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A diagnostic technique based on independent component analysis (ICA), fast Fourier transform (FFT),
and support vector machine (SVM) is suggested for effectively extracting signal features in infrasound signal
monitoring. Firstly, ICA is proposed to separate the source signals of mixed infrasound sources. Secondly, FFT
is used to obtain the feature vectors of infrasound signals. Finally, SVM is used to classify the extracted fea-
ture vectors. The approach integrates the advantages of ICA in signal separation and FFT to extract the
feature vectors. An experiment is conducted to verify the benefits of the proposed approach. The experiment
results demonstrate that the classification accuracy is above 98.52% and the run time is only 2.1 seconds.
Therefore, the proposed strategy is beneficial in enhancing geophysical monitoring performance.
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1. Introduction

Infrasound (generally less than 20 Hz) is a low-fre-
quency sound produced by natural and anthropogenic
events. The frequency of infrasound signals typically is
under 20 Hz (Gi, Brown, 2017; McKee et al., 2018).
Although it cannot be heard by the human auditory
system, it widely exists in the world around us. Infra-
sound can be produced by natural events such as earth-
quakes, tsunamis, mudslides, tornadoes, and volcano
eruptions (Liu et al., 2021). Human induced events
such as missile launches, ship navigation, and nuclear
explosions can produce infrasound (Zhao et al., 2021).
Infrasound is low frequency, long wavelength sound
wave, accessible to diffraction, and not easily absorbed
by the medium (Mayer et al., 2020; Cárdenas-Peña
et al., 2013; Cannata et al., 2011). Therefore, infra-
sound can be employed in natural disaster monitoring.

Some scholars study infrasound signal classification
algorithms and apply them to monitor infrasound sig-
nals. Thüring et al. (2015) classified the infrasound
data from the avalanche control site near Lavin in the
Swiss Alps via SVM. The false detection rate was re-
duced from 65% to 10%, and the classification perfor-
mance was significantly improved. Reliable help was

provided for establishing the automatic detection sys-
tem of infrasound avalanche (Iezzi et al., 2019). Tsy-
bul’skaya et al. (2012) classified atmospheric infra-
sonic signals based on the theory of testing statisti-
cal hypotheses. HAM et al. (2008) used radial basis
function (RBF) network as the subnetworks of paral-
lel neural network classifier bank to classify six dif-
ferent infrasound events. The classification accuracy
reached more than 93%. Through data mining classi-
fication algorithms, the feature extraction can be con-
ducted on the signal to achieve a better classification.
Liu et al. (2014) used three types of feature extraction
techniques (spectral entropy, discrete wavelet transfor-
mation (DWT), and Hilbert-Huang transform (HHT))
to extract the feature vector of four types of infrasound
signals. The signal feature was extracted by back prop-
agation neural network and SVM for classification. As
a result, SVM has a greater classification accuracy
(Li et al., 2016). However, these methods do not sep-
arate the signal from the noise, which may limit their
accuracy.

This research provides an approach for monitoring
infrasound signal. The proposed technique first applies
a blind source separation (BSS) method based on ICA
to extract useful signals from mixed infrasound sig-
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nals. Then fast Fourier transform (FFT) is carried out
for feature extraction. Finally, SVM is utilized to clas-
sify the infrasound signals based on the retrieved fea-
tures. The infrasound signal experiment is conducted
to validate the superiority of our proposed technique. It
provides a practical mechanism for real-time monitor-
ing and analysis of infrasound signals (Chernogor,
Shevelev, 2018).

The remainder of this work is organized as follows.
The methodologies and algorithms used in this paper
are briefly discussed in Sec. 2. In Sec. 3, the perfor-
mance of the proposed approach is compared in an
experiment. Section 4 shows the experimental results
through the analysis of different methods. Finally, con-
clusions are drawn in Sec. 5.

