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1 Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Poland
2 Faculty of Production Engineering and Materials Technology, Department of Physics, Czestochowa University of Technology,

Armii Krajowej 19, 42-201 Czestochowa, Poland
3 Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava,

70833 Ostrava, Czech Republic
4 Department of Engineering Materials and Biomaterials, Silesian University of Technology,

Konarskiego 18A, 44-100 Gliwice, Poland
5 Department of Applied Mechanics, Faculty of Mechanical Engineering, VSB—Technical University of Ostrava, 17. listopadu 2172/15,

70800 Ostrava, Czech Republic

Abstract. The study analyzed the influence of materials and different types of damping on the dynamic stability of the Bernoulli-Euler beam.
Using the mode summation method and applying an orthogonal condition of eigenfunctions and describing the analyzed system with the Mathieu
equation, the problem of dynamic stability was solved. By examining the influence of internal and external damping and damping in the beam
supports, their influence on the regions of stability and instability of the solution to the Mathieu equation was determined.
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1. INTRODUCTION
At the beginning of the second half of the 19th century, during
the construction of railway bridges, it was already noticed that
the damage to the structure resulted from the loss of stability of
thin plates, shells, and slender bars. Examples of such damage
can be seen in the works [1, 2], and one of the most famous
was the Tacoma Narrows Bridge (TNB) from 1940 due to the
film showing the oscillation and destruction of the bridge [3].
These types of events initiated intensive research in the field of
dynamic stability.

Already in 1744, Leonard Euler described the basics of struc-
tural stability in his work [4]. He solved the problem of axial
compression of an ideal bar with different support methods.
In 1773, Lagrange worked on the optimization of the shape
of a column loaded with an axial force [5, 6]. The problem is
important because the search for the most optimal geometries
for given applications is still ongoing [7–9]. The first work on
a non-conservative loading force was Beck’s work from 1952
[10], in which the influence of loading the tracking force on the
end of the column on its stability was analyzed.

There are various theories describing the kinematics of col-
umn deformation, understood as a slender and simple structural
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element subjected to compression. They are described in more
detail in [11], and the most important of them are the theories
of Bernoulli-Euler [12], Timoshenko [13], or Reddy-Bickford
[14, 15]. The last of them was further developed in [16]. The
subject of buckling of columns and structures was described in
the literature, inter alia, in [17], and dynamic stability in [18].
The comparison of selected theories was presented in [19]. In
this work, the columns according to the Bernoulli-Euler theory
will be analyzed.

Using the dynamic stability criterion and determining the
eigenvalues defining the correlations of the eigenfrequencies
of the tested mechanical system to the load parameter, result-
ing from the solution of the differential equation of motion tak-
ing into account the boundary conditions, it allows the stability
of a given system to be tested and its type to be determined.
Leipholtz in [20] showed divergent and flutter types of stability,
while Sundararajan in [21] also showed hybrid systems com-
bining features of both types. The stability of the columns is
also influenced by other specific factors, for example, Kordas
and Życzkowski in [22] analyzed the influence of the tracking
coefficient on the critical force for the cantilever column, while
the natural frequency and stability for the Beck column were
investigated by Sundararajan in [23] when the end of the col-
umn was resiliently supported. The passage through the stabil-
ity limit is described in [24]. Kounadis investigated the influ-
ence of the stiffness coefficient of the springs used to support
the bar on the loss of stability [25]. In the work [26], the influ-
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ence of the inertia of rotation and the shear force in the Beck
commune with the flutter-type force was also considered. The
instability of the column was also analyzed in [27].

A special case of parametric vibrations, in which structures
are loaded with a periodic function of time, is called dynamic
stability [28]. Parametric resonances in the dynamic stability
analysis play a fundamental role. In the region of unstable so-
lutions, the amplitude of resonant vibrations increases unlimit-
edly. Most of the work on dynamic stability focuses on simple
beam systems with interconnected discrete elements [29–33],
as many mechanical systems can be modeled with them.

