly dependent on the chaotic systems that generate random
numbers. With vast modern applications in the field of science and technology,
the cryptography and cryptanalysis are the need of the day. This section presents
the application of chaotic data in cryptography.
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Table 1: The NIST-800-22 test results of system (4) at fractional-order 𝑞 = 1

Statistical test
P-Value

Results
𝑥1 (𝑡) 𝑥2 (𝑡) 𝑥3 (𝑡)

Monobit Frequency Test 0.941377 0.863016 0.315330 Successful

Block Frequency Test 0.209916 0.263411 0.481346 Successful

Runs Test 0.805618 0.847513 0.273061 Successful

Longest Runs Ones 10000 0.931900 0.506463 0.039785 Successful

Binary Matrix Rank Test 0.963019 0.664131 0.219215 Successful

Spectral Test 0.619610 0.772767 0.782718 Successful

Non Over lapping Template Matching 0.345567 0.977761 0.367952 Successful

Over lapping Template Matching 0.226136 0.295813 0.370527 Successful

Maurer’s Universal Statistic Test 0.989096 0.659299 0.189664 Successful

Linear Complexity Test 0.466789 0.617991 0.323151 Successful

Serial Test1 0.438362 0.410912 0.733211 Successful

Serial Test2 0.473857 0.330241 0.167331 Successful

Approximate Entropy Test 0.833791 0.635961 0.957118 Successful

Cumulative Sums Test 0.972525 0.788752 0.427273 Successful

Random Excursions Test at 𝑥 = −4 0.898771 0.399058 0.549243 Successful

Random Excursions Variant Test 𝑥 = −9 0.058351 0.569001 0.497321 Successful

Cumulative Sums Test Reverse 0.936982 0.736183 0.181514 Successful

5.2. Voice encryption

Voice encryption using chaotic data is performed using the XOR operation
between the voice data and the data generated by our chaotic system. Figures 15a,
b, and c show the original, encrypted, and decrypted images of the voice, re-
spectively. The encrypted portion in Fig. 15b is completely fussy, indicating that
decent and healthy encryption has various applications in the field of cryptog-
raphy. The encryption is further tested with the magnitude spectrum of voice in
Fig. 16, which suggests that the encrypted portion in Fig. 16a has high energy
with respect to the frequency of voice data compared to the original and de-
crypted voices, as shown in Fig. 16a and Fig. 16c, respectively. Figure 17 shows
the power spectrum density, which suggests that the variations are (dB/Hz) be-
tween the original and encrypted voices. Finally, the spectrogram of the voice is
plotted in Fig. 18, which again shows good fussiness in Fig. 18b, which is the
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(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 15: Sound data

(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 16: Magnitude spectrum of sound

(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 17: View of power spectrum density of sound data
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spectrogram of the encrypted voice. The voice encryption PYHTON codes can
be found in the repository of GitHub [37].

(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 18: Spectrogram of sound data

5.3. Amalgamated image encryption

In this study, we developed a new algorithm for image encryption called
amalgamated image encryption. The idea is to secure the image using two keys:
(1) the three-dimensional al-flow chaotic data with initial conditions, and (2) the
plain image. These two will behave like keys to successfully decrypt an image;
failure to do sowill result in an image that is very distorted and unrecognizable. To
ensure this, we simulated both outcomes if the plain image key was successfully
executed using the PYHTON CV2 module, as presented in Figs. 20 and 23.
Figure 20 (Tiger I) presents the encryption of plain image I with plain image II
at fractional order 𝑞 = 0.99, and similarly decrypted through plain image II
with chaotic data at fractional order 𝑞 = 0.99. The decrypted image is accurate
as compared to the original image, and the image data are tested with security
analysis, as mentioned in Table 1. Next, (Tiger II), we performed plain image
I encryption using Plain Image II at fractional order 𝑞 = 0.99, but decrypted
through Plain Image III with chaotic data at fractional order 𝑞 = 0.99. Because
plain image III was not the accurate key, the outcome was considerably distorted
and unrecognizable, as shown in Fig. 23. Both encrypted processes are plotted
with histograms in Fig. 21, and Fig. 24 shows the distortion in the decrypted
portion of the histogram in Fig. 24c when the image key is incorrect. Plain
images are shown in Figs. 19a, b, and c. The algorithm and PYHTON codes of
Amalgamated Image Encryption are available in GitHub [38].
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(a) Plain image I (b) Plain image II (c) Plain image III

