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Honey bee immunity and physiology are enhanced 
by consuming high-fat diets 
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Abstract
This study aimed to evaluate the nutritional behavior and some immunological criteria 
(encapsulation index and phenoloxidase – PO activity, the key enzyme for melanization) 
as well as to study the effect of protein to fat (P : F) diets on hypopharyngeal gland (HPG) 
protein content. Bees were restricted to consuming specific P : F diets varying in fat ratio 
under laboratory conditions. These diets included 25 : 1, 10 : 1, 5 : 1 (low-fat diet, LFD); 
1 : 1 (equal-fat diet); 1 : 5, 1 : 10 (high-fat diet, HFD), and 1 : 0 (zero-fat diet) as a control. 
Bees preferred low-fat diets over high-fat diets, where it was 11.27 ± 0.68 µl · day–1 bee in 
10 : 1 P : F, while it was 4.99 ± 0.67 µl · day–1 bee in 1 : 10 P :  F. However, sucrose consump-
tion was higher in high-fat diets where it was 25.83 ± 1.69 µl · day–1 bee in 10 : 1 P: F, while 
it was 30.66 ± 0.9 µl · day–1 bee in 1 : 10 P :  F. The encapsulation index and phenoloxidase 
activity of bees were positively linked with the fat level they consumed during all 10 days. 
The maximum percentage of encapsulation index was 74.6 ± 7.2% in bees fed a high-fat 
diet, whereas the minimum percentage was 16.5 ± 3.6% in bees which consumed a low-
fat diet. Similarly, phenoloxidase activity increased in the haemolymph with increasing fat 
consumed by bees (0.001 ± 0.0001 and 0.005 ± 0.0003 mM · min–1 · mg–1 at 25 : 1 and 
1 : 10 P : F, respectively). The protein content of hypopharyngeal glands in bees which 
consumed HFD was double that of LFD. Overall results suggest a connection between a fat 
diet and bee health, indicating that colony losses in some cases can be reduced by providing 
a certain level of fat supplemental feeding along with sucrose and protein nutrition.

Keywords: fat, encapsulation, honey bee, immunity, phenoloxidase, protein

Vol. 63, No. 2: 185–195, 2023 

DOI: 10.24425/jppr.2023.145753

Received: November 11, 2022
Accepted: January 23, 2023
Online publication: May 08, 2023

*Corresponding address: 
mushtaq.alisawi@uokufa.edu.iq

Responsible Editor:
Andrea Toledo

ORIGINAL ARTICLE

Introduction

Bee nutritional behavior

Numerous studies have reported that animals evolved 
their behavioral and physiological characteristics to 
reach the optimal diet, which is referred to as a “nu-
tritional target”(Behmer 2009; Simpson and Rauben-
heimer 2012). For instance, a study revealed that bum-
blebees selectively gather pollen from flowers based on 
the protein-to-fat ratio (Vaudo et al. 2016b). It is gener-
ally agreed that animals have to be supplied with regu-
lar nutrition to meet their specific requirements, or in-
take target, and diversion away from their optima will 
have detrimental effects. For example, eating surplus 

protein increases the mortality risk in bees (Pirk et al. 
2010; Paoli et al. 2014b; Stabler et al. 2015), ants, Lasius 
niger (Dussutour and Simpson 2012), and Drosophila 
melanogaster (Lee et al. 2008). However, consum-
ing high protein diets improved the survival of Afri-
can honey bees Apis mellifera scutellate (Archer et al. 
2014). Also, bees have a very high requirement for 
carbohydrates and insufficiency leads to a high risk of 
mortality (Brodschneider and Crailsheim 2010). For 
example, 60–80% of the bees fed fructose, sucrose, 
melezitose, or sorbitol, survived for 10 days, whereas 
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those fed sorbose, lactose, xylose or mannose died 
within 3 days at the start of the experiment (Parkinson 
et al. 2022). Excess consumption of fat has also been 
demonstrated in increased mortality of bumblebees 
(Vaudo et al. 2016a). However, another study found 
that pollen with higher fat was preferable to low-fat 
pollen by bumblebees (Vaudo et al. 2016b). 

