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Research paper

Modeling labor productivity in high-rise building
construction projects using neural networks

Duc Anh Nguyen1, Dung Quang Tran2, Thoan Ngoc Nguyen3,
Hai Hong Tran4

Abstract: Labor productivity in building construction has long been a focused research topic due to
the high contribution of labor cost in the building total costs. This study, among a few studies that
used scaled data that were collected directly from measuring equipment and onsite activities, utilized
neural networks to model the productivity of two main construction tasks and influencing factors. The
neural networks show their ability to predict the behaviors of labor productivity of the formwork and
rebar tasks in a test case of a high-rise building. A multilayer perceptron that had two layers and used
sigmoid as its activation function provided the best effectiveness in predicting the relations among data.
Among eleven independent factors, weather (e.g., temperature, precipitation, sun) generally played the
most important role while crew factors were distributed in the mid of the ranking and the site factor
(working floor height) played a mild role. This study confirms the robustness of neural networks in
productivity research problems and the importance of working environments to labor productivity
in building construction. Managerial implications, including careful environmental factors and crew
structure deliberation, evolved from the study when labor productivity improvement is considered.
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1. Introduction

Buildings are special products of the construction industry that are materials and
resources (i.e., labor and machine) heavily consuming. Labor cost plays a key component
in the total cost of a building, implying that construction is one of the most arduous
industries in the economy [1, 2].
As a popular trend, more machines, even robotics, and artificial intelligence are grad-

ually replacing the direct involvement of humans in the process of creating products.
However, the nature of the construction industry slows down this replacement process.
Therefore, at least in a near future, the proportion of direct labor in total construction costs
will still be significant [3,4]. Direct labor productivity will still be a critical success factor
to building construction projects [2, 5].
To increase labor productivity, practitioners must understand its nature (e.g., impact

factors) to make appropriate management decisions. Many scholars have focused on build-
ing models of independent variables and labor productivity. These independent variables
have usually been selected from environmental, site, and management characteristics. Pop-
ular research methods include qualitative, inferential statistics, regression, and machine
learning algorithms [6]. However, the topics still require much attention for the expectation
of a better understanding of how labor productivity can be best enhanced.
This paper is a study that considered a few measurable variables (i.e., the weather,

building characteristics, and crew structure) and how they affect labor productivity of two
in the most important labor tasks: the formwork and rebar works. The weather variables
were collected from a weather station near the site through a public request, while the other
groups of variables were recorded onsite. The analysis method of the study was neural
networks – a robust method to model many problems such as prediction in management
because they relax many assumptions and can progressively learn by themselves.
After the introduction is the literature review, in which previous studies about con-

struction labor productivity and independent factors, as well as analysis methods utilized.
Next, fundamentals of neural networks are briefly introduced to explain how neural net-
works work and why neural networks are suitable for both linear and nonlinear problems.
The methodology expresses the flow of research and present how data are collected from
a high-rise building in seven months and are analyzed. Results and discussion follow
with insights obtained from the study. Finally, the conclusion section summarizes the
research.

2. Literature review

As discussed, labor productivity in construction is critical to the success of a con-
struction project. Increase labor productivity has been a focused topic in the literature [6]
Practitioners must understand the structure of the work and factors that impact the process
of these works. Unfortunately, these factors vary from construction task to task. Therefore,
many studies focused on a few tasks, using different methods, and generating mixed results.
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Among many craft works, most popular labor tasks are formwork [1,7], masonry [8], steel
work (or rebar) [9, 10], pipe installation [11]. Methods of data analysis used have ranged
from inferential statistical, linear regression, analytic hierarchy process (AHP), and neural
networks. Table 1 synthesizes selected literature on the topic.

Table 1. Synthesis of related construction labor productivity modeling studies

Study Construction task and
type of input data

Method of data
analysis Independent factor

Jang et al.
(2011) [1]

formwork, rebar,
concrete; qualitative

date
regression, AHP

equipment characteristics; worker
characteristics; work method; work
difficulty; design; management

characteristics

Kazaz et al.
(2016) [2]

craft work;
qualitative data

inferential
statistics

organizational; economical;
socio-psychological; physical factors

Forsythe
(2018) [3]

general construction
works; qualitative

data

inferential
statistics

environmental; site; management;
design factors

Shahtaheri et
al. (2015) [5]

general construction
works; qualitative

data
neural network project; site; weather; site; working

condition; ground condition factors

El-Gohary et
al.

