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The positivity of the fractional order model
of a two-dimensional temperature field

Krzysztof OPRZĘDKIEWICZ ∗∗∗

AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland

Abstract. The paper presents analysis of the positivity for a two-dimensional temperature field. The process under consideration is described
by the linear, infinite-dimensional, noninteger order state equation. It is derived from a two-dimensional parabolic equation with homogenous
Neumann boundary conditions along all borders and homogenous initial condition. The form of control and observation operators is determined
by the construction of a real system. The internal and external positivity of the model are associated to the localization of heater and measurement.
It has been proven that the internal positivity of the considered system can be achieved by the proper selection of attachment of a heater and place
of a measurement as well as the dimension of the finite-dimensional approximation of the considered model. Conditions of the internal positivity
associated with construction of real experimental system are proposed. The postivity is analysed separately for control and output of the system.
This allows one to analyse the positivity of thermal systems without explicit control. Theoretical considerations are numerically verified with
the use of experimental data. The proposed results can be applied i.e. to point suitable places for measuring of a temperature using a thermal
imaging camera.

Key words: noninteger order systems; heat transfer equation; fractional order state equation; Caputo operator; positivity; thermal camera.

1. INTRODUCTION
In reality there exist many processes and phenomena described
by signals taking only positive values. Such phenomena are
known in medicine, chemistry, biology, economy or different
areas of engineering.

Theory of positive systems has been developed by many Re-
searchers over the years. Fundamentals are presented e.g. in
books: [1–5]. Presentation [6] is also interesting.

Control methods dedicated to positive systems allowing to
keep their positivity are given e.g. in: [7, 8]. A specific class of
positive parabolic problems has been analysed i.e. in [9]. An in-
teresting “academic” example of a positive system is presented
in the paper [10].

An issue important from point of view of practice is to as-
sure of a positivity by a technical system we deal with. At first
glance, the number of results in this range seems to be large(see
e.g. [11–15]).

It is important to note that these theoretical results do not
give guidelines on how to construct a positive system. It can be
tried to apply the general positivity conditions, but this can be
difficult or dangerous in practice.

Numerical methods can be also employed to testing of posi-
tivity, as it is mentioned e.g. in [15]. However such a numerical
estimation is the NP hard problem. An alternative is delivered
by an idea of an “eventual positivity”. It permits an existence of
nonpositive solutions too. This issue is presented e.g. in [16,17].
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The fractional calculus allows one to describe many complex
physical phenomena and processes. Examples of fractional or-
der models are presented e.g. by [18–23]. Anomalous diffusion
problem using fractional order approach and semigroup theory
is given e.g. by [24]. An observability of fractional order sys-
tems is discussed e.g. in paper [25].

The use of the Kelvin scale allows one to describe thermal
processes using positive approach. Processes of heat transfer
and dissipation are analysed by researchers and engineers for
years. This broad class of processes can be described using non-
integer order approach also (see e.g. [26–31]).

Recently the study of positive fractional-order systems is
caused by the fact that many fractional-order systems also de-
scribe nonnegative physical phenomena and technical systems.
Fundamental results from area of the positivity of fractional or-
der systems have been published by T. Kaczorek incl. in pa-
pers [32–35].

In this paper new analytical conditions of the internal positiv-
ity for real, experimental thermal system are proposed and ver-
ified. The system under consideration is described by the frac-
tional order, two-dimensional state space model. The proposed
results allow one to attach a positivity property to a construction
of a real system.

The organization of the paper is following. It starts with re-
calling elementary ideas and definitions from fractional calcu-
lus and theory of positive systems. Next the experimental heat
system and its model are presented. The main result presents
analysis of the internal positivity of the considered system. Fi-
nally the numerical verification of presented results as well as
the numerical tests of the external postivity using experimental
data is given.
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2. PRELIMINARIES
2.1. Basics of fractional calculus
The noninteger-order, integro-differential operator is defined as
follows (see e.g. [3, 19, 22, 36]):

Definition 1. (The elementary noninteger-order operator) The
noninteger-order integro-differential operator is defined as fol-
lows:

aDα
t f (t) =



dα f (t)
dtα

α > 0,

f (t) α = 0,
t∫

a

f (τ)(dτ)α
α < 0,

(1)

where a and t denote time limits for operator calculation, α ∈R
denotes the noninteger order of the operation. If α ∈Z, then the
operator (1) turns to classic integer order operator.