Nutrition and immunity

In animals, the connection between nutrition and im-
munity has been previously studied by the effect of cal-
orie restriction on immune function (Hultmark 1993; 
Cotter et al. 2011). Honey bees use essential amino 
acids for the synthesis of very important immunologi-
cal compounds such as antimicrobial peptides (AMPs) 
needed in immune pathways by feeding on pollen 
protein (Grimble 2001; Schmid-Hempel 2005; Yi et al. 
2014). Additionally, feeding on nectar or honey pro-
vides energy for metabolic processes required for in-
nate humoral and cellular immune reactions. These 
carbohydrates can also have antimicrobial properties 
(Erler et al. 2014). 

Regarding lipids, honey bees obtain them exclu-
sively from pollen. Herbert et al. (1980) found that bees 
reared more broods when 2–4% lipid extracts from 
pollen were added to their diet. A study by Wright et al. 
(2018) showed that honey bees can regulate their con-
sumption of specific proportions of macronutrients. 
For example, feeding honey bees with a high ratio of 
P : F caused an increase in HPGs (Stabler et al. 2021) 
and reduced deformed wing virus (DWV) levels in 
caged honey bees (Alshukri and Al-Esawy 2021). Fur-
thermore,  Paoli et al. (2014a) showed that worker 
honey bees preferred carbohydrates over proteins. In-
terestingly, honey bee survival decreased when eating 
low protein and high carbohydrate diets after exposure 
to low temperature and nicotine toxins (Archer et al. 
2014).

To evaluate the efficiency of any diet for animal 
development and survival, it is important to consider 
several immune and physiological parameters. Im-
mune parameters can involve either cellular responses, 
which include coagulation, phagocytosis, encapsula-
tion, or humoral responses such as the prophenoloxi-
dase activating system (Gillespie et al. 1997). This 
system is responsible for the production of phenoloxi-
dases, which carry out: (a) melanin biosynthesis, (b) 
cuticle sclerotization, (c) wound healing, (d) nodule 
formation, (e) encapsulation, and (f) phagocytosis 
stimulation (Ratcliffe et al. 1984; Cerenius et al. 2008). 
Regarding melanin and encapsulation processes, PO 
converts phenols to quinones, which are eventually po-
lymerized into melanin (Söderhäll and Cerenius 1998). 
Melanin is then deposited onto a foreign invader and, 

when further haemocytes participate, this can lead to 
the encapsulation of the attacker and protect the host 
body. Moreover, the number of hemocytes in the in-
sect haemocoel can increase during some infections 
(Christensen et al. 1989; Coggins et al. 2012; King and 
Hillyer 2013).

Some factors can negatively affect the encapsula-
tion response. For example, low nutritional quality 
of the insect’s diet (Ojala et al. 2005; Klemola et al. 
2007), and ingestion of some plant secondary me-
tabolites (Haviola et al. 2007; Smilanich 2008). Briefly, 
melanization involves the following steps illustrated 
in Figure 1.

Fig. 1. Interactions between Drosophila larvae and endoparasi-
toid wasps. Wasps inject an egg into the body cavity of a fly larva, 
and the fly recognizes the egg as foreign and mounts a melanotic 
encapsulation response. A–C – the recognition of foreign intrud-
ers through plasmatocytes and lamellocytes; D – the recruitment 
of haemocytes to gather on the intruder; E – melanin release and 
encapsulating of the intruder (designed by the author)

Hypopharyngeal glands and nutrition

Honey bees have several exocrine glands such as man-
dibular, salivary, and HPGs (Fig. 2). The mandibular 
glands in young workers initially produce a fatty acid-
rich secretion (Plettner et al. 1997). This is added to 
a protein-rich secretion from the HPGs. Together, 
these secretions are known as worker jelly, drone jelly 
or royal jelly (Crane 2009; Corby-Harris et al. 2019). 
The mandibular glands in field bees switch to the secre-
tion of ‘forage-marking’ and alarm pheromones (Val-
let et al. 1991). The rate of HPG protein synthesis is 
highest within the second week of honey bee nurse age 
(Knecht and Kaatz 1990). It is well known that pollen 
is the only source of protein and lipids for adult honey 
bees, and it is necessary for HPG protein production  
(Huang et al. 1989; Knecht and Kaatz 1990; Moham-
medi et al. 1996; Feng et al. 2009; Renzi et al. 2016). 
Thus, summer bee nurses usually have HPGs with 
a higher level of protein content than winter bees 
(Brouwers 1982). The protein and lipid content of the 
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jelly produced from HPGs depends on the age of the 
brood or larval stage being fed. Brouwers et al. (1987) 
found that this content was high in the youngest lar-
val jelly and decreased after age 3.5 days. However, the 
sugar content of the jelly increased simultaneously. 
The vast majority of literature focuses on the impor-
tance of pollen protein for honey bees (Schmidt and 
Buchmann 1985; Crailsheim 1986; Crailsheim 1990; 
Crailsheim 1992; Zheng et al. 2014). However, the lit-
erature is scarce regarding the importance of fat for 