(2017) [12]

formwork, rebar;
qualitative data neural network

labor characteristics; weather; crew
and management; project; working

time; work difficulties

Golnaraghi et
al. (2019) [7]

formwork; qualitative
data neural network weather; labor; work type; floor level;

work method

Juszczyk
(2020) [9] rebar; qualitative data neural network weather; working time; structures;

work type; crew size and management

Umit Dikmen
and Sonmez
(2011) [13]

formwork;
quantitative data neural network work quantity; crew size;

management; height of work

Heravi and
Eslamdoost
(2015) [14]

foundation
installation;
qualitative data

neural network

crew and management; site; labor;
schedule compression; change order;
materials, tools and equipment
deficiency; unfavorable external

condition

Lu et al.
(2000) [15],
Abourizk et

al.
(2001) [16]

pipe installation;
qualitative data neural network

general project characteristics; site
characteristics; labor characteristics
(crew size. . . ); equipment; difficulty;
general activity; activity quantities;
activity design; activity difficulty

Continued on next page
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Table 1 – Continued from previous page

Study Construction task and
type of input data

Method of data
analysis Independent factor

Song and
Abourizk
(2008) [10]

steel drafting and
fabrication;
qualitative data

neural network
project; contract; structure; crew;
organization; overtime; complexity;

subcontract

Ezeldin and
Sharara
(2006) [17]

formwork, steel,
concrete pouring;
qualitative data

neural network

work quantity; crew size;
management; labor skills;

complexity; temperature; work type;
overtime; materials

Moselhi and
Khan

(2012) [18]

formwork; qualitative
and quantitative data

fuzzy subtractive
clustering,

regression, neural
network

weather; crew; height of work; work
type; work method

Jaśkowski et
al. [19]

partitions, wiring,
plasters, screeds,

painting, and flooring

inferential
statistics,
scheduling
techniques

task duration; buffer time; deadline

From literature, factors that affect labor productivity are recorded and include a few
main groups: work nature (e.g., quantity, difficulty, type, method), worker capability (e.g.,
labor skills, crew size, crew structure), equipment, project characteristics (e.g., location),
site characteristics (e.g., position, complexity), management (e.g., design, overtime), and
environment (e.g., weather including temperature, wind, precipitation, humidity). Another
observation is that most studies considered input as qualitative data, for instance subjective
assessments from questionnaires.
Since it is impossible for all independent factors to be considered in any one study,

this study includes collectible independent factors such as weather, crew structure, and
working floor level, which will be detailed in the Methodology section. Future studies may
add more independent factors to the input data and may or may not improve the model
explanation.
Regarding data analysis method, regressions have been used commonly in engineering

and management problems because the methods are intuitive and easy to interpret [20].
However, the use of regressions requires assumptions, whose violation can lead to mis-
leading results [21, 22]. For example, the relations between independent and dependent
data must be determined to be linear or nonlinear. In this study, while many indepen-
dent variables seem to have a linear relation with dependent variables, temperature-
productivity may follow a nonlinear relation. Specifically, there is an optimal range of
temperature in which workers feel most comfortable, but in higher or lower range comfort
reduces. Another assumption is the relatively linear behavior among independent vari-
ables [21]. But a reasonable argument would be temperature, sun, and radiation have some
correlation.
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These improprieties of regressions, if any, can be solved by the application of neural
networks, which resides in artificial intelligent domain. Neural networks usually do not
require strict assumptions such as linear/nonlinear and relatively independent relations.
Neural network fundamentals are briefly presented in the next section.

3. Neural networks

Artificial neural networks, or neural networks, derived from the idea of mimicking the
perception process of the human brain, though this process is highly complex and hard
to be modelized. The research by McCulloch and Pitts [23] has intrigued the develop-
ment of the technique class for a long time. Neural networks have useful capabilities to
solve a lot of types of problems such as being nonlinear (hence can solve nonlinear prob-
lems, which are inappropriate for linear regressions), representing input-output mapping
– good for both supervised and unsupervised learnings, adaptability (i.e., being versatile
various classes of problems), and self-reinforcement, which means their robustness can
be improved if the data are richer. Neural networks are suitable for many problems, in-
cluding prediction, classification, and control [24] In construction management, neural
networks have been used in diversified research including cost [25–27] productivity (e.g.,
El-Gohary et al. 2017), project management effectiveness (e.g., Apanavičienė and Juodis
2003), risk analysis and safety [29–31].
A neural network is a systemof parallel processorsmade up of simple neurons – a typical

neuron is depicted in Fig. 1 – that can store information and learn more knowledge through
learning processes [32].