Figure 19: Plain images utilized in encryption

(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 20: Tiger I (encryption of plain image I with plain pmage II at 𝑞 = 0.99 and
decrypted through plain image II with chaotic data at 𝑞 = 0.99)

5.3.1. Security analysis of image encryption

Histogram

A uniform data distribution in encrypted images corresponds to good encryp-
tion, which can be examined by plotting histograms of plain original, encrypted,
and decrypted images. To test our algorithm, Figs. 20 and 23 were investigated
with a histogram. Figure 20 (Tiger I) shows that the original and decrypted image
histograms are in good agreement, as the decryption is processed successfully.
On the other hand, Fig. 23 (Tiger II) original and decrypted image histograms are
not in good agreement, as the decryption is not processed successfully owing to
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(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 21: Histogram of Plain Image I original, encryption and decryption at 𝑞 = 0.99
for Tiger I

(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 22: Pixel Correlation of Image I original, encryption and decryption at 𝑞 = 0.99
for Tiger I

incorrect key utilization. In Figs. 20 and 23, the encrypted portion is completely
distorted.

Correlation analysis
The pixel correlation in an image is assessed with the Correlation Analysis.

In this regards the original, encrypted and decrypted images of Tiger I and Tiger
II are analyzed in Table 2 with the formula below

Correlation =
∑︁
𝑗 ,𝑘

(
𝑗 − 𝜂 𝑗

)
(𝑘 − 𝜂𝑘 ) 𝑝( 𝑗 , 𝑘)
𝜎𝑗𝜎𝑘

. (14)
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(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 23: Tiger II (encryption of plain image I with plain image II at 𝑞 = 0.99 and
decrypted through plain image III with chaotic data at 𝑞 = 0.99)

(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 24: Histogram of plain image I original, encryption and decryption at 𝑞 = 0.99
for Tiger II

The results show that the original and decrypted images are well correlated
and are the same for Tiger I, whereas the original and decrypted images are well
correlated but not the same for Tiger II, which means that the decryption is not
successfully processed. The encrypted images are not well correlated, indicating
good encryption. Further, the graphical correlation graphs are plotted in Figs. 22
and 25 for the Tiger I and Tiger II encryption and decryption processes. The
correlation graph is the same for the original and decrypted images in Fig. 22
(Tiger I), whereas it is not the same for Fig. 25 (Tiger II). The encrypted portions
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(a) Original sound (b) Encrypted sound (c) Decrypted sound

Figure 25: Pixel correlation of image I original, encryption and decryption at 𝑞 = 0.99
for Tiger II

in Figs. 22b and 25b are completely haphazard, showing no pixel correlation with
each other.

NPCR and UACI analysis
Number of Pixels Change Rate (NPCR) and Unified Average Changing Inten-

sity (UACI) are twomost important quantities to analyze the health of encryption.
NPCR evaluates the percentage of different pixels between original and encrypted
images. Mathematically it is calculated as

𝐷 (𝑘, 𝑙) =
{
0 𝐶 (𝑘, 𝑙) = 𝐶∗(𝑘, 𝑙),
1 𝐶 (𝑘, 𝑙) ≠ 𝐶∗(𝑘, 𝑙), (15)

NPCR =

𝑀∑︁
𝑘=1

𝑁∑︁
𝑙=1

[
𝐷 (𝑘, 𝑙)
𝑀.𝑁

]
× 100% , (16)

where, 𝐶 (𝑘, 𝑙) and 𝐶∗(𝑘, 𝑙) characterize the pixel values of the two encrypted
images.
The unified average changing intensity (UACI) indicates the average value of

the changed pixel. It can be written as

UACI =
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

[
|𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗) |
255 × 𝑀 × 𝑁

]
× 100% . (17)

The result for NPCR and UAIC are presented in Table 2.
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Table 2: Results of PSNR, MSE NPCR, UAIC and correlation

Image Dimension MSE PSNR NPCR
(%)

UAIC
(%)

Correlation
Original
image

Decrypted
mage

Encrypted
Image

Tiger I 256 × 256 0.00001 27.89761 99.60734 31.7564 0.90512 0.90512 0.33985

Tiger II 256 × 256 279710515.1722 27.89761 99.51375 31.7564 0.90512 0.58179 0.33985