During the operation of various types of machines, mechan-
ical vibrations very often occur as an undesirable element.
This phenomenon adversely affects the strength of the work-
ing elements and may cause their faster wear, but more impor-
tantly, they cause health problems for people operating these
machines, such as disorders in the vascular, nervous, and os-
teoarticular systems, and may also cause problems with visual
acuity or problems with motor coordination. The influence of
noise is also important. The above harmful phenomena caused
by vibrations have been described in [34, 35]. To minimize the
negative effects of vibrations as much as possible, the damping
phenomenon is used, in which the dissipation of mechanical
energy occurs due to the occurrence of frictional forces during
vibrations. The phenomenon of damping and its influence on
mechanical systems exposed to vibrations has been described
in the works of Osiński [36] and Giergiel [37]. If the natural
methods of damping (internal friction in the material, environ-
mental impact, friction in joints and supports) are not sufficient,
additional special vibration dampers are used, such as dynamic
and active vibration eliminators [38]. Moreover, vibration iso-
lation is also used, placed between the insulated system and the
vibrating system, made of additional structural elements or their
assemblies [39]. Damping is a phenomenon that always occurs
during mechanical vibrations [34, 39, 40].

Even small vibrations in the machine can cause the phe-
nomenon of resonance [41] and lead to its destruction. The use
of damping will reduce the risk of this phenomenon. Damping,
depending on its mechanism and source, can be divided into in-
ternal damping in a viscoelastic material [42,43], design damp-
ing in movable connections [44, 45], design damping in fixed
connections (so-called dry friction) [46, 47], viscous resistance
(e.g. the external influence of the medium) [48, 49].

This study investigated how different types of damping af-
fect the dynamic stability of Bernoulli-Euler beams. Using the
perturbation method, the stability regions of the solution of the
equation of motion transformed into the form of the Mathieu
equation were determined.

2. MATHEMATICAL MODEL
Figure 1 shows a Bernoulli-Euler beam, articulated at its ends,
loaded with an axial compressive force described by the rela-
tion P(t) = P0+Scosνt, where P0 is the constant component of
the longitudinal force, S is the variable component of the longi-
tudinal force, W (x, t) is the transverse displacement of the beam
at location x and time t, ν is the frequency of the exciting force,

Fig. 1. A simple Bernoulli-Euler beam loaded with an axial
compressive force that changes cyclically, taking into account

different types of damping

and t is time. The material properties of the beam are Young’s
modulus E, the moment of inertia J of the cross-section, the
cross-sectional area A, and the material density ρ . The added
damping is due to the resistance to movement in the supports
– they are modeled with CR rotary dampers and the damping
is caused by the external viscous resistance CE . The viscosity
index of the material was denoted by EC.

The problem of transverse vibrations of a straight Bernoulli-
Euler beam was solved by formulating the boundary problem
using Hamilton’s variational principle

t2∫
t1

(δT −δV )dt +

t2∫
t1

(−δWN)dt = 0. (1)

Equation (1) takes into account the variation of the virtual work
of non-conservative forces as

δWN = ECJ
∂ 3W (l, t)

∂x2∂ t
δ

∂W (l, t)
∂x

−ECJ
∂ 3W (0, t)

∂x2∂ t
δ

∂W (0, t)
∂x

−ECJ
∂ 4W (l, t)

∂x3∂ t
δW (l, t)+ECJ

∂ 4W (0, t)
∂x3∂ t

δW (0, t)

+

l∫
0

ECJ
∂ 5W (x, t)

∂x4∂ t
δW (x, t)dx+

l∫
0

CE
∂W (x, t)

∂ t
δW (x, t)dx

+CR
∂ 2W (0, t)

∂x∂ t
δ

∂W (0, t)
∂x

−CR
∂ 2W (l, t)

∂x∂ t
δ

∂W (l, t)
∂x

. (2)

The variation of the bending spring energy is

δV1 = EJ
∂ 2W (l, t)

∂x2 δ
∂W (l, t)

∂x
−EJ

∂ 2W (0, t)
∂x2 δ

∂W (0, t)
∂x

− EJ
∂ 3W (l, t)

∂x3 δW (l, t)+EJ
∂ 3W (0, t)

∂x3 δW (0, t)

+

l∫
0

EJ
∂ 4W (x, t)

∂x4 δW (x, t)dx. (3)
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On the other hand, the variation in energy from the external
load is

δV2 =

l∫
0

P(t)
∂ 2W (x, t)

∂x2 δW (x, t)dx−P(t)
∂W (l, t)

∂x
δW (l, t)

+P(t)
∂W (0, t)