The fractional-order, integro-differential operator can be de-
scribed by definitions given by Grünwald and Letnikov, Rie-
mann and Liouville (RL) and Caputo (C). In this paper the C
definition is employed (see e.g. [3, 19, 22, 36]):

Definition 2. (The Caputo definition of the FO operator)

C
0 Dα

t f (t) =
1

Γ(M−α)

∞∫
0

f (M)(τ)

(t− τ)α+1−M dτ, (2)

where M− 1 < α < M is the fractional order of operation and
Γ(..) is the Gamma function.

The Laplace transform of the Caputo operator is defined as
follows (e.g. [37]):

Definition 3. (The Laplace transform of Caputo operator)

L (C0 Dα
t f (t)) = sα F(s), α < 0,

L (C0 Dα
t f (t)) = sα F(s)−

M−1

∑
k=0

sα−k−1
0Dk

t f (0),

α > 0, M−1 < α ≤M ∈ Z.

(3)

The general form of a fractional-order linear state space
equation is as follows:

0Dα
t x(t) = Ax(t)+Bu(t),

y(t) =Cx(t).
(4)

In (4) α ∈ (0,1) is the fractional order, x(t) ∈ RN , u(t) ∈ RL,
y(t) ∈ RP are the state, control and output vectors respectively,
A,B,C are the state, control and output operators, respectively.

2.2. Positivity
Next ideas and conditions of internal and external positivity of
the FO system should be remembered. They are given e.g. in
[33, 34].

Definition 4. (The internal positivity)
The FO system (4) is called internally positive if x(t) ∈ RN

+,
y(t)∈RP

+, t ≥ 0 for any initial conditions x0 ∈RN
+ and all inputs

u(t) ∈ RM
+ .

Theorem 1. The FO system (4) is internally positive if and
only if:

A ∈MN , B ∈ RU
+ , C ∈ RP

+ , (5)

where MN denotes the Metzler matrix.

Definition 5. (The external positivity)
The FO system (4) is called externally positive if and only if
y(t) ∈ RP

+, t ≥ 0 for homogenous initial condition x0 = 0 and
all inputs u(t) ∈ RM

+ .

Theorem 2. The FO system (4) is externally positive if and
only if its impulse response matrix g(t) is nonnegative for t ≥
0, i.e:

g(t) = L −1{C(sα I−A)−1B} ∈ RPxM
+ . (6)

The internal positivity always implies the external positivity,
but the reverse implication is not true. The prooving of the ex-
ternal positivity without internal positivity is not a trivial issue.
The solution to this problem for a specified class of dynamic
systems is given in the paper [38].

3. THE CONSIDERED HEATING SYSTEM
The considered heating system is shown simplified in Fig. 1.
This is the PCB plate with the flat electric heater, denoted by
H. Its coordinates are described by xh1, xh2, yh1 and yh2 respec-
tively. The temperature of the whole PCB is monitored using
an industrial thermal imaging camera, the location and size of
measurement area are configurable. The size of camera sensor
is X ×Y pixels. The area of measurement is marked as S and
its coordinates are denoted by xs1, xs2, ys1 and ys2 respectively.
Detailed description of this experimental system is given in the
section “Simulations and Experiments”. The heater and sensor
functions are expressed by the simple rectangular functions:

b(x,y) =

{
1, x,y ∈ H,

0, x,y 6∈ H.
(7)

Measured

Area

Heater

Y

X

xs1,ys1

xs2,ys2

xh1,yh1

xh2,yh2

(0,0)

Fig. 1. The experimental system
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c(x,y) =

{
1, x,y ∈ S,
0, x,y 6∈ S.

(8)

4. THE FRACTIONAL MODEL OF THE SYSTEM
The two-dimensional, FO model presented in this section has
been presented with details in papers [39, 40]. Here its crucial
elements are recalled. The heat transfer equation is given by (9):

C
0 Dα

t Q(x,y, t) = aw

(
∂ β Q(x,y, t)

∂xβ
+

∂ β Q(x,y, t)
∂yβ

)
−RaQ(x,y, t)+b(x,y)u(t),

∂Q(0,y, t)
∂x

= 0, t ≥ 0,

∂Q(X ,y, t)
∂x

= 0, t ≥ 0,

∂Q(x,0, t)
∂y

= 0, t ≥ 0,

∂Q(x,Y, t)
∂y

= 0, t ≥ 0,

Q(x,y,0) = Q0 , 0≤ x≤ X , 0≤ y≤ Y,

y(t) = k0

X∫
0

Y∫
0

Q(x,y, t)c(x,y)dxdy.