access as feeding tubes. A piece of paper was added to 
the hoarding box, covering the base.

Experimental diets

Each protein part of the treatment was composed of 
a mixture of 10 essential amino acids (eAAs) required 
by honey bees (deGroot 1953): methionine, trypto-
phan, arginine, lysine, histidine, phenylalanine, isoleu-
cine, threonine, leucine and valine (Tab. 1). This mix-
ture was added to a 1.0 M sucrose solution, by adding 
6.113 mg · ml–1 from eAAs mixture to 342.3 mg · ml–1 
of sucrose to get 1 : 56 w/w protein to carbohydrate 
ratio (Vaudo et al. 2016b).

Fig. 3. The laboratory cage used for rearing honey bee Apis 
mellifera. under incubation conditions, 34°C and 66% R.H. 
(Wright lab: https://www.zoo.ox.ac.uk/wright-lab-oxford-bee-
laboratory)

Fig. 2. Dissected HPGs, head salivary glands (HSGs), and thoracic 
salivary glands (ThSGs) of the honey bee worker – left (available 
from http://www.honey bee.drawwing.org). HPGs of honey bee 
Apis mellifera (photographed by the author) – right

HPG development and its protein content in young 
nurse bees.

Further studies on honey bees are needed to better 
understand how altered dietary lipid impacts the bee 
immune system, as well as the effects on development 
and performance.

This study aimed to evaluate the nutritional behav-
ior and some immunological criteria such as encapsu-
lation index and phenoloxidase (PO) activity, the key 
enzyme for melanization as well as to study the effect 
of protein to fat (P : F) diets on hypopharyngeal gland 
(HPG) protein content. 

Materials and Methods

Nearly hatched frames of honey bee workers were col-
lected from colonies of A. mellifera ‘‘Buckfast’’ hybrid 
strain kept on the roof of Ridley Building 2 / New 
castle University. Brood frames were placed in a wooden 
box inside a ventilated incubator (Sanyo MIR-553) 
set at 34°C in the dark to mimic natural field con-
ditions (Winston 1991). Thirty newly emerged 
bees were taken each day for each cohort with 
10 cohorts · treatment–1 . Bees were reared in a Perspex 
box (11 × 6 × 20 cm, Fig. 3) supplied with four, 2 ml 
Eppendorf tubes with four holes (3 mm diameter) for 

The fat source used in this study was lecithin (Op-
tima® Bradford, UK). Lecithin was chosen as the fat 
source because it is an emulsifier and can be used for 
liquid diets. Ratios of eAAs/protein to fat (P : F) used in 
this study were calculated on a weight-to-weight (w/w) 
basis as the following: 25 : 1, 10 : 1 and 5 : 1 (low-fat 

Table 1. Essential amino acids required by honey bees (deGroot 
1953)

Amino acid SLC* g/16gN

Leucine L 4.5

Isoleucine I 4.0

Valine V 4.0

Threonine T 3.0

Lysine K 3.0

Arginine R 3.0

Phenylalanine F 2.5

Methionone M 1.5

Histidine H 1.5

Tryptophan W 1.0

*single-letter database codes
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diet, LFD); 1 : 1; 1 : 5, 1 : 10 (high-fat diet, HFD) and 
1 : 0 (zero-fat diet) as a control (Tab. 2).