∂x
δW (0, t). (4)

The variation in kinetic energy is defined as

δT =−
l∫

0

ρA
∂ 2W (x, t)

∂ t2 δW (x, t)dx. (5)

Substituting equation (2)–(5) to equation (1), the differential
equation of the motion of the beam transverse vibrations was
determined as

∂ 4W (x, t)
∂x4 +

EC

E
∂ 5W (x, t)

∂x4∂ t
+

ρA
JE

∂ 2W (x, t)
∂ t2

+
P(t)
JE

∂ 2W (x, t)
∂x2 +

CE

JE
∂W (x, t)

∂ t
= 0. (6)

The solution of equation (6) is predicted as a series of eigen-
functions

W (x, t) =
∞

∑
n=1

Wn(x)Tn(t), (7)

where Wn(x) is the nth natural modes of vibrations and Tn(t) is
an unknown time function.

The first form of vibration is of major importance, so the
displacement W (x, t) is written in the form of the product of
functions with variables separated by time t and the coordinate x

W (x, t) =W (x)T (t) =W (x)eiωt . (8)

After separating the space and time variables and substituting
d2 = P/(JE + iωJEC), Ω2 =

(
ρAω2− iωCE

)
/(JE + iωJEC),

the equation of motion takes the form

d4W (x)
dx4 +d2 d2W (x)

dx2 −Ω
2W (x) = 0. (9)

For the system shown in Fig. 1, the boundary conditions after
separating the variables are as follows

W (0) =W (l) = 0, (10)

J (E + iωEC)
d2W (0)

dx2 = iωCR
dW (0)

dx
, (11)

J (E + iωEC)
d2W (l)

dx2 =−iωCR
dW (l)

dx
. (12)

The general solution to the displacement equation (9) is a func-
tion

W (x) =C1 cosh(αx)+C2 sinh(αx)+C3 cos(βx)

+ C4 sin(βx), (13)

where

α =

√
−1

2
d2 +

√
1
4

d4 +Ω2 , (14)

β =

√
1
2

d2 +

√
1
4

d4 +Ω2. (15)

Substituting solution equation (13) into equations (10)–(12), a
homogeneous system of equations A was obtained with respect
to unknown constants Ci. This matrix system is written as

[A](ω)C = 0, (16)

where [A](ω) = [apq] ; [p,q] = (1−4), and C = [Ci]
T ; i = 1−4.

In the case when the determinant of the matrix of coefficients
is equal to zero for the constants Ci, the system has a non-trivial
solution

detA(ω) = 0. (17)

Equation (17) allows to determine the dependence of the eigen-
frequencies of the system ωi on the load P and to determine the
value of the critical load Pk.

To expand the eigenfunctions into a series equation (7), their
orthogonality was assumed. Equation (9), after separating the
variables for the n-th and m-th eigenfunctions and taking into
account the boundary conditions, takes the form

(
ρAωn

2− iωnCE

J (E + iωnEC)
− ρAωm

2− iωmCE

J (E + iωmEC)

)

×
l∫

0

Wn(x)Wm(x)dx = 0. (18)

Since ωm 6= ωn, when m 6= n, then the orthogonality condition
sought is determined by the formula

l∫
0

Wn(x)Wm(x)dx =


0 m 6= n,

γ
2
m =

l∫
0

W 2
m(x)dx m = n.

(19)

Equation (6) was substituted with equation (7) and obtained

∞

∑
n=1

(
JE

d4Wn(x)
dx4 Tn(t)+ JEC

d4Wn(x)
dx4

dTn(t)
dt

+ P0
d2Wn(x)

dx2 Tn(t)+Scos(νt)
d2Wn(x)

dx2 Tn(t)

+ Wn(x)ρA
d2Tn(t)

dt2 +Wn(x)CE
dTn(t)

dt

)
= 0. (20)
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Equation (20) multiplied by m-th eigenfunction Wm(x) takes the
form

∞

∑
n=1

((
JE

d4Wn(x)
dx4 Wm(x)+P0

d2Wn(x)
dx2 Wm(x)

)
Tn(t)

+ JEC
d4Wn(x)

dx4 Wm(x)
dT n(t)

dt

+ Scos(νt)
d2Wn(x)

dx2 Wm(x)T n(t)+Wn(x)Wm(x)ρA
d2Tn(t)

dt2

+ Wn(x)Wm(x)CE
dTn(t)

dt

)
= 0. (21)