Fig. 1. The structure of a neuron [24]

Each input signal has its own synaptic weight when all signals and a bias input (𝑏𝑘 )
will be summed into neuron 𝑘 . The result then serves as the input of an activation function,
whose range is limited (e.g., 0 to 1, –1 to 1) depending on the selected type of the
function. An activation function, sometimes called a squashing function, limits the output
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of a function to some finite value. In the run of a neural network, the type of activation
function is selected based on the type and the requirement of the problem. Two of the most
used activation functions are sigmoid (Fig. 2) and tansig (Fig. 3).

Fig. 2. Sigmoid graph with some different 𝑎 values

Fig. 3. Hyperbolic tangent graph with 𝑎 = 1

A sigmoid function (log sig), whose range is [0;1], follows Formula (3.1):

(3.1) log sig (𝑢) = 1
1 + 𝑒−𝑎𝑢

A tansig function (hyperbolic tangent), whose range is [−1; 1], follows Formula (3.2):

(3.2) 𝑓 (𝑢) = tan sig𝑎 (𝑢) =
𝑒𝑎𝑢 − 𝑒−𝑎𝑢

𝑎𝑎𝑢 + 𝑒−𝑎𝑢
= 2log sig2𝑎 (𝑢) − 1

There are also other activation functions such as threshold function, purelin (pure
linear function), and RELU (rectified linear unit). Each type works better in some classes
of problems [33].
Most neural networks can be categorized into one of two groups: feed-forward and

recurrent neural networks [34]. In the former one, the progression of calculation is forward
only, while in the latter one, calculations happen in both directions to seek for best network
structure and other parameters. A member of the feed-forward class, multilayer perceptron
(MLP) is the most common and versatile neural network [35, 36]. In an MLP, there can
be one hidden layer, two hidden layers, or many hidden layers. Fig. 4 and Fig. 5 depict
a one-hidden-layer and a two-hidden-layer neural network examples.
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Fig. 4. One-hidden-layer neural network

Fig. 5. Two-hidden-layer neural network

How a neural network learns
In the learning process of a supervised learning, outputs from a network are compared

with actual observations. After a loss function is chosen, different algorithms can be applied
to reach the loss function’s minimum [37]. Two common examples of loss functions are
sum of squares and mean of squared errors. Sum of squares (SSE) measures half the sum of
the squared difference between the computed outputs and the actual output and is desired
to be minimum (Formula 3.1):

(3.3) SSE =
1
2

𝑝∑︁
𝑖=1

(𝑦𝑖 − 𝑑𝑖)2 → min

Whereas, mean square error (MSE) measures the average of squares of difference
(Formula 3.4):

(3.4) MSE =
1
𝑝

𝑝∑︁
𝑖=1

(𝑦𝑖 − 𝑑𝑖)2 → min

Popular learning algorithms are Gradient Descent [38], Levenberg–Marquardt [39,40],
Conjugate Gradient [41], Quasi Newton and Newton’s method [42]. These algorithms
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are related to deriving the loss functions. The selection of these algorithms is usually
a trial-and-error process, depending on the calculation goals of the users.
There are parameters that will not change during a calculation round of a neural net-

work, such as number of hidden layers, activation function, synaptic change frequency
(batch, mini-batch, or stochastic/online learning) [24]. These parameters are called hyper-
parameters [43, 44]. Users must manually set these hyperparameters and will observe
the results to see if these hyperparameters yield desired results (e.g., errors, cost of
computation).

4. Methodology
After a literature review, factors, or independent variables, that impact labor pro-

ductivity, were synthesized. The authors analyzed data in discussions with project man-
ager and foremen to figure out which data could be reliable. Fortunately, at the time of
this study, the contractor was conducting research on construction processes and pro-
ductivity so that it could establish its norms to improve its performance and reduce
construction costs. Therefore, four engineers were designated with the task to work on
a full-time basis. The engineers would cooperate with foremen and workers to collect
input data, including crew gang size, gender structure of crew, and output data, in-
cluding productivity of formwork and rebar tasks. Output data, or dependent variables,
were measured by daily task plans, task status reports, shop drawings, material con-
sumption tables, and other site reports. Other validation methods included footage from
portable cameras and security cameras. These methods helped identify outliers in data,
for instance, in cases of work stops by change order, tower crane maintenance, adverse
weather that stopped construction completely, or work accidents. Designated engineers,
foremen, and research participants discussed the data to keep or discard from further
analysis.
Regarding weather data collection, the sources were provided after a public request.