Nutritional behavior and diet preference

Daily consumption (μl · bee–1) was adjusted for the 
declining bee numbers in each cage during the ex-
periment. Consumption of food was calculated by 
measuring the difference in the weight of feeding 
tubes before and after 24 h. To control the normal 
water evaporation from the feeding tubes, the same 
treatment tubes were put in hoarding cages but with-
out bees. Each tube was replaced with a full one 
daily. Total daily consumption represented the sum 
of the adjusted weight of all four feeding tubes; the 
resulting number was then divided by the number 
of live bees remaining on that day. Experiments con-
tinued for 10 days with consumption recorded each 
day for each box (N = 10 per treatment). This study 
focused on strengthening the nurse bee’s immunity, 
rather than older or foraging bees which have the 
most vigorous immune system  (Wilson-Rich et al. 
2008).

Encapsulation response

The encapsulation response was induced in the bee 
body by mimicking the Varroa mite behavior (Al-
lander and Schmid-Hempel 2000; Sammataro et al. 
2000; Wilson-Rich et al. 2008) by insertion of a ny-
lon filament (0.08 mm diameter) as a ‘pseudoparasite’ 
(Cox-Foster and Stehr 1994; Di Prisco et al. 2016). 
Then, the filament was cut with a razor blade into ap-
proximately 5.0 mm long segments and sterilized in 
95% ethanol. Bee nurses, 10-days-old, were first ice 
anaesthetized and then immobilized using a ‘harness-
ing technique’, exposing the dorsal side. Next, around 
2.0 mm nylon cuts were implanted between the 2nd 
and 3rd tergites (Fig. 4).

After implantation, bees were released into the 
hoarding cages (Fig. 3) and incubated for 24 h (Brewer 
and Vinson 1971; Negri et al. 2014). Explanted threads 
were then observed at 80x magnification under 
a stereo microscope (Leica M125 C, Leica®) and pho-
tographed with an attached digital camera (Sony 
DSC-H10). Images were analyzed using GIMP soft-
ware (GIMP v.2.10.14). The encapsulation degrees were 
scored as the percentage of non-white pixels, which are 
covered by haemocytes and melanin (Di Prisco et al. 
2016). The removed monofilament was photographed 
under a microscope from three different angles (Ran-
tala et al. 2000; Wilson-Rich et al. 2008).

Phenoloxidase (PO) activity

A pulled 1.0 mm glass microcapillary tube was used 
to collect the bee haemolymph through the membrane 
between tergums 2 and 3. The haemolymph was ad-
ded to phosphate-buffered saline (PBS, P4417- Sigma, 
pH 7.4 at 25°C) at a ratio of 1 : 25 (Adamo 2004; 
Alaux et al. 2010) and the tubes immediately were 
vortexed for 10s and kept at −80°C until use. As PO 
is highly immunologically active, causing a range of 
cytotoxic effects when worked, it is generally stored 
as its inactive precursor (prophenoloxidase, ProPO). 
Therefore, PO activity was measured after artificial acti-
vation of ProPO into PO with α-chymotrypsin, a com-
mon activator of ProPO (Kopacek et al. 1995). Levels of 
PO were calculated through its catalysis of the conver-
sion of L-Dopa (3,4-dihydroxy-L-phenylalanine, color-
less) to Dopachrome (red-brown), which can then be 
measured photometrically. Changes in the absorbance 
were measured for 30 min in 15s intervals at 475 nm 
(MRX Microplate Absorbance Reader, DynexTechnolo-
gies). The level of PO activity was measured by applying 
the Beer-Lambert Law (Oosterbroek and van den Berg 
2003):

c = Abs/el,Fig. 4. A nylon thread implanted between the 2nd and 3rd 
abdominal segments of 10-day-old bees Apis mellifera fed differ-
ent ratios of P : F diets (photographed by the author)

Table 2. Proportions of macronutrients in each dietary 
treatment

Treatment 
P : F 

eAAs 
[mg · ml–1]

Carbohydrate 
[mg · ml–1]

Fat 
[mg · ml–1]

25 : 1 6.113 342.3 0.24452

10 : 1 6.113 342.3 0.6113

5 : 1 6.113 342.3 1.2226

1 : 1 6.113 342.3 6.113

1 : 5 6.113 342.3 30.565

1 : 10 6.113 342.3 61.13

1 : 0 6.113 342.3 0
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where: c – concentration or activity, Abs – ab sorbance, 
e – molar absorption coefficient for the product 
dopachrome, l – length of the cuvette. Control tubes 
were composed of α-chymotrypsin without haemo-
lymph.