2. Methods

2.1. Source signal extraction based on independent
component analysis

BSS is a well-known concept for separating mixed
signals (Sastry et al., 2021). The word “blind” refers
to the fact that source signals can be separated even
if little information about them is available (Mika,
Kleczkowski, 2011). One of the most widely-used
examples of BSS is to separate voice signals of peo-
ple speaking at the same time. This is called the cock-
tail party problem. This problem aims to detect or
extract the sound with a single object even though dif-
ferent sounds in the environment are superimposed on
another (Mika, Kleczkowski, 2011). Independent
component analysis (ICA) is an analysis method of
high-order statistics. It can separate a non-Gaussian
characteristic component from mixed signals (Qian
et al., 2019). Besides, ICA can remove the aliasing
noise from signals without destroying the details. ICA
has been applied in many fields and is one of the most
powerful tools for data analysis.

As shown in Fig. 1, presenting a linear model of
ICA, let x1, x2, ..., xn be an n-dimensional random ob-
servation mixed signal, which is a linear combination
of s1, s2, ..., sn. Each observation xi(t) is a sample of
the random variable. Let the mixed random variables
and independent sources have zero mean. The model
is defined in matrix form. Let X = (x1, x2, ..., xn)T

be an n-dimensional random observation vector and
S = (s1, s2, ..., sm)T be an m-dimensional unknown
source signal. Then the ICA can be expressed as:

X = AS =
m

∑
i=1

aisi, i = 1,2, ...,m. (1)

Mixed
matrix A

Demixing
matrixW

S(t) = {s1, s2, ..., sm} X(t) = {x1, x2, ..., xn} Y(t)

Source
signal

Observed
signal

Separation
signal

Fig. 1. Linear model of ICA.

Among them, si is the independent component, the
mixed matrix A = [a1, a2, ..., an] is a full rank ma-
trix, and ai is the base vector of the mixing matrix.
In Eq. (1), we can see that each observation data xi
is obtained by the independent source si with differ-
ent ai linear weighting. The independent source si is
an implicit variable. It cannot be directly measured.
The mixed matrix A is also an unknown matrix, so
the only available information is the observed random
vector X. Without any restriction to estimate S and A
from X, the solution of Eq. (1) must be multiple so-
lutions. However, according to the statistical charac-
teristics of X, ICA will give the unique solution of the
equation under certain constraints. The unique solu-
tion can extract independent components.

The unknown source signals are independent,
which is a fundamental basic assumption. As a result,
the probability density function can be written as:

p(s) =
m

∏
i=1

pi(si), (2)

where p(s) represents the probability density func-
tion of the source signal, pi(si) signifies the indepen-
dent component’s probability density function (Mika,
Kleczkowski, 2011), s is the source signal, si stands
for the independent component, and m is chosen as
dimension.

The source signals are independent in the ICA
model (Mika, Kleczkowski, 2011). The independent
signals will have a non-Gaussian distribution. Non-
Gaussianity is measured by kurtosis. In order to sim-
plify the model, it is assumed that the unknown mix-
ing matrix A is a square matrix m = n. The purpose
of ICA is to find a transformation matrix. The linear
transformation X is used to obtain the n-dimensional
output vector:

Y =WX =WAS, (3)

where Y is the approximate signal of S, namely Y = Ŝ,
the initial weight vector for the unmixing matrix W is
arbitrary. However, due to A and S being unknown,
Y has two uncertainties (the uncertainty of amplitude
of separated signals and the uncertainty of order of sep-
arated signals). These uncertainties have no impact on
the outcome.

2.2. Fast Fourier transform

Cooley and Tukey (1965) skillfully used the pe-
riodicity and symmetry of the Wn factor to construct
a fast algorithm for discrete Fourier transform (DFT),
namely FFT. In the following decades, FFT was fur-
ther developed. At present, the radix-2 and split-radix
algorithms are commonly used.

When discussing the mathematical transformation
of images, we consider images as functions with two
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variables x and y. First, the Fourier transformation of
a two-dimensional continuous function is introduced.
Let f(x, y) be a function of two independent variables

x and y. It satisfies
∞

∫
−∞

∞

∫
−∞

∣f(x, y)∣dxdy < 0.