The weather observation station was 0.5km away from the construction site; therefore,
observed data were assumed to represent those at the construction site. The data included
seven factors: temperature (Celsius degree), moisture (percent), wind (m/s), sun (sunny
time/hour), rain (mm), radiation (mJ/m2h), atmospheric pressure (mb). After a screening,
atmospheric pressure was discarded since its range was small, leading to trivial effect on
productivity.
After all data were recorded, there was a screening phase to discard outliers. The

designated engineers, the foremen, and the research participants discussed the data reports
for their reliability.
In the analysis phase, neural networks were used while hyperparameters and parameters

were adjusted during the analyses. These hyperparameters and parameters, along with the
models’ performance, were recorded. Finally, the models that had highest performance
were analyzed in detail, while sensitivity analysis was conducted. SPSS version 26.0 [45]
was used in this study for the neural network modelling.
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5. Research results and discussion

The selected case was a 35-floor building with its typical floor area of 1,950 m2. In the
construction of a high-rise building, the duration was so long as to generate adequate data
for machine learning approach. Indeed, both formwork and rebar jobs must be outdoor for
clear observations. Plastic coated plywood formwork was used by the main contractor. Both
formwork and rebar were fabricated on the ground and on the working floors. A tower crane
was utilized to deliver materials to stock on the floors and sometimes to help assemble
heavy components. All data were recorded in seven months, from the months of January
to July. In the area, the weather in January, February, and the first half of March are usually
cold; it gets hotter and more humid in the rest of the period. Table 2 depicts the descriptive
statistics of the independent and dependent variables.

Table 2. Description of independent and dependent variables

Variable Range Minimum Maximum Mean Std. Deviation
X1 – temperature (◦C) 29.6 11.3 40.9 27.32 6.28
X2 – moisture (%) 70.0 30.0 100.0 72.06 15.96
X3 – wind (m/s) 5.0 0.0 5.0 2.01 1.02
X4 – sun (time/hour) 1.0 0.0 1.0 0.38 0.44
X5 – rain (mm) 35.8 0.0 35.8 0.12 1.52

X6 – radiation (10−2mj/m2h) 512.0 0.0 512.0 261.34 97.96
X7 – working floor height (m) 85.8 16.5 102.3 58.69 24.53
X8 – formwork gang size 57 43 100 70.36 9.24
X9 – rebar gang size 41 28 69 50.18 6.05

X10 – formwork gender (male ratio) 0.66 0.34 1.0 0.79 0.14
X11 – rebar gender (male ratio) 0.74 0.26 1.0 0.75 0.15
Y1 – formwork productivity (m2) –

normalized to man · day 2.8 3.8 6.6 5.38 0.46

Y2 – rebar productivity (kg) –
normalized to man · day 37.9 72.8 110.7 91.43 7.61

Pearson correlationmatrix among variables show some correlation in theweather group
(e.g., sun-radiation, wind-rain), but not cross groups of weather-building-crew.
Data screening is necessary before results are analyzed to realize abnormal behaviors

and to provide insights to interpret any models. Scatter distributions of each independent
variable and dependent variables are plotted in Fig. 6 and Fig. 7.
Except for X5–Y1 and X5–Y2 (rain-productivity), data are scattered in a dense cluster

in each plot. This promises the continuity of the prediction models. However, data appear
in nonlinear shapes: most obviously in pairs of X3–Y1, X4–Y1, X7–Y1, X10–Y1, X3–Y2,
X11–Y2. This observation ruled out the appropriateness of multiple linear regression, while
neural networks can deal with these behaviors. Therefore, the data screening confirmed the
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Fig. 6. Scatter plot of formwork productivity with each independent variable

Fig. 7. Scatter plot of rebar productivity with each independent variable

hypothesis in the introduction section of this paper: neural networks are more appropriate
than linear regression in this research.
Multiple settings of neural networks were calculated while their results were recorded

and compared. Table 3 shows selected outputs from four settings.