Multiplied by the functions Wm(x) equation (9) after separating
the variables for the n-th eigenfunction and minor transforma-
tions takes the form

JE
d4Wn(x)

dx4 Wm(x)+P0
d2Wn(x)

dx2 Wm(x)

=
(
ρAω

2− iωCE
)

Wn(x)Wm(x)

− iωJEC
d4Wn(x)

dx4 Wm(x). (22)

Substituting equation (22) into equation (21) gives

∞

∑
n=1

[((
ρAω

2− iωCE
)

Wn(x)Wm(x)

− iωJEC
d4Wn(x)

dx4 Wm(x)+Scos(νt)
d2Wn(x)

dx2 Wm(x)
)

Tn(t)

+

(
JEC

d4Wn(x)
dx4 Wm(x)+Wn(x)Wm(x)CE

)
dT n(t)

dt

+ ρAWn(x)Wm(x)
d2Tn(t)

dt2

]
= 0. (23)

Only the first term of the sum in equation (7) is of significant
importance, as shown in [50]. The work analyzes the paramet-
ric resonance for the first (fundamental) vibration frequency of
the system n = 1, which, taking into account the orthogonality
condition (18), allows to transform equation (23) into the form

T (t)

(ρAω
2− iωCE

) l∫
0

W 2(x)dx

− iωJEC

l∫
0

d4W (x)
dx4 W (x)dx+Scos(νt)

l∫
0

d2W (x)
dx2 W (x)dx


+

d2T (t)
dt2 ρA

l∫
0

W 2(x)dx

+
dT (t)

dt

JEC

l∫
0

d4W (x)
dx4 W (x)dx

+ CE

l∫
0

W 2(x)dx

= 0. (24)

Dividing both sides of equation (24) by −ρA
∫ l

0
W 2(x)dx and

substituting τ = νt we get

d2T (τ)
dτ2 +


CE

ρAν2 +

JEC

l∫
0

d4W (x)
dx4 W (x)dx

ρAν
2

l∫
0

W 2(x)dx


dT (τ)

dτ

+


ω2

ν2 −
iωCE

ρAν2 −

iωJEC

l∫
0

d4W (x)
dx4 W (x)dx

ρAν
2

l∫
0

W 2(x)dx

+

l∫
0

d2W (x)
dx2 W (x)dx

ρAν
2

l∫
0

W 2(x)dx

Scos(ντ)

T (τ) = 0. (25)

The equation of motion (25) has the form of the damped Math-
ieu equation presented in [51] as

d2T (τ)
dτ2 + c

dT (τ)
dτ

+(δ + ε cosτ)T (τ) = 0, (26)

where

c =
CE +b
ρAν2 , (27)

δ =
ω2

ν2 −
iω(CE +b)

ρAν2 , (28)

ε =

S
l∫

0

d2W (x)
dx2 W (x)dx

ρAν
2

l∫
0

W 2(x)dx

(29)

and

b =

JEC

l∫
0

d4W (x)
dx4 W (x)dx

l∫
0

W 2(x)dx

. (30)

In order to determine the influence of damping on the tran-
sition curves in the Mathieu equation (26), the two-variable
expansion method was used [52–55]. To apply the perturba-
tion method, the damping coefficient c was scaled to O(ε) by
c = εµ , which, assuming small values of ε and substituting
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ξ = τ and η = ετ to equation (26) and performing appropri-
ate transformations, leads to

∂ 2T (ξ ,η)

∂ξ 2 +2ε
∂ 2T (ξ ,η)

∂ξ ∂η
+ ε

2 ∂ 2T (ξ ,η)

∂η2

+ εµ

(
∂T (ξ ,η)

∂ξ
+ ε

∂T (ξ ,η)

∂η

)
+(δ + ε cosξ )T (ξ ,η) = 0. (31)

By expanding the function T (ξ ,η) and δ into power series and
omitting the factor O(ε2) and then prioritizing by ε successive
powers, the following system of equation was obtained

∂ 2T0(ξ ,η)

∂ξ 2 +δT0(ξ ,η) = 0, (32)

∂ 2T1(ξ ,η)

∂ξ 2 +δT1(ξ ,η)