F (u, v) =
∞

∫
−∞

∞

∫
−∞

f(x, y)e−j2δ(ux+vy) dxdy, (4)

where F (u, v) is the Fourier transform of f(x, y) and
f(x, y) is the inverse Fourier transform:

f(x, y) =
∞

∫
−∞

∞

∫
−∞

F (u, v)e−j2δ(ux+vy) dudv. (5)

The amplitude spectrum, phase spectrum and energy
spectrum of the Fourier transform are as follows:

∣F (u, v)∣ = [R2(u, v) + I2(u, v)]1/2, (6)

ϕ(u, v) = arctg [I(u, v)/R(u, v)] , (7)

E(u, v) = R2(u, v) + I2(u, v), (8)

where R(u, v) and I(u, v) represent the real part and
imaginary part of the Fourier transform, respectively.

2.3. Classification using SVM

Cortes and Vapnik (1995) proposed SVM, a pat-
tern recognition method developed based on statistical
theory. In order to get the best generalization ability,
SVM seeks the optimum balance between model com-
plexity and learning ability based on limited sample in-
formation (Amarnath, 2016). In the field of pattern
recognition, SVM is mainly employed to handle the
challenge of data classification. It demonstrates a num-
ber of distinct advantages in solving tiny samples, non-
linear pattern recognition, and high-dimensional pat-
tern recognition (Amarnath, 2016). SVM may be
used to solve a wide range of machine learning.

As shown in Fig. 2, the sample C1 is a posi-
tive sample, the sample C2 is a negative sample, and
a linear function g (x) = wTx + b is required to sepa-
rate C1 from C2. This is the case in two-dimensional
space, and in three-dimensional space to separate C1
from C2 a face is required, and in the n-dimensional
space an n-1-dimensional hyper-plane is required to be

Sample C1

Magin = 2/||w||

H1

H

H2

Sample C2

Fig. 2. SVM classification model.

separated. So, the separation of the hyperplane is ex-
pressed as:

g (xi) = ⟨wT , xi⟩ + b = 0. (9)

The geometric interval between H1 and H, H2 and
H is:

d = yi ⋅ (wTx + b) ⋅
1

∥w∥ . (10)

According to Eq. (10), it is necessary to find the
nearest point (support vector) of the distance hyper-
plane in the sample, optimize w and b, and maxi-
mize the distance from the support vector to the hyper
plane. It is a quadratic programming (QP):

min
1

2
∥w∥2

subject to yi [(wTxi) + b] − 1 ≥ 0 (i = 1,2, ..., n).
(11)

According to the Lagrange multiplier method,
w can be expressed as:

w = α1x1y1 +α2x2y2 + ...+αnxnyn =
n

∑
i−1

(αixiyi), (12)

where ai represents Lagrange multiplier, xi represents
sample points, yi represents the category label of the
i-th sample, and n is the number of samples. In the for-
mula, only the sample point (support vector) belonging
to H1 and H2 is not equal to zero, and these non-zero
sample points only determine the classification func-
tion. Substituting Eq. (12) into Eq. (9) produces:

wTx + b = (
n

∑
i=1

αiyixi)
T

x + b =
n

∑
i=1

αiyi ⟨xi, x⟩ + b, (13)

where ⟨xi, x⟩ is the Kernel function K ⟨xi, x⟩ of SVM.
The Kernel function can convert a sample from a low-
dimensional space to a high-dimensional space, allow-
ing it to be separated linearly (Amarnath, 2016). At
present, the choice of Kernel function mainly relies on
experience. However, because the RBF is preferable in
general, the RBF function is chosen as the Kernel func-
tion in this research (Chernogor, Shevelev, 2018):

K(x,xi) = exp
⎛
⎝
−
∥x − x2

i ∥
2

σ2

⎞
⎠
. (14)

3. Experiment

3.1. Data set and tool

The data used in this paper originates from the
International Monitoring System (IMS) with the help
of the Comprehensive Nuclear-Test-Ban Treaty Beijing
National Data Center (Liu et al., 2014). This study di-
vides infrasound incidents into three types. The data
is gathered from sex separate infrasound sensor ar-
rays located all around the world. This study uses 611
sets of data. The details of infrasound data collected
from various regions are shown in Table 1. Earthquake,
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Table 1. Infrasound data summary.