(9)

where α and β are fractional orders of derivatives of time and
length, aw > 0, Ra ≥ 0 are coefficients of heat conduction and
heat exchange, k0 is a steady-state gain of the model, b(x,y) and
c(x,y) are heater and sensor functions, expressed by (7) and (8).

The heat equation (9) can be expressed as an infinite-
dimensional state equation:{

C
0 Dα

t Q(t) = AQ(t)+Bu(t),

y(t) =CQ(t),
(10)

where:

AQ = aw

(
∂ β Q(x,y)

∂xβ
+

∂ β Q(x,y)
∂yβ

)
−RaQ(x,y),

D(A) =
{

Q ∈ H2(0,1) : Q′(0) = 0,

Q′(X) = 0, Q′(Y ) = 0
}
,

aw, Ra > 0,
CQ(t) = 〈c,Q(t)〉, Bu(t) = bu(t).

(11)

The state vector Q(t) takes the following form:

Q(t) = [q0,0, q0,1, q0,2..., q1,1, q1,2, ...]
T . (12)

The state operator A is as follows:

A = diag
{

λ0,0, λ0,1, λ0,2, ..., λ1,1,

λ1,2, ..., λ2,1, λ2,2..., λm,n, ...
}
. (13)

The shape of the heated plant (thin metallic surface) sug-
gests assuming the homogenous Neumann boundary condi-
tions. Consequently the eigenfunctions and the eigenvalues take
the following form:

wm,n(x,y) =



1, m, n = 0,
2Y
πn

cos
nπy
Y

, m = 0, n = 1,2, ...

2X
πm

cos
mπx

X
, n = 0, m = 1,2, ...

2
π

1(
mβ

Xβ
+

nβ

Y β

) 1
β

cos
mπx

X
cos

nπy
Y

,

m, n = 1,2, ...

(14)

λm,n =−aw

[
mβ

Xβ
+

nβ

Y β

]
π

β −Ra, m, n = 0,1,2, ... (15)

The main difference to the one-dimensional heat transfer equa-
tion is that the eigenvalues (15) can be multiple. The analysis
of existence of multiple eigenvalues is presented in paper [40].

The control operator takes the following form [40]:

B =
[
b0,0, b0,1, ..., b1,0, b1,1, ...

]T
, (16)

where:

bm,n = 〈H,wm,n〉=
X∫

0

Y∫
0

b(x,y)wm,n(x,y)dxdy. (17)

Taking into account (14) we obtain:

bm,n =



(xh2− xh1)(yh2− yh1), m, n = 0,
1

hyn
(xh2− xh1)anhy , m = 0, n = 1,2,3, ...,

1
hxm

(yh2− yh1)amhx , n = 0, m = 1,2,3, ...,

km,n

hxmhyn
amhxanhy , m, n = 1,2,3, ...

(18)

where:

hxm =
mπ

X
,

hyn =
nπ

Y
.

(19)

km,n =
2
π

1

β

√
mβ

Xβ
+

nβ

Y β

, (20)

amhx = (sin(hxmxh2)− sin(hxmxh1)) ,

anhy = (sin(hynyh2)− sin(hynyh1)) ;
(21)
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The output operator is as beneath [40]:

C =
[
c0,0, c0,1, ..., c1,0, c1,1, ...

]
, (22)

where:

cm,n = 〈S,wm,n〉=
X∫

0

Y∫
0

c(x,y)wm,n(x,y)dxdy. (23)

In (23) each element cm,n is expressed analogically, as (18):

cm,n =



(xs2− xs1)(ys2− ys1), m,n = 0,
1

hyn
(xs2− xs1)ansy, m = 0, n = 1,2,3, ...,

1
hxm

(ys2− ys1)amsx, n = 0, m = 1,2,3, ...,

km,n

hxmhyn
amsxansy, m, n = 1,2,3, ...