=−2
∂ 2T0(ξ ,η)

∂ξ ∂η
−µ

∂T0(ξ ,η)

∂ξ
−T0(ξ ,η)cosξ , (33)

2
∂ 2T1(ξ ,η)

∂ξ ∂η
+µ

∂T1(ξ ,η)

∂ξ
+T1(ξ ,η)cosξ

=−∂ 2T0(ξ ,η)

∂η2 −µ
∂T0(ξ ,η)

∂η
, (34)

∂ 2T1(ξ ,η)

∂η2 +µ
∂T1(ξ ,η)

∂η
= 0. (35)

Equation (32) is an equation of motion of a simple harmonic
oscillator and its general solution takes the form

T0(ξ ,η) = A(η)cos
√

δξ +B(η)sin
√

δξ . (36)

It is worth noting that the amplitudes of the general solution de-
pend on η . Substituting equation (36) into equation (33) trans-
forming and converting the products of trigonometric functions
into sums, we obtained

∂ 2T1(ξ ,η)

∂ξ 2 +δT1(ξ ,η)

= 2
dA(η)

dη

√
δ sin

√
δξ −2

dB(η)

dη

√
δ cos

√
δξ

+µA(η)
√

δ sin
√

δξ −µB(η)
√

δ cos
√

δξ

− A(η)

2

(
cos
(√

δ +1
)

ξ + cos
(√

δ −1
)

ξ

)
− B(η)

2

(
sin
(√

δ +1
)

ξ − sin
(√

δ −1
)

ξ

)
. (37)

The first two terms on the right side of the equation represent
resonance conditions and may cause the solution to become un-
stable. If dA(η)/dη = 0 and dB(η)/dη = 0 the cos t term of
Mathieu’s equation does not affect the solution and there is no
parametric resonance phenomenon. In the case of substituting
δ = 1/4 and µ = 0 (no damping) to equation (37) and after

transformations, the following is obtained

∂ 2T1(ξ ,η)

∂ξ 2 +
1
4

T1(ξ ,η)

=

(
dA(η)

dη
+

B(η)

2

)
sin

ξ

2
−
(

dB(η)

dη
+

A(η)

2

)
cos

ξ

2

− A(η)

2
cos

3ξ

2
− B(η)

2
sin

3ξ

2
, (38)

which allowed to obtain additional resonance conditions de-
fined as dA(η)/dη =−B(η)/2, dB(η)/dη =−A(η)/2 which
leads to d2A(η)/dη2 = A(η)/4. The value of the parameter
δ = 1/4 causes instability, and A(η) and B(η) increase expo-
nentially. In the presented example, there is a subharmonic res-
onance in which the excitation frequency is twice the natural
frequency.

After inserting the expansion into the power series δ with
respect to ε to equation (33) and for µ = 0 (no damping), the
following was obtained

∂ 2T1(ξ ,η)

∂ξ 2 +
1
4

T1(ξ ,η) =−2
∂ 2T0(ξ ,η)

∂ξ ∂η

−δ1T0(ξ ,η)−T0(ξ ,η)cosξ (39)

and the resonant conditions take the form of dA(η)/dη =
(δ1−1/2)B(η) and dB(η)/dη = −(δ1 +1/2)A(η) which
leads to d2A(η)/dη2 + (δ1 +1/4)A(η) = 0. The conditions
fulfill the sine and cosine functions for A(η) and B(η), respec-
tively, with δ 2

1 − 1/4 > 0, i.e. when δ1 > 1/2 or δ1 < −1/2.
The curves presented represent the stability curves in the space
δ–ε as

δ =
1
4
± ε

2
+O(ε2). (40)

Equations (36) and (40) correspond to the region of instability
with the zero point at δ = 1/4. In the case of the damped system
µ 6= 0, equation (39) takes the form

∂ 2T1(ξ ,η)

∂ξ 2 +
1
4

T1(ξ ,η) =−2
∂ 2T0(ξ ,η)

∂ξ ∂η

−µ
∂T0(ξ ,η)

∂ξ
−δ1T0(ξ ,η)−T0(ξ ,η)cosξ . (41)

Suitable derivatives take the form of
dA(η)

dη
=−µ

2
A(η)+

(
δ1−

1
2

)
B(η),

dB(η)

dη
=−

(
δ1 +

1
2

)
A(η)− µ

2
B(η).

(42)