Effect of fat diets on bee hypopharyngeal 
gland protein

Frozen bees (at age 10 days) were thawed and their 
HPGs (Fig. 2) were dissected under a stereoscope (Lei-
ca M125 C, Leica®) at 500x magnification. Two glands 
from two bees were mixed with 50μl PBS in a 1.5 ml 
Eppendorf tube. Subsequently, they were ground 
with a plastic homogenizer (Eppendorf® micro pestle, 
Z317314-Sigma) that was tightly fitted onto each tube. 
The homogenate was then vortexed briefly and then 
the sample was centrifuged at 336 g for 2 min (Suwan-
napong et al. 2010). To determine the soluble protein 
content, 10 μl of supernatant was used in a Bradford 
assay (Bradford 1976). 

Statistical analysis

Analyses were conducted using Minitab (Minitab, 
State College, PA, USA, V. 19) with diet as the main 
effect. Post hoc comparisons were made using the 
Tukey analysis. GraphPad Prism 7 software was used 
to draw data figures. Data were analyzed using one-
way ANOVA. We also reported an approximate F and 
its associated P-value. When the ANOVA was statisti-
cally significant (p ≤ 0.05), H0 was rejected. 

Results

Nutritional behavior and diet preference

For 10 days, A. mellifera honey bee nurses were fed 
a sucrose-only diet and one of the P : F ratio diets 

(Tab. 2). The results indicated that bees differed in 
consuming PF diet [F(6,63) = 13.64, p < 0.001; Fig. 5A]. 
Consumption of HFD was significantly less than all 
other treatments, where it was 4.99 ± 0.6707 µl · bee–1 
· day–1 compared to 11.31 ± 0.9639 µl · bee–1 · day–1 in 
the control. However, in the HFD, bees ate more su-
crose solution (although not significantly different) 
than LFD [F(6, 63) = 2.014, p = 0.0769, Fig. 5B), where 
the highest rate of consumption was 30.66 ± 0.9076 µl · 
bee–1 · day–1 compared to 27.82 ± 1.299 µl · bee–1 · day–1 

in the control. 

 Encapsulation

From the graph below (Fig. 6A), it can be seen that 
in general threads explanted from bee workers con-
sumed HFD (1: 10 P : F) had a significantly greater de-
gree of encapsulation than those fed LFD [F(6,27) = 6.7, 
p = 0.0002]. The maximum percentage of encap-
sulation index was 74.6 ± 7.2% in 1 : 10 (P : F), 
whereas the minimum percentage was 16.5 ± 3.6% 
in 10 : 1 (P : F). Additionally, there was a clear differ-
ence between the encapsulated area on the threads 
taken from bees-fed LFD (Fig. 6C) and bees-fed HFD 
(Fig. 6D) compared to the normal nylon filament 
(Fig. 6B).

Phenoloxidase activity

The results obtained from the humoral immunity as-
say (PO) conducted in this study are presented in 
Figure 7A. Statistical analysis of PO results with 
multiple comparisons using the Tukey test re-
vealed that there was a significant difference 
(p < 0.05) between HFD (1 : 5 and 1 : 10 P : F) and 
LFD (25 : 1 P : F). However, there was no signifi-
cant difference in the variation of the activity of PO 
[F(6,59) = 1.426, p = 0.2199] observed between other 
diets. Furthermore, PO activity in 10-day-old work-
ers increased with an increase in fat consumed, 

Fig. 5. Daily consumption of treatments – A and sucrose – B diets for Apis mellifera nurse bees in confined P : F diet assay. Treatments 
are represented by their protein : fat (P : F) diet ratio, including protein-only diets (1 : 0 ratio). Different letters indicate a significant 
difference between groups (p < 0.05). N (Replicates) = 10 cohorts per treatment with 30 bees in each cohort, data presented as means 
±SEM

A                                                                                                                                   B
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and it ranged in bee haemolymph from 0.001 ± 
0.0001 to 0.005 ± 0.0003 mM · min–1 · mg–1 at 25 : 1 to 
1 : 10 P : F diets (Fig. 7A). Furthermore, the current 
study revealed that there was a positive correlation,  
but not significant, between PO activity and encap-
sulation index (Pearson correlation, r = 0.2, p = 0.07) 
(Fig. 7B).