Table 3. Results of selected settings of neural networks

Characteristics NN1 NN2 NN3 NN4

Hidden Number of Hidden Layers 1 1 2 2
Layer(s)

Activation Function Hyperbolic
tangent Sigmoid Hyperbolic

tangent Sigmoid

Output
Layer Activation Function Hyperbolic

tangent Sigmoid Hyperbolic
tangent Sigmoid

Training

Sum of Squares Error 27.757 6.743 29.12 6.657
Ave. Overall Relative Error 0.138 0.143 0.138 0.139
Relative Error for Y1 0.143 0.15 0.148 0.145
Scale Dependents Y2 0.135 0.138 0.132 0.135

Testing

Sum of Squares Error 7.025 1.912 7.185 1.664
Ave. Overall Relative Error 0.127 0.143 0.14 0.13
Relative Error for Y1 0.142 0.153 0.137 0.13
Scale Dependents Y2 0.118 0.137 0.142 0.129
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Fig. 8. Selected neural network for the construction labor productivity

Sum of squares error represents the precision of neural networks, and its minimum is
sought by the model during training. The average overall error is the ratio of the SSE of
Y1 and Y2 to the SSE for the null model (the mean values of Y1 and Y2 are used as the
predicted values). The average overall relative error and relative errors are stable across the
training and testing samples, inferring the confidence that the model is not overtrained, and
that future will be close to this calculation. The network that had two hidden layers and that
used sigmoid as activation function performed best and was selected for further analysis.
This neural network has two hidden layers, eight units in the first hidden layer, and six

units in the second hidden layer (Fig. 8).
Figure 9 plots both predicted and actual values of formwork productivity. The trend

should be close to a 45-degree line for a good prediction of the model. The plot does not
show any outliers and the trend line shows a quite good convergence to the diagonal line.
The data are not divided into different clusters but are continuous in one cloud. Maximum
predicted-actual values were 6÷6.5 m2/man · day, while minimum pairs of values were
4.2÷3.8 m2/man · day. The model shows a reasonably good prediction ability.
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Fig. 9. Comparison chart between predicted and actual formwork productivity (Y1)

Residual errors of formwork productivity prediction are shown in Fig. 10. Residual
errors were placed roughly like a normal distribution. The highest deviations were from
two ends of the prediction range. On the lower end, the largest values were negative,
meaning the observed were lower than predicted values. As recorded, construction tasks
were abruptly stopped for some reasons that were not included as the models’ inputs.

Fig. 10. Residual error chart of formwork productivity

Figure 11 plots both predicted and actual values of rebar productivity. Like formwork
productivity, the rebar plot shows a quite good convergence to the diagonal line. The data
points stay more densely in the two ends. This can be seen more clearly in Fig. 12 – residual
error chart. The model is dense around a linear trend and shows almost no outliers, inferring
a good prediction ability.
As the residual errors of formwork, these of rebar roughly follow a normal distribution.

The larger the values predicted, the more residual errors are.
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Fig. 11. Comparison chart between predicted and actual rebar productivity

Fig. 12. Residual error chart of rebar productivity

5.1. Sensitivity analysis

In the neural network model, a sensitivity analysis was conducted to determine the
importance of independent variables [46]. Sensitivity analysis evaluates the effect onmodel
outputs by each independent variable while keeping all other input variables at their base-
case values [47]. The outcome of this analysis presents howmuch each independent variable
affect the model outputs (in this case, Y1 and Y2) or can be regarded as the importance
of independent variables. Figure 13 depicts importance and normalized importance of
independent variables. Normalized importance means that all other weights are scaled so
that the most important variable becomes 100 percent.
Temperature is shown to be the most important variable that affects formwork and rebar

productivity. During the recorded time of the construction, temperature ranged from 11.3
to 40.9°C, averaging 27.32°C. As recorded, construction tasks were minimized in hottest
days: most workers perform their jobs on the ground, but not on the floors. Rain is the
next most important variable (0 mm/h – no rain to 35.8 mm/h – the heaviest hourly rain
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Fig. 13. Importance of independent variables to dependent variables