The above system of equations can be solved assuming solu-
tions A(η) = A0eλη and B(η) = B0eλη . A non-trivial solution
is obtained for ∣∣∣∣∣∣∣

−µ

2
−λ −1

2
+δ1

−1
2
+δ1 −µ

2
−λ

∣∣∣∣∣∣∣= 0, (43)
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from which it follows that

λ =−µ

2
±
√
−δ 2

1 +
1
4
. (44)

To determine the transition between the stable and unstable
state, λ = 0 should be assumed and the value of δ1 should be
determined as δ1 = ±

√
1−µ2/2. For the first region of insta-

bility, a relationship was established

δ =
1
4
± ε

√
1−µ2

2
+O

(
ε

2)
=

1
4
±
√

ε2− c2

2
+O

(
ε

2) . (45)

Using the relation (45), the influence of the damping con-
stant c on the first unstable region of the Mathieu equation is
shown in Fig. 2. With the increase of the damping coefficient,
the region of unstable solutions of the equation decreased. The
minimum value of the coefficient ε increased its value with the
increase of the damping constant c and a larger and larger re-
gion of possible stable solutions arose under the transition curve
dividing the static and unstable regions.

Fig. 2. Influence of viscous damping c on the unstable (shaded) region
of the solution to the Mathieu equation

3. NUMERICAL RESULTS
The paper solves the problem of dynamic stability of an un-
damped straight Bernoulli-Euler beam, articulated at its ends
and loaded with cyclically changing axial compressive force.
The Wolfram Mathematica package was used, for which propri-
etary software was prepared to perform calculations and make
drawings. The beam length was assumed to be l = 3 m and a
square cross-section with a side h = 0.3 m and a surface area
A = 0.09 m2. The value of the critical axial compressive force
for steel was assumed to be Pk = 9.32676× 107 N, the con-
stant load component was P0 = 5%Pk, similarly, the variable
load component was S = 5%Pk. The area of inertia of the cross-
section was determined from the relationship J = h4/12 =
675× 10−6 m4. The material properties of the beams for the
various materials used in the simulation are summarized in Ta-
ble 1. The first three eigenfrequencies of the analyzed beams
were determined and collected in Table 2.

Table 1
Properties of materials used for the analysis of dynamic stability

of Bernoulli-Euler beams [56]

Material E [GPa] ρ [kg/m3]

Steel 210 7860

Copper 125 8900

Aluminum 70 2700

Titanium 116 4500

Table 2
Determined eigenfrequencies of beams

Material ω1 [rad/s] ω2 [rad/s] ω3 [rad/s]

Steel 483.473 1956.19 4410.66

Copper 346.831 1414.67 3194.26

Aluminum 461.292 1912.38 4330.27

Titanium 468.905 1915.59 4326.52

Based on the determined shapes of the displacement func-
tions for the given materials, the parameters δ and ε of the
Mathieu equation from equations (28) and (29) were deter-
mined and plotted on the Strutt chart in Fig. 3. The frequen-
cies of the exciting force were determined for a given first natu-
ral frequency for a given material according to the dependence
νn = 2ω1/n, where n ∈ {1,2,3,4}.

Fig. 3. Relations between the coefficients ε and δ for the analyzed
materials plotted on the Strutt chart

As can be seen in Fig. 3, the beam made of aluminum was
characterized by the lowest dynamic stability with the same ge-
ometric dimensions and load. Beams made of titanium and cop-
per, despite large differences in natural frequencies, were char-
acterized by similar dynamic stability in favor of the column
made of copper. On the other hand, the most favorable results
were obtained for the column made of steel.

In order to analyze the influence of various types of damping
on the dynamic stability of the analyzed beam, dimensionless
damping coefficients were introduced for the internal damping
Ch, the external damping Cn and the structural damping in the

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e145567, 2023



Influence of material distribution and damping on the dynamic stability of Bernoulli-Euler beams

beam supports Cm in the form

Ch =
EC

E

√
l4 ρA

EJ

, (46)

Cn =
CE l2
√

ρAEJ
, (47)

Cm =
CR

l
√

ρAEJ
. (48)

The paper analyzes the influence of various types of damping
on the dynamic stability of a steel beam with a geometry corre-
sponding to the case under consideration without damping. The
damping parameters for the considered cases are summarized
in Table 3, the determined values of the eigenfrequencies ωi,
the damping coefficient c influencing the shape of the transition
curve between the stable and unstable regions of the solution to
the Mathieu equation and the determined coefficient ε for the
first unstable region of the ε–δ system are also presented there.