Hypopharyngeal (HPG) gland protein 
content related to fat consumption

The current study revealed that there was a sig-
nificant difference in the protein content of HPGs 
in P : F treatments. Compared to LFDs, it was, 
0.2 ± 0.05 mg · gland–1 · bee–1 at the highest fat diets  
(1 : 10 P : F), compared to 0.1 ± 0.006 mg · gland–1 · 
bee–1 in 25 : 1 P : F), while it was  0.12 ± 0.008 mg · 
gland–1 · bee–1 in the control [F(6,28) = 2.991, p = 0.021; 
Fig. 8]. 

Fig. 6. A – immunocompetence of 10-day-old honey bee work-
ers as affected by feeding on different ratios of P : F diets; B – 
normal nylon filament compared to C – partially encapsulated; 
D – completely encapsulated nylon thread at 24 h after implan-
tation into the body of bees. Level of encapsulation of a nylon 
thread implant in honey bees with different levels of P : F ratio 
measured as a percentage of haemocytes/melanin area on the 
filament. Means labelled with the same letter do not differ sig-
nificantly according to Post hoc test with the Tukey procedure

Discussion

Newly emerged honey bees were confined to diets in 
which the P : F ratio was manipulated. Lipid is one of 
the most important biochemical components of the 
animal diet, playing a key role in growth, survival 
and reproduction (Biebach 1996). Besides its pri-
mary function as an energy source, lipids have many 
additional functions such as preventing desiccation 
and participation in the chemical communication of 
insects, such as pheromones (Howard and Blomquist 
2005). 

This study demonstrated that bees on HFDs con-
sumed significantly less than LFDs (Fig. 5). This can 

Fig. 7. A – effects of different P : F ratios on bee humoral immunity represented by phenoloxidase (PO) activity in the bee haemolymph 
of 10-day-old honey bee nurses Apis mellifera; B – correlation between PO activity and encapsulation. Means labelled with the same 
letter do not differ significantly according to Post hoc test with the Tukey procedure. Means ±SEM was calculated from 8–10 worker 
bees in each diet

Fig. 8. Protein concentrations in the HPGs of 10-day-old worker 
bees Apis mellifera that were placed under broodless conditions. 
Means labelled with the same letter do not differ significantly 
according to Post hoc test with Tukey procedure. Means ±SEM 
were calculated from 4–5 worker bees in each diet
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be explained by the fact that bees tried to manage the 
toxicity resulting from high-fat diets by restricting food 
intake (Raubenheimer et al. 2005). Thus, bees on LFDs 
consumed twice as much as bees that were on HFDs. 
Although lipids naturally have a phagostimulatory ef-
fect, their high concentration caused decreased attrac-
tion and consumption (Fig. 5). However, hunger (or 
need for fat or carbohydrates) can activate lipolysis in 
the fat body to obtain energy. So, the concentration of 
fat in the fat body (in the form of anhydrous triglycer-
ides) decreases, while the haemolymph fat (in the form 
of diglycerides) levels increases (Jimenez-Sanchez et al. 
2012; Hossain et al. 2013).

This result is partially supported by Vaudo et al. 
(2016a)  who found that the P : F ratio is the key stim-
ulus of foraging in honey bees. However, in another 
study, Vaudo et al. (2016b)  found that some of the 
most preferred plant species in the feeding of Bum-
blebee Bumbus impatiens were those with a high lipid 
content.

The encapsulation response is one of the most ef-
fective ways to assay the strength of immune defense 
in arthropods (König and Schmid-Hempel 1995; 
Rantala and Kortet 2003; Ahtiainen et al. 2004, 2005; 
Vainio et al. 2004). In this technique, nylon implants 
are considered immune challenges to activating en-
capsulation/wound healing in insect haemocytes 
(Wilson-Rich et al. 2008). Thus, in this study, brood-
less nurse-age honey bees were challenged with nylon 
thread implants to assess the impact of PF feeding on 
the bee immune system. The results provided in this 
study (Fig. 6) suggest that generally, feeding on high-
fat diets plays a positive effect on the encapsulation re-
sponse. The same trend was also found in the PO test 
(Fig. 7), where the results of the present study revealed 
that PO activity in HFDs was five times greater than 
the PO activity in LFDs.