(24)

In (24) hxm,yn are expressed by (19) and:

amsx = (sin(hxmxs2)− sin(hxmxs1)) ,

ansy = (sin(hynys2)− sin(hynys1)) .
(25)

The dynamic system expressed by (13)–(23) is infinte-dimen-
sional and of course its explicit form cannot be employed to
modeling. This requires applying a finite-dimensional approxi-
mation. It is obtained by truncation of further modes of decom-
posed model at M×N-th place (see [40]). In such a situation
the state vector has the dimension M×N and operators A, B
and C turn to matrices of suitable size. The values of M and N
assuring the satisfactory accuracy of the model can be estimated
numerically or analytically.

4.1. The step and impulse responses of the model
The step response of the model we obtain using spectrum de-
composition property. It takes the following form (see [40]):

y∞(t) =
∞

∑
m=0

∞

∑
n=0

ym,n(t), (26)

where m,n-th mode of response is as follows:

ym,n(t) =
Eα(λm,ntα)−1(t)

λm,n
bm,ncm,n . (27)

In (27) Eα(..) is the one parameter Mittag-Leffler function,
λm,n, bm,n and cm,n are expressed by (15), (17) and (23) respec-
tively.

During simulations the finite-dimensional sum needs to be
employed:

yMN(t) =
M

∑
m=0

N

∑
n=0

ym,n(t). (28)

The analysis of the external positivity requires knowing an im-
pulse response of a system. It can be computed analogically as

the step response, using the decomposition of the spectrum of
the system.

The impulse response for a single mode of the system (10)–
(23) is as follows:

gm,n(t) = tα−1Eα,α (λm,ntα)bm,ncm,n , (29)

where Eα,α(..) is the two-parameter Mittag-Leffler function,
the rest of parameters are the same as in (27).

Consequently the impulse response and its finite-dimensional
approximation are as below:

g∞(t) =
∞

∑
m=0

∞

∑
n=0

gm,n(t), (30)

gMN(t) =
M

∑
m=0

N

∑
n=0

gm,n(t), (31)

where gm,n(t) are the single modes expressed by (29).

5. MAIN RESULTS
Necessary and sufficient condition of the internal positivity is
given by (5).

The state operator A is described by (13) and it is the Metzler
matrix for each positive value of coefficients aw and Ra. Testing
of the internal positivity requires checking the positivity of the
control and observation operators B and C only. Signs of par-
ticular elements of these operators are determined by the size
and location of control and observation as well as the order of
the model. Next, the positivity can be considered separately for
control and observation. This is discussed beneath.

Lemma 1. (The positivity of the control operator B) Consider
the dynamic system described by (13)–(23). Assume that the
size of its finite-dimensional approximation is M×N. The con-
trol operator B is positive iff the coordinates of the heater xh1,2
and yh1,2 meet the following condition:

xh1 +
∆xh

2
<

X
2M

,

yh1 +
∆yh

2
<

Y
2N

,

(32)

where X and Y are the dimensions of the whole area, ∆xh =
xh2− xh1 and ∆yh = yh2− yh1 describe the size of the heater.

Proof. The proof will be presented only for the horizontal co-
ordinate x. For the vertical coordinate y it is analogical.

At the beginning notice that the sign of each element bm,n is
determined only by the sign of the factors amhx and ansy, ex-
pressed by (25), because hxm and hyn expressed by (19) are al-
ways positive.

Next transform ahmx to its equivalent form:

amhx = 2cos
(

hxmxh1 +
hxm∆xh

2

)
sin
(

hxm∆xh

2

)
, (33)
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where hxm is expressed by (19). The factor (33) is positive iff its
both components are simultaneously positive or simultaneously
negative. With respect to (33) this is expressed as follows:

cos
(

hxmxh1 +
hxm∆xh

2

)
> 0

∧

sin
(

hxm∆xh

2

)
> 0

(34)

or

cos
(

hxmxh1 +
hxm∆xh

2

)
< 0

∧

sin
(

hxm∆xh

2

)
< 0,

(35)

Using elementary properties of sine and cosine functions the
relations (34)–(35) can be expressed as follows:

0 < hxm

(
xh1 +

∆xh

2

)
<

π

2
∧

0 < hxm

(
∆xh

2

)
<

π

2
,

(36)

or

π < hxm

(
xh1 +

∆xh

2

)
<

3π

2
∧

π < hxm

(
∆xh

2

)
<

3π

2
.