recorded in the year in the city). In reality, there is a threshold that if the rain magnitude
surpasses it, all construction activities must stop. The next variable, also a weather variable,
is sun – measured by sunny time/hour. It is noteworthy that sun is highly correlated with
temperature: in the area, whenever there is sun, the temperature tends to be high; however,
if there is no sun, it does not mean that it is always comfortable for the workers.
Next weather variables are wind (5𝑡ℎ), moisture (9𝑡ℎ), and radiation (11𝑡ℎ). Just like

rain, if the wind is fast, then the construction tasks must stop. As observed, labor tasks,
especially formwork was highly affected by wind. Moisture does not seem to impact
productivity that much if compared to other weather factors. Vietnam is a tropical country
and the moisture in the Northern is mostly high, except in short intervals in the year.
Therefore, the workers are familiar with the conditions. The last ranked factor was the
radiation by the sun. Workers who are exposed to high ultraviolet light might have skin
burnt and corneal abrasions. However, workers were aware of this and covered themselves
well from direct sunlight. This explains lowest impact of radiation on the productivity.
Interestingly, the variables in the crew group (i.e., gender structure and gang size of

crew) has their importance distributed in the mid of the ranking. Gender of formwork crew
(4𝑡ℎ) and gender of rebar crew (6𝑡ℎ) were placed a little higher than those of rebar gang size
(7𝑡ℎ) and formwork gang size (10𝑡ℎ). The male ratios of formwork crew and rebar crew
averaged 0.79 and 0.75 respectively. Construction tasks are heavy works and require good
builds of bodies. Both formwork and rebar require workers to lift heavy objects at times.
Being usually taller, male workers can raise objects higher, sometimes without the need of
using scaffolds. Female workers, as observed, worked mostly with assembling forms and
tying steel wire to secure bars. However, the details of gang size gender to productivity
were not studied in this research. Both formwork and rebar tasks are space consuming,
meaning if the area is too crowded, productivity will be negatively influenced. With the
floor area approximates 1,950 m2, the mean gang size was 70.36 and 50.18 for rebar and
formwork respectively. However, on the most crowded days, the size reached 100 and 69 for
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each task. The data were captured through the contractor’s daily registration and foremen’s
reports, so the numbers included both workers on the ground, working in the shops, and
on the floors.
The only independent variable related to the building was the height of the working

floor. This variable ranged from 16.5 m (5𝑡ℎ floor) to 102m (31𝑠𝑡 floor). Many reasons can
affect construction productivity so that height of working floor was only ranked 8𝑡ℎ in the
importance ranking. For instance, parts of formwork and rebar were lifted by tower crane
from the ground to theworking floor. The cycle of the delivery therefore varied significantly.
Moreover, wind speed was faster at higher floors, and wind impacted productivity, as
analyzed.

6. Conclusions
In this study, a prediction model was established with the consideration of 11 indepen-

dent variables included in 3 groups, i.e., work environment (weather), crew, and site and
the relation with formwork and rebar productivity as dependent variables. This is one of
a few studies in which all of independent and dependent variable data are of scaled and
directly measured but not interval or categorical.
Datawere collected in a 35-floor high-rise building in sevenmonths during the structural

construction phase. Specifically, weather data were obtained from reports of a national
weather station closed to the project site. Other independent data were collected onsite
through site observation and reports. Dependent data – productivity – were measured
directly or indirectly by daily work plans, observations, hourly and daily reports by foremen
and engineers, shop drawings, and material consumption table. Furthermore, footage from
security cameras were used to discard outliers such as in case of special events, work
incidents, or rainy days.
Neural networks were used for the prediction model and showed their effectiveness.

The best built model was a two-layer MLP that used sigmoid as its activation function.
This model generates good results with acceptable errors. Regarding the contribution of
independent variables to the productivity of the formwork and rebar tasks, weather (e.g.,
temperature, precipitation, sun) generally played themost important roleswhile crew factors
were distributed in the mid of the ranking and the working floor height played a mild role.
Neural networks, whose performance was observed in this study, confirmed the out-

comes of previous studies, that these are appropriate and that these outperform regression
in the modeling problems of construction labor productivity.
Due to the design of the study, the authors skipped many independent variables (e.g.,

other project, site, work characteristics) other than eleven variables included, though their
contribution to labor productivity are certain. Moreover, data were collected from only
one project in a period. However, the built neural networks could significantly explain
dependent factors. Future studies can repeat with the same research design but with more
independent factors, longer observation time, more projects, and more contractors. . . and
enhance the body of knowledge about construction labor productivity, hence construction
labor productivity itself.
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