Generally, the positive role of fat on the immune 
system may be attributed to two facts: first, fat is one 
of the nutrients which supports and stimulates the 
immune system as an “immuno-nutritional element” 
(Karacabey and Ozdemir 2012). In this regard, fats 
have a key role in some biological functions such as: 
the absorption of fat-soluble vitamins (A, D, E and K), 
a source of ω-3 and ω-6 oil acid, and providing perme-
ability and stability for cell membranes (Simopoulos 
2002; Jing et al. 2012; Ariena et al. 2015). Secondly, 
fat has more than twice as many calories as carbohy-
drates and proteins (Kritchevsky et al. 1986), and this 
can cover the high cost of energy required to activate 
and work the immune system (Moret and Schmid-
Hempel 2000). The present findings  support the study 
of Kritchevsky et al. (1986) who concluded that there 
was a positive correlation between dietary fat and en-
capsulation response in the male damselfly, Calopteryx 

virgo L. However, Adamo et al. (2007) found that 
force-feeding a high lipid diet reduced Manduca sexta 
caterpillar resistance to bacteria, Serratia marcescens. 
Moreover, some studies found that the genotype of 
honey bees and the location of the colonies influence 
the levels of endoparasite resistance such as tracheal 
mites. These genotypes included Buckfast, ARS-Y-C-1 
(Yugoslavian) and Russian honey bees (Danka et al. 
1995; Lin et al. 1996; de Guzman et al. 2002; 2005). 
It can be concluded from the current study that a low 
level of immunity was seen in bees eating low-fat diets, 
which could be partially explained by the low activity 
of PO enzymes or the encapsulation process that was 
shown in Figures 6 and 7. Many studies have revealed 
that PO activity can be influenced by diet quality 
(Lee et al. 2006; Klemola et al. 2007). For example, 
Brakefield (1987) mentioned that melanogenesis in the 
peppered moth (Biston betularia), which is controlled 
by PO might be costly in nitrogen. Although eating 
food with a high ratio of P : F had a negative impact 
on the health of many animals (Durand et al. 2005; 
Alzoubi et al. 2009; Moreira et al. 2012; Crean and 
Senior 2019), the results of the current study suggest 
the opposite, as bees eating HFDs had a better encap-
sulation index and high PO activity (Figs. 6, 7). There-
fore, further research in this field would be of great help 
in better understanding bees’ nutritional immunity.

HPGs are protein-producing glands situated in 
the head of worker honey bees (Klose et al. 2017). The 
current results showed clearly that feeding honey bees 
with diets high in fat (1 : 10 P : F), for the first 10 days 
of adult life, affected positively the protein content of 
HPGs, reaching 0.2 mg · gland–1 · bee–1 compared to 
0.1 mg · gland–1 · bee–1 in the control and low-fat 
diets (Fig. 8). In fact, the exact reason for the positive 
relationship between HFDs and protein content of 
HPGs is unclear. However, the findings can provide in-
sights into the potential of fat supplements to improve 
the effects of fat deprivation in workers and how this 
might translate into colony growth. The present result 
is supported by a study by Stabler et al. (2021) who 
revealed that providing HFDs to caged bees increased 
the HPG size. Moreover, DeGrandi-Hoffman et al. 
(2010) found that providing honey bees with protein 
supplements increased protein levels and the develop-
ment of HPGs. Because the study was carried out us-
ing caged bees, the effects of fat diets on brood rearing 
and nestmate interactions at a colony level might have 
impacted the examined criteria. In beehives, fermen-
tation and pre-digestion occur through the action of 
microbes (Gilliam et al. 1989; Zuluaga-Dominguez 
and Fuenmayor 2022). In the current study, the P : F 
diets were subjected solely to digestion in the gut, and 
this might limit the effectiveness of P : F supplements 
in colonies. 
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Conclusions

The current bioassays provided the first evidence 
that some cellular and humoral parameters in brood-
less nurse-age honey bees were affected by fat diets. 
Generally, there was a positive relationship between fat 
consumed and bee immunity. However, it is unknown 
whether honey bee nurses can adjust their fat nutri-
tional preferences under the colony conditions, in the 
presence of broods, different ages and castes of bees, 
and natural resources. This study needs to be repeated 
in the field before the relationship between fat diets 
and changes in immune parameters can be fully con-
firmed. Further studies should be performed to iden-
tify the most efficient proportional fat diets enhancing 
honey bee life. 
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