(37)

Recalling (19) yields:

0 <

(
xh1 +

∆xh

2

)
<

X
2m

∧

0 <

(
∆xh

2

)
<

X
2m

,

(38)

or

X
m

<

(
xh1 +

∆xh

2

)
<

3X
m

∧
X
m

<

(
∆xh

2

)
<

3X
m

.

(39)

The inequalities (38)–(39) must be met for 0 < x < X and
m = 1, ...,M. The inequality (39) for m = 1 is not met for
0 < x < X . In the inequality (38) the strongest limitation is met

for m = M and for xh1 +
∆xh

2
. This condition gives directly the

first inequality (32) and the proof for x is completed. The sec-
ond dependence for vertical coordinate y can be proven analog-
ically.

From the condition (32) the condition describing the maxi-
mum orders MB and NB can be proven, assuring the postivity of
the control operator B for fixed location of heater. It is given by
the following Lemma:

Lemma 2. (The dimension of the model assuring the posi-
tivity of the control operator B) Consider the dynamic system
described by (13)–(23). Assume that the heater is attached in
points xh1, yh1 and its size is ∆xh, ∆yh.

The control operator B is positive iff the dimensions MB and
NB of the finite-dimensional approximation of the model meet
the following condition:

MB <
X

2xh1 +∆xh
,

NB <
Y

2yh1 +∆yh
.

(40)

The positivity of the output operator C can be proven ana-
logically. The suitable conditions can be proved analogically as
Lemma 2. They are given beneath.

Proposition 1. (The positivity of the output operator C) Con-
sider the dynamic system described by (13)–(23). Assume that
the size of its finite-dimensional approximation is M×N. The
output operator C is positive iff the coordinates of the measur-
ing place xs1,2 and ys1,2 meet the following condition:

xs1 +
∆xs

2
<

X
2M

,

ys1 +
∆ys

2
<

Y
2N

,

(41)

where X and Y are the dimensions of surface, ∆xs = xs2− xs1
and ∆yh = ys2− ys1 describe the size of the measuring place.

Proposition 2. (The dimension of the model assuring the pos-
itivity of the output operator C) Consider the dynamic system
described by (13)–(23). Assume that the temperature is mea-
sured in the point: xs1, ys1 and its size is ∆xs, ∆ys. The output op-
erator C is positive iff the dimensions of the finite-dimensional
approximation of the model MC and NC meet the following con-
dition: 

MC <
X

2xs1 +∆xs
,

NC <
Y

2ys1 +∆ys
.

(42)

The main difference between testing the positivity of the out-
put and control operators is that the field of measurement can
be much smaller than the surface of the heater. This allows
one to obtain the field of observation bigger than the surface
of heating.

Finally the conditions of the internal postivity of the consid-
ered thermal system can be formulated.

Proposition 3. (The internal positivity of the system) Consider
the dynamic system described by (13)–(23). Assume that the di-
mension of its finite-dimensional approximation is M×N. The
system is internally positive iff observation and control meet
the conditions (32) and (40).

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e145675, 2023 5



K. Oprzędkiewicz

Proposition 4. (The dimensions of the finite-dimensional ap-
proximation assuring the internal positivity) Consider the finite-
dimensional approximation of the dynamic system described by
(13)–(23). Assume that its dimensions assuring the positivity of
control and output operators are equal MB,C and NB,C respec-
tively.

The dimensions MintP, NintP of the finite-dimensional approx-
imation assuring the internal positivity are expressed as follows:

MintP = min(MB,MC),

NintP = min(NB,NC).
(43)

It is worth noting that the conditions of the internal positiv-
ity proposed above are a little bit easier to keep than the ana-
logical conditions formulated for one-dimensional heat system
discussed in the paper [38].

Lemma 2 allows one to prove the Proposition about the in-
ternal postivity of the infinite-dimensional system.

Proposition 5. (The internal positivity of the infinite-dimen-
sional system) The infinite-dimensional system (13)–(23) can-
not be internally positive.

Proof. From dependencies (32) and (41) it can be concluded
that the size of the area of heating and measurement descrease
in the function of dimensions M and N. For M→∞ and N→∞

this size goes to zero.

6. SIMULATIONS AND EXPERIMENTS
6.1. Example 1
As the first example assume that the size of the sensor in the
thermal camera equals 380× 290 pixels. We are looking for
locations of heater and measurement assuring the internal pos-
itivity of the system. The size of the heater is 100× 20 pixels
and the size of the measurement field is 2×2 pixels. The “pos-
itive” locations of heater and sensor for different values of M
and N are given in Table 1 and illustrated by Fig. 2. They were
estimated using conditions (32) and (41).