Event type Data source
(IMS Station Code)

Geographic coordinate Number
of signals

Total Sampling frequency
[Hz]

I14CL (−33.65, −78.79) 74 20
Earthquake I30JP (35.31, 140.31) 124 203 20

I59US (19.59, −155.89) 6 20
I10CA (50.20, −96.03) 4 20

Tsunami
I22FR (−22.18, 166.85) 53

218
20

I30JP (35.31, 140.31) 113 20
I52GB (−7.38, 72.48) 66 20

Volcano I30JP (35.31, 140.31) 189 189 20

tsunami, and volcano eruption are the three types of
infrasound events (Li et al., 2016).

All 611 infrasound signal recordings have a sam-
pling frequency of 20 Hz. Figure 3 depicts the infra-
sound stations’ map.

Fig. 3. Map of the infrasound stations.

3.2. Experiment setup

Figure 4 depicts the various categorization model
frameworks, while Table 1 contains the data infor-
mation. Figure 4a shows that the infrasonic signal
is transformed by FFT. As a result, the feature ex-
traction obtains three types of feature vectors. Each
class is randomly divided into two groups: the train-
ing group and the testing group. The proportion of the
training group and the testing group is around two to
one. The SVM classification model is first trained by
the training group. The SVM classification model is
next tested by the testing group. Finally, the clas-
sification results and accuracy are given. In Fig. 4b
ICA is added to remove aliasing noise from the sig-
nal without destroying the details of the signal, and
then the separated signal is transformed by FFT. As
a result, feature extraction obtains three types of fea-
ture vectors. Each class is randomly divided into two

Original data ICA

SVM training

SVM
classification

Output
of results

KNN training

KNN
classification

Output
of results

FFT SVM training

SVM
classification

Output
of results

Original data

FFT

Original data ICA FFT

b)

a)

c)

Fig. 4. Classification model framework.

groups: the training group and the testing group. Data
from the training group outnumbers data from the test
group by around two to one. The K-nearest neighbor
(KNN) classification model is first trained by the train-
ing group. The KNN classification model is then tested
by the testing group. Finally, the classification results
and accuracy are given. In Fig. 4c ICA is added to
remove aliasing noise in the signal without destroying
the details of the signal, and then the separated signal
is transformed by FFT. As a result, feature extraction
obtains three types of feature vectors. Each class is ran-
domly divided into two groups: the training group and
the testing group. Data from the training group out-
numbers data from the test group by around two to
one. The SVM classification model is first trained by
the training group. The SVM classification model is
next tested by the testing group. Finally, the classifi-
cation results and accuracy are given.

3.3. Data preprocessing

The original plot of three infrasonic events is shown
in Fig. 5. In Fig. 5, we can see that it is difficult to sep-
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Fig. 5. Original plot of three infrasonic events.
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Fig. 6. Feature vectors extracted by FFT: a) feature vectors of earthquake; b) feature vectors of tsunami;
c) feature vectors of volcano eruption.

arate different infrasound signals. Therefore, we should
extract the feature vectors from the infrasound signal.
The feature vectors of three infrasonic events extracted
by FFT are presented in Fig. 6. Figure 7 shows the fea-
ture vectors of three infrasonic events based on ICA
and FFT.

SVM is a supervised classification algorithm. SVM
is trained by the training set to obtain the optimal
parameters. The final classification result of SVM is
obtained by the testing set. The training set data and
testing set data of SVM are presented in Table 2.
There are 611 infrasound signals, including earth-
quake, tsunami, and volcano eruption, collected from
six infrasound stations. The sampling frequency is
20 Hz. Due to the different lengths of infrasound sig-
nals obtained at each infrasound station, all signals
need to be truncated, and the data length used in all
tests is 1024 points.
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Fig. 7. Feature vectors extracted by ICA and FFT: a) feature vectors of an earthquake; b) feature vectors of a tsunami;
c) feature vectors of a volcano eruption.

Table 2. Infrasound classes used for training and testing.