The relations between the coefficients of the Mathieu equa-
tion plotted on the Strutt chart in the ε–δ system for the an-
alyzed cases are presented in Fig. 4–8. The system without
damping is shown in Fig. 4. An area was observed for which the

Fig. 4. Relations between the coefficients ε and δ for the analyzed
materials plotted on the Strutt chart; no damping (case 1 in Table 3)

Fig. 5. Relations between the coefficients ε and δ for the analyzed
materials plotted on the Strutt chart; considered damping in the beam

supports for Cm = 0.05 (case 2 in Table 3)

Fig. 6. Relations between the coefficients ε and δ for the analyzed
materials plotted on the Strutt chart; medium damping for Cn = 18.5

is taken into account (case 3 in Table 3)

solution to the Mathieu equation has unstable solutions (shaded
area). The addition of damping in the beam supports increased
the stability of the system (Fig. 5) but did not eliminate the
unstable area. Properly selected medium damping reduced the
unstable area (Fig. 6) and made the system in the entire an-

Table 3
Determined eigenfrequencies of beams made of structural steel for selected damping cases

Case 1 2 3 4 5

Ch 0 0 0 0.001 0

Cn 0 0 18.5 0 4.26

Cm 0 0.05 0 0 0.017

ω1 483.473 483.26+49.454i 150.569+459.429i 483.467+2.42246i 467.957+122.511i

ω2 1956.19 1973.03+198.266i 1901.48+459.429i 1955.81+38.7593i 1951.55+171.862i

ω3 4410.66 4486.25+443.051i 4386.67+459.429i 4406.29+196.219i 4413.77+253.874i

c 0 0 0.00792+0.00582i 5.181×10−6−5.193×10−8i 0.00889−0.00011I

σ 0.25 0.25 0.20151−0.14797i 0.24999−0.00251i 0.22224−0.10602i

ε 0.00773 0.00121+0.01004i 0.00623−0.00458i 0.00773−0.00008i 0.00762−0.00036i
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alyzed range of δ had stable solutions. The internal damping
did not cause any significant changes in the stability in relation
to the undamped system (Fig. 7). The use of a combination of
the damping of the center and supports (Fig. 8) significantly in-
fluenced the achievement of dynamic stability in the analyzed
area of solutions, as well as allowed to reduce of the damping
coefficient of supports.

Fig. 7. Relations between the coefficients ε and δ for the analyzed
materials plotted on the Strutt chart; internal damping taken into ac-

count for Ch = 0.001 (case 4 in Table 3)

Fig. 8. Relations between the coefficients ε and δ for the analyzed ma-
terials plotted on the Strutt chart; considered damping of the medium
for Cn = 4.26 and damping in the beam supports for Cm = 0.017

(case 5 in Table 3)

4. CONCULSIONS
The study investigated the influence of various materials on the
dynamic stability of the Bernoulli-Euler beam, which showed
that the dynamic stability of such beams increases with the in-
crease of their Young’s modulus (solutions for specific material
data on longer sections lie in the stable areas).

The influence of different types of damping on the dynamic
stability of a steel homogeneous Bernoulli-Euler beam, artic-
ulated with rotational dampers at its ends and loaded with an
axial force (varying in time), was also investigated. The con-
ducted tests showed that the internal damping does not signif-
icantly change the dynamic stability of the analyzed system.

The use of damping in beam supports increases the stability of
the system. The damping of the medium surrounding the beam
has the most significant influence on the dynamic stability of
the system under consideration. This type of damping narrows
the areas of unstable solutions and causes the system to have
stable solutions in the entire analyzed range.

The use of a viscous damper system suitably attached at dif-
ferent points on the beam could simulate a change in medium
damping and eliminate unstable areas.
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[28] W. Szemplińska-Stupnicka, Application of parametric differen-
tial equations in mechanics and technology. Warszawa: Pr. IPPT
PAN, 1, Warszawska Drukarnia Naukowa, 1975, (in Polish).
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