Table 1
Dimensions of heater and measurement field assuring the internal

positivity for dimensions of the model equal: M = N = 2,3,4

M, N xh1 ∆xh yh1 ∆yh xs1 ∆xs ys1 ∆ys

2,2 45 100 62 20 94 2 71 2

3,3 13 100 38 20 62 2 47 2

4,4 0 100 26 20 46 2 35 2

6.2. Example 2
As the next example look for the dimensions of model, for
which the internal positivity is kept for fixed locations of heater
and measurement. To do it the conditions (40) and (42) will
be employed. This job will be done for the experimental sys-
tem discussed in the paper [40]. The heater was attached in the
location given in Table 2. The measurements were realized in
different places, described in Table 3. The orders MB, NB, MC
and NC assuring the positivity of control and observation are
given also in these tables.

In Table 3 values “0, 0” for place No 3 denote that this place
cannot be positive for any value of M or N.

Table 2
The dimensions MB, NB assuring the internal positivity,

computed using (40)

xh1 xh2 yh1 yh2 MB, NB

100 270 40 60 1,3

Table 3
The dimensions MC, NC assuring the internal positivity,

computed using (42)

Place xs1 xs2 ys1 ys2 MC, NC

1 50 52 75 77 3,2

2 200 202 100 102 1,1

3 300 302 200 202 0,0

4 130 230 40 60 1,3
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Fig. 2. The areas of the internal positivity for M = N = 2,3,4
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6.3. Example 3
Finally the external positivity using the general condition (6)
will be numerically examined. This is done using experimental
data collected in Table 4. The model was identified for orders
M = N = 5. For such orders the model is not internally posi-
tive (see Tables 2, 3), but the external positivity can be tested.
Results of the external positivity tests are presented in right col-
umn of Table 4. Additionally tests are illustrated by the impulse
responses obtained using (31) and shown in Fig. 3. This table
and figure show that the external positivity of the proposed sys-
tem can be obtained without internal one, analogically as in the
one-dimensional system, discussed in the paper [38].

Table 4
Parameters of the model for M = N = 5

Place α β aw Ra Ext. Positivity?

1 1.0794 1.8641 0.0032 0.0032 Yes

2 0.9590 0.3959 0.0357 0.0057 Yes

3 1.4877 1.8712 0.0208 0.0003 No

4 0.8156 1.2400 0.0098 0.0234 Yes

Fig. 3. The impulse responses in all considered places of measurement
for M = N = 5

7. FINAL CONCLUSIONS
The first conclusion is that the positivity of the considered, two-
dimensional heat system is associated to the dimensions and lo-
cation of control and measurement as well as the size of model.
This is an analogy to the one-dimensional case.

Next, the internal positivity is a little bit easier to obtain for
two-dimensional system, than for one-dimensional case.

The internal positivity does not depend on both orders α nei-
ther β of the model. This makes possible to apply the proposed
conditions to estimation of the positivity for both integer and
noninteger order systems. This property has been also observed

for one-dimensional thermal system (see [38]) and has been no-
ticed by other researchers.

From the separated analysis of the positivity of control and
output it can be concluded that the internal positivity of the out-
put operator C is easier to obtain than the positivity of the con-
trol operator B. This is important during eventual application of
the presented results in thermal imaging. If we deal with e.g.
modeling of thermal traces, then only a response to initial con-
dition is necessary to analyse.

The formulation of general conditions of positivity for gen-
eral fractional system can be difficult due to the positivity deter-
mined by the form of operators A, B and C. Next, the form of
these operators is determined by a construction of a real system
we deal with. Surely, the formulating of general guidelines to
construct of positive systems and their models is very interest-
ing and it is planned to be further investigated.

Other areas of the further investigation covers the formula-
tion of an analytical condition of the external positivity, ana-
logically as in the one-dimensional case. Other issues to anal-
yse there are e.g. propositions of control algorithms for thermal
positive systems.
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[38] K. Oprzędkiewicz, “Positivity problem for the class of fractional
order, distributed parameter systems.” ISA Trans., vol. 112, no. 1,
pp. 281–291, 2021.
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