Event type Class number Number of vectors Number of vectors used
for training

Number of vectors used
for testing

Earthquake 1 204 136 68
Tsunami 2 218 146 72
Volcano 3 189 126 63
Total – 611 408 203

3.4. Experiment results and discussion

As shown in Fig. 6, the feature vectors of three in-
frasound events have some similarities. However, there
are some differences between them and can be used
for infrasound signal classification. Figure 7 shows that
the distinction of the feature vectors among different

classes is obvious, and the amplitude of the eigenvalues
is large. The results show that the proposed methods
can extract feature vectors.

The final classification results are shown in Figs. 8
and 9. In these figures, the anticipated label is re-
presented by the abscissa, whereas the true label is
depicted by the ordinate.
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Fig. 8. Confusion matrix of classification results:
a) FFT+ SVM; b) ICA+FFT+ SVM.
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Fig. 9. Confusion matrix of ICA+FFT+KNN classification
results.

The confusion matrix of infrasound classification
using FFT+ SVM is shown in Fig. 8a. The classifi-
cation accuracy of the three infrasound events is
84.73%. In the classification result of an earthquake by
FFT+ SVM, five earthquake feature vectors are mis-
takenly identified as tsunami vectors, and six earth-
quake feature vectors are mistakenly identified as vol-
cano vectors. In the classification result of a tsunami by
FFT+ SVM, five tsunami feature vectors are mistak-
enly identified as earthquake feature vectors, and fif-
teen tsunami feature vectors are mistakenly identified
as volcano feature vectors. Some events are misclassi-
fied due to similar characteristics.

The confusion matrix of infrasound classification
using ICA+FFT+ SVM is depicted in Fig. 8b. The
classification accuracy of the three infrasound events
is 98.52%, according to the results. In the classifica-
tion result of an earthquake by ICA+FFT+ SVM,
one earthquake feature vector is mistakenly identified
as a volcano feature vector. In the classification result of
a tsunami by ICA+FFT+ SVM, one tsunami feature
vector is mistakenly identified as an earthquake featu-
re vector, and one tsunami feature vector is mistakenly
identified as a volcano feature vector. Some events are
misclassified due to similar characteristics.

To compare SVM with other methods, we use the
ICA+FFT to extract feature vectors from the same
data and then use KNN to classify it, as shown in Fig. 9.
A comparative test is utilized to verify the efficiency
of the proposed method. Compared with FFT+ SVM,
the classification accuracy of ICA+FFT+ SVM in-
creases by 14% and obtains excellent operating speed,
as shown in Table 3. This table shows that the clas-
sification result of ICA+FFT+ SVM is better than
ICA+FFT+KNN, which increases by 2% in accuracy
and decreases by 1.5 s in run time. This suggests the
SVM method is more suitable for classifying the re-
duced dimension data by ICA.

Table 3. Comparison results of infrasound signal
classification.

Classification scheme Classification
accuracy

Run time
[s]

FFT combined
with SVM

84.73 5.368

ICA and FFT combined
with KNN

96.06 3.625

ICA and FFT combined
with SVM

98.52 2.124

As shown in Fig. 3, the source locations of the infra-
sound stations are distributed widely, but their quan-
tity is small. Due to the limitation of the data, the
proposed approach may not be generalized for global
hazard monitoring.
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4. Conclusion and future work

This research presented a reliable approach for clas-
sifying and identifying infrasound signals. ICA sepa-
rated the source signals of mixed infrasound signals,
and then the feature vectors of infrasound events were
extracted by FFT. Finally, SVM was used to classify
the extracted feature vectors. The experiment results
can provide practical solutions for the classification of
infrasound signals. The study aimed to improve the
accuracy of geophysical monitoring. Due to the limita-
tions of the existing conditions, tests can only use small
samples and a few infrasound types, which will affect
the reliability of the test results. More infrasound data
and infrasonic event types must be evaluated in order
to obtain more precise results. For future work, real-
time infrasound signal classification will be carried out,
and further studies on infrasound types will be per-
formed. Deep learning should be developed for global
infrasound signal classification (Albert, Linville,
2020).
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