Peak signal-to-noise ratio (PSNR)
Peak signal to noise ratio (PSNR) is calculated between the encrypted and

original root mean squared valued and is defined as

PSNR = 10 log10
(2𝑛 − 1)2

MSE
. (18)

For zero root mean square the PSNR has no importance

Entropy
Shannon’s Information entropy of original, decrypted and encrypted images

were calculated for respective images frames (i.e., red, green and blue) from
formula below

𝐻 (𝑠) = −
2𝑁−1∑︁
𝑗=0

𝑝
(
𝑠 𝑗
)
log

(
1

𝑝
(
𝑠 𝑗
) ) . (19)

The results of Tiger I and Tiger II are presented in Table 3. It is quite clear from
the values that the Tiger I original and decrypted are in good agreement whereas

Table 3: Results of entropy

Image
Entropy Entropy images

Original Encrypted Decrypted Original Encrypted Decrypted

𝑅 7.544348 7.775562 7.544348

Tiger I 𝐺 7.649765 7.808275 7.649765

𝐵 7.730009 7.762925 7.730009

𝑅 7.544348 7.775562 7.738319

Tiger II 𝐺 7.649765 7.808275 7.848633

𝐵 7.730009 7.762925 7.841358
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the Tiger II in not. Moreover, the average entropy for encrypted frames has more
values than original and decrypted represents a secure encryption.

5.4. Video encryption

Figure 26 encloses the video original, encrypted and decrypted frames along
with their histograms. As we known that the video consists of two basic data

Figure 26: Frames of video original, encryption and decryption along with histograms at
𝑞 = 0.99 for Soap Bubble (.mp4)
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types, one is the voice and others is the frames of images that combine to give
the video file. The video encryption here is done with PYHTON coding, which
requires individual data types to encrypt separately and then merge them form a
video. The PYHTON codes for video encryption are done with OpenCV module
and are available in mentioned link [39].

6. Conclusion

In this paper, we present a three-dimensional fractional-order chaotic Thomas
cyclically attractor and investigate its dynamic fractional behavior index. The
idea behind this is to expand the chaotic regimes to find more complex systems
that are sufficiently strong to encrypt our data for security. In this context, we
qualitatively assessed Thomas system using phase portraits, Poincare maps, 2D
contour plots, Lyapunov exponents, and NIST tests. Our investigation suggests
that the integer model for Thomas’ Cyclically attractor is more complex than
fractional-order ones. This can be understood by observing phase portraits and
2D contour plots. Phase portraits give us the information that the system is
symmetric for integer value 𝑞 = 1, whereas for the non-integer 𝑞 = 0.99, the
symmetry is destroyed owing to sensitivity to initial conditions. Similarly, the
2D contour plot provides evidence that the system random number density is
well established in two regions for 𝑞 = 1, and the density of the data is only
concentrated in one region for 𝑞 = 0.99. Our investigation involves the analog
circuit simulation of integer and fractional order systems, which agrees well with
the numerically generated data. We used the transfer function to make a fractional
integrator for the fractional-order circuit, while for the integer-order circuit; we
used the simple circuit formation technique. The system nonlinearity is then
applied to encrypt multimedia data like voice, images, and video to ensure our
system’s capability for a healthy encryption

• Investigated complexity in Thomas Cyclically Attractor for integer and
fractional order system.

• Complexity evidence is investigated through 2D Contour plots and Phase
Portraits.

• Thomas Cyclically integer and non-integer circuit simulation is presented
in this work.

• Multimedia Cryptography is carried out; the encryption of voice, image and
video is presented along with the security analysis of the image encrypted
system.
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Future work

1. So far, this study examined the Riemann-Liouville and proportional frac-
tional derivative and its corresponding dynamic behavior, next we will
examine Thomas Cyclically Symmetric Attractor with different fractional
definitions and with different parameters.

2. In this paper the nonlinearity is utilized to do multimedia encryption, next
our goal is to encrypt different document files like Pdf, Docx, etc.

3. Biometric encryption will apply to the multimedia and other document files
for security purpose.

4. We will implement the Thomas Cyclically Symmetric Attractor on digital
systems like FPGA.
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